## Problem Set 9

Physics 322
Electrodynamics II

Due on Friday, April 5th, 2024

## Problem 1

Find the intensity of Thomson scattering for a charge $q$ (initially at rest at the origin) that responds to an incident plane electromagnetic wave with electric field of the form: $\mathbf{E}=E_{0} \cos (k(z-c t)) \hat{\mathbf{y}}$. Write your result in terms of spherical coordinates, the "electron radius," $\ell$, and the incident intensity $I_{0}=$ $1 / 2 E_{0}^{2} /\left(\mu_{0} c\right)$. Why doesn't the intensity depend on the frequency $\omega \equiv k c$ ?

## Problem 2

From the plane wave solutions to the wave equation (working in one spatial dimension here)

$$
\begin{equation*}
w(t)=w_{0} e^{i 2 \pi(f t-k x)} \quad \text { with } f=k v \tag{1}
\end{equation*}
$$

we can make more general solutions by summing,

$$
\begin{equation*}
p(x, t)=\int_{-\infty}^{\infty} A(k) e^{i 2 \pi f t} e^{-i 2 \pi k x} d k \tag{2}
\end{equation*}
$$

where $A(k)$ is a function of the wavenumber (an inverse length) $k$.
a. Given $p(x, 0)=u(x)$ as the initial data, find the expression for $A(k)$ in terms of $u(x)$ (and functions related to it - it might help to review the definition of the Fourier transform from the notes for January 31st, 2024).
b. Suppose the frequency $f$ is itself a function of the wavenumber, $f(k)$, so that

$$
\begin{equation*}
p(x, t)=\int_{-\infty}^{\infty} A(k) e^{i 2 \pi f(k) t} e^{-i 2 \pi k x} d k \tag{3}
\end{equation*}
$$

If $A(k)$ is sharply peaked about some $k_{0}$, then by Taylor expanding $f$ about $k_{0}$ and using that expression in (3), show that

$$
\begin{equation*}
p(x, t) \approx u\left(x-f^{\prime}\left(k_{0}\right) t\right) e^{i \phi t} \tag{4}
\end{equation*}
$$

where $\phi$ is a constant. Up to a phase factor, then, $p(x, t)$ is interpretable as a right-traveling wave that moves with speed $f^{\prime}\left(k_{0}\right)$ (the relevant group velocity here).

## Problem 3

What is the energy required to build a spherical shell of radius $R$ with total charge $Q$ spread uniformly around its surface? How about a solid, uniformly charged sphere of radius $R$ with that same charge $Q$ ? In each case, find the "classical charge radius."

## Problem 4

Using the Thomson scattering setup, we can define the "scattering cross section" associated with electromagnetic radiation. For the incident wave: $\mathbf{E}_{\text {in }}=$ $E_{\text {in }} \cos (k(z-c t)) \hat{\mathbf{n}}$, the amount of power that goes through a disk of area $d \sigma$ (with the disk's surface normal pointing in the direction of the incident wave, $\hat{\mathbf{z}})$ is: $S_{\text {in }} d \sigma$. The radiation that comes out (Thomson scattering) goes through a patch of a sphere of radius $r$, with $d \mathbf{a}=r^{2} \sin \theta d \theta d \phi \hat{\mathbf{r}}$. The angular piece of the area patch defines the solid angle, $d \Omega \equiv \sin \theta d \theta d \phi$. Equating the incoming power with the outgoing power:

$$
\begin{equation*}
S_{\text {in }} d \sigma=\mathbf{S}_{\text {out }} \cdot\left(r^{2} d \Omega \hat{\mathbf{r}}\right) \tag{5}
\end{equation*}
$$

allows us to define the "differential scattering cross section," the function $D(\theta) \equiv \frac{\left(r^{2} \hat{\mathbf{r}} \cdot \mathbf{S o u t}^{\text {out }}\right)}{S_{\text {in }}}$. Write out the expression for $D(\theta)$ for Thomson scattering using the time-averaged Poynting vectors (the intensities), and averaging over the incident polarization.

## Problem 5

Griffiths 9.36 - transmission through multiple materials - feel free to use the matrix setup (or something similar to it) from problem 2 of Problem Set 8.

## Problem 6

Griffiths 9.38 - Scaring fish.

