Problem Set 2

Physics 322
Electrodynamics II

Due on Friday, February 2nd, 2024

Problem 1

We saw that the "rapidity" had:

$$
\begin{equation*}
\cosh \eta=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \sinh \eta=\frac{v}{c} \cosh \eta \tag{1}
\end{equation*}
$$

so that $\tanh \eta=v / c$. Write the velocity addition formula in terms of rapidities - use $\tanh \eta=v / c, \tanh \psi=\bar{v} / c$ and $\tanh \chi=v_{L} / c$ (where v is the speed of \bar{L} relative to L, \bar{v} is the speed of the "ball" thrown in \bar{L}, relative to \bar{L}, and v_{L} is the speed of the ball relative to L). Use hyperbolic trigonometric identities to establish that "rapidities add."

Problem 2

The velocity addition expression we worked out in class was for velocity components parallel to the "boost" direction. If, in \bar{L}, you throw a ball with speed \bar{v} relative to \bar{L} but in the $\hat{\mathbf{y}}$ direction, what is the velocity of the ball (both components) in L ?

Problem 3

A particle moves along the $\hat{\mathbf{x}}$ axis with constant speed v_{0} in the lab, so that the particle's location is given by $x(t)=v_{0} t$. Find the proper time τ of the particle in terms of t, and write $x(\tau)$, i.e. the position in the lab with proper time instead of coordinate time as the parameter.

Problem 4

A particle starts from rest, and accelerates to the right in a lab. It is moving relativistically, and has the following relation between proper time and coordinate time:

$$
\begin{equation*}
\tau(t)=\alpha \sinh ^{-1}\left(\frac{t}{\alpha}\right) \tag{2}
\end{equation*}
$$

where α is a constant with temporal dimension. Find the motion of the particle in the lab (i.e. what is $x(t)$?) - what is the force acting on this particle?

Problem 5

What is the Pythagorean distance travelled as a particle moves from $t=0 \rightarrow$ $T=2 \pi / \omega$ according to

$$
\begin{equation*}
\mathbf{r}(t)=R(\cos (\omega t) \hat{\mathbf{x}}+\sin (\omega t) \hat{\mathbf{y}}) ? \tag{3}
\end{equation*}
$$

(the vector $\mathbf{r}(t)$ points from the origin to the location of the charge at time t). What is the associated Minkowski distance, obtained from the infinitesimal definition $d s^{2}=-c^{2} d t^{2}+d x^{2}+d y^{2}$?

Presentation Problems

Here are three presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you choose to present one, either in-class or in written form, it will be due on Friday, February 2nd (l'll ask for volunteers for in-class presentations on Monday, January 29th).

Problem 1*

In the "twin paradox," two people of the same age start on earth, and one heads out into space - after a time t_{f} on earth, the space twin returns. The question is: how old is the space twin? As a concrete model, suppose the rocket travels according to $x(t)=a / 2(1-\cos (\omega t))$ - in terms of ω, what is t_{f} ? Find the proper time τ_{f} elapsed in the rest frame of the rocket during this earth-based time-interval - that is the time elapsed for the space twin. The following integral identity will be useful:

$$
\begin{equation*}
\int_{0}^{2 \pi} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta=4 \mathrm{E}(k) \tag{4}
\end{equation*}
$$

where the (complete) elliptic integral (of the second kind) on the right is defined by:

$$
\begin{equation*}
\mathrm{E}(k) \equiv \int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta \tag{5}
\end{equation*}
$$

The maximum speed of the rocket twin is $v_{\text {max }}=a \omega / 2$. Define $\beta_{\text {max }} \equiv v_{\text {max }} / c$, and make a plot of the total time elapsed on earth $\left(t_{f}\right)$ and on the rocket $\left(\tau_{f}\right)$ in units of $1 / \omega$ (so that the earth-based time is just 2π) for $\beta_{\max }=0 \rightarrow 1$.

Problem 2*

A pair of infinite sheets of charge lie in the $x-y$ plane - the top one has charge density $\sigma_{0}>0$ (when at rest) and the bottom one has $-\sigma_{0}$ (at rest). The top sheet moves along the $\hat{\mathbf{y}}$ axis with speed v, and the bottom sheet moves in the $-\hat{\mathbf{y}}$ direction with speed v.
a. Find the electric and magnetic fields above the top sheet.
b. \quad Suppose you move along the $\hat{\mathbf{y}}$ axis with speed v - find the electric and magnetic fields in this moving reference frame (using the physical characteristics of the sheets that would be observed in this frame).

Problem 3*

Newtonian gravity looks structurally a lot like electrostatics: There is a gravitational field \mathbf{g} (force per unit mass) with $\nabla \cdot \mathbf{g}=-4 \pi G \rho_{m}$ where ρ_{m} is a mass density (mass per unit volume). Find the gravitational field associated with an infinite line of mass with mass density λ_{0}. What is the force of the field acting on a mass m a distance d away from the line of mass? What changes in the force if the line of mass is now moving to the right with speed v, and the mass m, still a distance d from the line source, is moving to the right with speed u ?

Given our discussion of relativistic force transformation, what do you conclude about Newtonian gravity as a special relativistic theory?

Problem 4*

Make a Minkowski diagram (for a "lab" L, with coordinates x and $c t$) with an event at location x_{0}, time t_{0}. On your diagram, draw the axes associated with
a frame \bar{L} moving to the right through L with constant speed v, i.e. draw the \bar{x} and $c \bar{t}$ axes. Show, geometrically, how you construct the event coordinates $\bar{x}_{0}, c \bar{t}_{0}$ with respect to these axes. How do the axes change as you increase v ?

