Problem Set 12

Physics 322
Electrodynamics II

Due on Friday, April 26th, 2024

Problem 1

I claimed that rotations and Lorentz boosts do not change the conservation law story much. But for the Lagrangian piece, this is not clear:

$$
\begin{equation*}
\mathcal{L}\left(x^{\mu}+M^{\mu}{ }_{\nu} x^{\nu}\right) \approx \mathcal{L}\left(x^{\mu}\right)+\partial_{\mu} \mathcal{L} M^{\mu}{ }_{\nu} x^{\nu}, \tag{1}
\end{equation*}
$$

and in order to use the same technology that we had for a constant shift ($x^{\mu} \longrightarrow$ $x^{\mu}+d^{\mu}$), we need:

$$
\begin{equation*}
\partial_{\mu}\left({\mathcal{L} M^{\mu}}_{\nu}^{\mu} x^{\nu}\right)=\left(\partial_{\mu} \mathcal{L}\right) M^{\mu}{ }_{\nu} x^{\nu} . \tag{2}
\end{equation*}
$$

Show that this is the case for both infinitesimal rotations and boosts (the "matrix" $M^{\mu}{ }_{\nu}$ is what determines what type of infinitesimal transformation you have).

Problem 2

Identify the valid expressions written using Einstein summation notation:

$$
\begin{align*}
& \text { i. } A^{\mu} B_{\mu} C^{\nu}=K^{\nu} \text { ii. } A^{\mu} B_{\mu} C^{\mu}=K^{\nu} \text { iii. } W^{\mu}=V^{\nu} \\
& \text { iv. } R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} g_{\alpha \beta} R^{\alpha \beta}=\kappa T_{\mu \nu} \text { v. } A^{\mu} B^{\mu}=S . \tag{3}
\end{align*}
$$

For the invalid expressions, indicate what is wrong, and provide a fix (that process will not be unique).

Problem 3

An infinite line of charge with uniform charge density $\bar{\lambda}$ lies at rest along the $\hat{\mathbf{z}}$ axis in \bar{L}. What are the electric and magnetic fields in \bar{L} ? Now suppose you have a lab L through which \bar{L} is moving with speed v along a shared $\hat{\mathbf{z}}$ axis.

What are the electric and magnetic fields in L (calculate these directly using Physics 321 techniques - i.e. do not use the relativistic transformation of the fields)? Compute the invariants you found last week: $2\left(-E^{2} / c^{2}+B^{2}\right)$ and $-4 \mathbf{E} \cdot \mathbf{B} / c$ in both frames.

Problem 4

For an electric field $\mathbf{E}(t)$, the Fourier transform is (see notes from January 31st for a review of the Fourier transform conventions in this class)

$$
\begin{equation*}
\tilde{\mathbf{E}}(f) \equiv \int_{-\infty}^{\infty} \mathbf{E}(t) e^{i 2 \pi f t} d t \tag{4}
\end{equation*}
$$

You can use $\tilde{\mathbf{E}}(f)$ to find the frequency spectrum of radiation. Show that the following is true:

$$
\begin{equation*}
\int_{-\infty}^{\infty} E(t)^{2} d t=\int_{-\infty}^{\infty}|\tilde{E}(f)|^{2} d f \tag{5}
\end{equation*}
$$

assuming $\mathbf{E}(t)$ is real, and where $|\tilde{E}(f)|^{2} \equiv \tilde{\mathbf{E}}(f)^{*} \cdot \tilde{\mathbf{E}}(f)$ (this result is needed in developing the angle resolved frequency spectrum).

Problem 5

A uniform magnetic field \bar{B} points in the $\hat{\mathbf{z}}$ direction in \bar{L}. A charge q sits at rest in \bar{L}. Using the transformation of the field strength tensor, $F^{\mu \nu}$, what are the electric and magnetic fields in L, through which \bar{L} moves with speed v along a shared $\hat{\mathbf{x}}$ axis, and what is the net force on the charge q in L?

Presentation Problems

Here are some presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you choose to present one in written form, it will be due on Friday, April 26th. Everyone has completed an in-class presentation problem, but if you would like a "last hurrah" on the final day of class, you are welcome to present one of these - I'll see if there are any volunteers on Monday, April 22nd.

Problem 1*

The scalar field equation (wave equation) is:

$$
\begin{equation*}
-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+\nabla^{2} \phi=0 \tag{6}
\end{equation*}
$$

This field equation is unchanged under $\phi \rightarrow \phi+\kappa$ for constant κ. From the scalar field Lagrangian, $\mathcal{L}=\partial_{\alpha} \phi \partial^{\alpha} \phi / 2$, what is the associated conserved J^{μ} (i.e. find J^{μ} using Noether's theorem), with $\partial_{\mu} J^{\mu}=0$?

For a true field theory, the sources must themselves be fields. If you have a conserved J^{μ}, you can couple it to E\&M via a term of the form $p J^{\mu} A_{\mu}$ (for coupling constant p) in the combined Lagrangian:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{4 \mu_{0}} F^{\alpha \beta} F_{\alpha \beta}+\frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi+p J^{\mu} A_{\mu} \tag{7}
\end{equation*}
$$

Use the J^{μ} you found above to make this combined Lagrangian, and compute the field equations for ϕ and A^{μ} - they will now be coupled together.

Problem 2*

For the infinitesimal rotation matrices, $\mathbb{L}_{x}, \mathbb{L}_{y}$ and \mathbb{L}_{z}, we can recover the non-infinitesimal form by exponentiating, for example:

$$
\begin{equation*}
e^{\theta \mathbb{L}_{z}}=\mathbb{O}_{z} \tag{8}
\end{equation*}
$$

If you have a vector $\hat{\mathbf{n}}$, and you want to generate a rotation about the $\hat{\mathbf{n}}$ axis, the exponentiation of $\hat{\mathbf{n}} \cdot \mathbb{L}$ with $\mathbb{L} \equiv \mathbb{L}_{x} \hat{\mathbf{x}}+\mathbb{L}_{y} \hat{\mathbf{y}}+\mathbb{L}_{z} \hat{\mathbf{z}}$ will give you the appropriate rotation transformation matrix.

Working by analogy with rotations, find the Lorentz boost associated with an arbitrary velocity vector \mathbf{v} (i.e. generate a boost in the $\hat{\mathbf{v}}$ direction with speed $v)$.

Problem 3*

There is a nice review article on meta-materials:
John B. Pendry, David R. Smith, "Reversing Light with Negative Refraction," Physics Today, 57 (6), 37-43 (2004).

Study it, and summarize its content, focusing on the implications of a negative index of refraction.

