Problem Set 5

Physics 322
Electrodynamics II

Due on Friday, February 23rd, 2024

Problem 1

a. A charge q oscillates up and down along the $\hat{\mathbf{y}}$ axis, with $\mathbf{w}(t)=$ $d \cos (\omega t) \hat{\mathbf{y}}$. We are interested in the field at location $\mathbf{r}=(d / 100) \hat{\mathbf{x}}-d / 10 \hat{\mathbf{y}}$ and time $t=0$. If we set $\omega=10000 \mathrm{~Hz}, d=20000 \mathrm{~m}$, what is the proper time associated with our field point and time? You can use root-finding on the function:

$$
\begin{equation*}
F(p)=c(t-p)-\sqrt{(\mathbf{r}-\mathbf{w}(p)) \cdot(\mathbf{r}-\mathbf{w}(p))} \tag{1}
\end{equation*}
$$

in Mathematica via FindRoot. Where is the particle at t_{r} ? Where is the particle at time 0 ?
b. Find t_{r} for the same motion and field point as in part a., but with $\omega=30000 \mathrm{~Hz}, d=40000 \mathrm{~m}$. (try plotting $F(p)$ before finding the root ... what is going on here?).

Problem 2

Griffiths 11.12 - electron falling under the influence of gravity.

Problem 3

A particle of charge q moves along a trajectory given by: $\mathbf{w}(t)=f \cos (\omega t) \hat{\mathbf{x}}+$ $g \sin (\omega t) \hat{\mathbf{y}}$ (for constants f, g and ω) - sketch the trajectory of the particle (take $f>g$ for the sketch). What is the total power (time-averaged) radiated? Which radiates more, a particle moving in a circular trajectory of radius f, or a particle moving along a line of length $2 f$ (each traversed with constant angular frequency ω)? What is the ratio of the power (time-averaged) radiated for the circle vs. the line trajectories?

Problem 4

For a configuration of charge that has dipole moment $\mathbf{p}(t)=p_{0}(\cos (\omega t) \hat{\mathbf{x}}+$ $\sin (\omega t) \hat{\mathbf{y}})$, find $\mathbf{E}^{\text {rad }}$ and $\mathbf{B}^{\text {rad }}$ and the associated Poynting vector (for a field point at \mathbf{r} with $r \gg p_{0} / q$ where q is the total charge of the configuration). Express all your answers in term of spherical coordinates and the spherical basis vectors.

Problem 5

A particle in "hyperbolic" motion travels along the z-axis with $\mathbf{w}(t)=\sqrt{b^{2}+(c t)^{2}} \hat{\mathbf{z}}$.
What is the retarded time for a field point $\mathbf{r}=x \hat{\mathbf{x}}+z \hat{\mathbf{z}}$, and $t=0$? What happens to the retarded time when $z \rightarrow 0$?

Problem 6

A point charge sits at the origin of \bar{L} that moves through L with speed v along a shared x axis. Write down the charge density in \bar{L} and L separately, using the appropriate point charge density in each frame. For your charge density in \bar{L}, express \bar{x}, \bar{y} and \bar{z} in terms of the coordinates in L and use properties of the delta function to show that $\rho=\gamma \bar{\rho}$. Interestingly, then, length contraction occurs even for point charges...

Presentation Problems

Here are some presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you choose to present one, either in-class or in written form, it will be due on Friday, February 23rd (I'll ask for volunteers for in-class presentations on Monday, February 19th).

Problem 1*

Construct a function in Mathematica (or other program) that will evaluate the full electric field \mathbf{E} from Griffiths (10.72) and \mathbf{B} (10.73) at field points $\mathbf{r}=y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$ and time t. Try it out (and come up with some mechanism for display) on some of the motion that we have been thinking about radiatively in class.

Problem 2*
Griffiths 11.14 - lifetime of hydrogen (classical).

