Problem Set 3

Physics 322
Electrodynamics II

Due on Friday, February 9th, 2024

Problem 1

A function $f(x)$ has a single root at $\bar{x}, f(\bar{x})=0$. Show that (assuming $\left.f^{\prime}(\bar{x}) \neq 0\right)$

$$
\begin{equation*}
\delta(f(x))=\frac{\delta(x-\bar{x})}{\left|f^{\prime}(x)\right|} \tag{1}
\end{equation*}
$$

You can do this by establishing that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(f(x)) p(x) d x=\frac{p(\bar{x})}{\left|f^{\prime}(\bar{x})\right|}, \tag{2}
\end{equation*}
$$

which is how equations like (1) are used in practice.

Problem 2

For a scalar function $f(x, y, z, t)$ in L, moving to the coordinate system \bar{L} (which travels along a shared x axis at constant speed v) amounts to expressing x, y, z and t in terms of $\bar{x}, \bar{y}, \bar{z}$ and \bar{t}, and we call the resulting function $\bar{f}(\bar{x}, \bar{y}, \bar{z}, \bar{t}) .{ }^{1}$ Show that

$$
\begin{equation*}
-\frac{1}{c^{2}} \frac{\partial^{2} \bar{f}}{\partial \bar{t}^{2}}+\frac{\partial^{2} \bar{f}}{\partial \bar{x}^{2}}+\frac{\partial^{2} \bar{f}}{\partial \bar{y}^{2}}+\frac{\partial^{2} \bar{f}}{\partial \bar{z}^{2}}=-\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}+\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}, \tag{3}
\end{equation*}
$$

establishing that the D'Alembertian is a "scalar" (does not change under a Lorentz boost).

[^0]
Problem 3

The "four-gradient" ∂^{μ} (generalizing the three-dimensional ∇) acting on a scalar function $f(x, y, z, t)$ (defined in the previous problem) is defined by

$$
\partial^{\mu} f \doteq\left(\begin{array}{c}
-\frac{1}{c} \frac{\partial f}{\partial t} \tag{4}\\
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right)
$$

Show that $\partial^{\mu} f$ is a four-vector, i.e. that

$$
\begin{equation*}
\bar{\partial}^{\mu} \bar{f}=\sum_{\nu=0}^{3} \Lambda_{\nu}^{\mu}\left(\partial^{\nu} f\right) \tag{5}
\end{equation*}
$$

Problem 4

A charge density $\bar{\rho}$ is at rest in \bar{L} (you might think of a model charge density: a total charge Q spread uniformly through a cube of side length $\bar{\ell}$), using Lorentz contraction, what are the values of ρ and \mathbf{J} in L ? Does the relation between $\{\rho c, \mathbf{J}\}$ and $\{\bar{\rho} c, \overline{\mathbf{J}}\}$ support the idea that ρ and \mathbf{J} form a four vector?

Problem 5

Compute the potential \bar{V} and vector potential $\overline{\mathbf{A}}$ for an infinite line of charge with uniform density $\bar{\lambda}$ lying at rest along the $\hat{\mathbf{z}}$ axis. Do the same thing if that line of charge is moving with speed v up the $\hat{\mathbf{z}}$ axis, i.e. find the potentials V and \mathbf{A} for this configuration. Are the two sets of potentials related in the way you expect (i.e. do the components transform as a four-vector)? Compute the quadratic $-(V / c)^{2}+\mathbf{A} \cdot \mathbf{A}$ in both cases, do the expressions agree?

Presentation Problems

Here are three presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you choose to present one, either in-class or in written form, it will be due on Friday, February 9th (l'll ask for volunteers for in-class presentations on Monday, February 5th).

Problem 1*

For a particle that travels along the trajectory $\mathbf{w}(t)$ with $|\dot{\mathbf{w}}(t)|<c$ for all times, show that there is only one retarded time location, $\mathbf{w}\left(t_{r}\right)$ satisfying

$$
\begin{equation*}
c\left(t-t_{r}\right)=\left|\mathbf{r}-\mathbf{w}\left(t_{r}\right)\right| \tag{6}
\end{equation*}
$$

What happens if a particle travels faster than c ? This situation can happen in materials, where the speed of light in material can be exceeded.

Problem 2*

A point charge sits at the origin of \bar{L} that moves through L with speed v along a shared x axis. Write down the charge density in \bar{L} and L separately, using the appropriate point charge density in each frame. For your charge density in \bar{L}, express \bar{x}, \bar{y} and \bar{z} in terms of the coordinates in L and use properties of the delta function to show that $\rho=\gamma \bar{\rho}$. Interestingly, then, length contraction occurs even for point charges ...

Problem 3*

Positronium consists of an electron (with charge $-q$) and a positron (with charge $+q$) bound together. A classical model for positronium follows the Bohr model: The two charges attract one another, and move in a circle of radius R. Assuming the charges are always found as far apart as possible along their circular trajectory (so that, for example, if one is at $R / 2 \hat{\mathbf{x}}$, the other is at $-R / 2 \hat{\mathbf{x}}$), show that $\mathrm{E} \& \mathrm{M}$ predicts that positronium cannot exist unless you use both retarded and advanced interactions.

[^0]: ${ }^{1}$ Formally, then, we have

 $$
 \bar{f}(\bar{x}, \bar{y}, \bar{z}, \bar{t})=f(x(\bar{x}, \bar{y}, \bar{z}, \bar{t}), y(\bar{x}, \bar{y}, \bar{z}, \bar{t}), z(\bar{x}, \bar{y}, \bar{z}, \bar{t}), t(\bar{x}, \bar{y}, \bar{z}, \bar{t}))
 $$

