Problem Set 12

Physics 322 Electrodynamics II

Due on Friday, April 26th, 2024

Problem 1

I claimed that rotations and Lorentz boosts do not change the conservation law story much. But for the Lagrangian piece, this is not clear:

$$\mathcal{L}(x^{\mu} + M^{\mu}_{\ \nu}x^{\nu}) \approx \mathcal{L}(x^{\mu}) + \partial_{\mu}\mathcal{L}M^{\mu}_{\ \nu}x^{\nu}, \tag{1}$$

and in order to use the same technology that we had for a constant shift ($x^{\mu} \rightarrow x^{\mu} + d^{\mu}$), we need:

$$\partial_{\mu}(\mathcal{L}M^{\mu}_{\ \nu}x^{\nu}) = (\partial_{\mu}\mathcal{L})\,M^{\mu}_{\ \nu}x^{\nu}.$$
(2)

Show that this is the case for both infinitesimal rotations and boosts (the "matrix" M^{μ}_{ν} is what determines what type of infinitesimal transformation you have).

Problem 2

Identify the valid expressions written using Einstein summation notation:

i.
$$A^{\mu}B_{\mu}C^{\nu} = K^{\nu}$$
 ii. $A^{\mu}B_{\mu}C^{\mu} = K^{\nu}$ iii. $W^{\mu} = V^{\nu}$
iv. $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}g_{\alpha\beta}R^{\alpha\beta} = \kappa T_{\mu\nu}$ v. $A^{\mu}B^{\mu} = S.$
(3)

For the invalid expressions, indicate what is wrong, and provide a fix (that process will not be unique).

Problem 3

An infinite line of charge with uniform charge density $\overline{\lambda}$ lies at rest along the \hat{z} axis in \overline{L} . What are the electric and magnetic fields in \overline{L} ? Now suppose you have a lab L through which \overline{L} is moving with speed v along a shared \hat{z} axis.

What are the electric and magnetic fields in L (calculate these directly using Physics 321 techniques – i.e. do not use the relativistic transformation of the fields)? Compute the invariants you found last week: $2(-E^2/c^2 + B^2)$ and $-4\mathbf{E} \cdot \mathbf{B}/c$ in both frames.

Problem 4

For an electric field $\mathbf{E}(t)$, the Fourier transform is (see notes from January 31st for a review of the Fourier transform conventions in this class)

$$\tilde{\mathbf{E}}(f) \equiv \int_{-\infty}^{\infty} \mathbf{E}(t) e^{i2\pi f t} dt.$$
(4)

You can use $\mathbf{E}(f)$ to find the frequency spectrum of radiation. Show that the following is true:

$$\int_{-\infty}^{\infty} E(t)^2 dt = \int_{-\infty}^{\infty} |\tilde{E}(f)|^2 df$$
(5)

assuming $\mathbf{E}(t)$ is real, and where $|\tilde{E}(f)|^2 \equiv \tilde{\mathbf{E}}(f)^* \cdot \tilde{\mathbf{E}}(f)$ (this result is needed in developing the angle resolved frequency spectrum).

Problem 5

A uniform magnetic field \overline{B} points in the \hat{z} direction in \overline{L} . A charge q sits at rest in \overline{L} . Using the transformation of the field strength tensor, $F^{\mu\nu}$, what are the electric and magnetic fields in L, through which \overline{L} moves with speed v along a shared \hat{x} axis, and what is the net force on the charge q in L?

Presentation Problems

Here are some presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems – if you choose to present one in written form, it will be due on Friday, April 26th. Everyone has completed an in-class presentation problem, but if you would like a "last hurrah" on the final day of class, you are welcome to present one of these – I'll see if there are any volunteers on Monday, April 22nd.

Problem 1*

The scalar field equation (wave equation) is:

$$-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} + \nabla^2\phi = 0.$$
(6)

This field equation is unchanged under $\phi \to \phi + \kappa$ for constant κ . From the scalar field Lagrangian, $\mathcal{L} = \partial_{\alpha}\phi\partial^{\alpha}\phi/2$, what is the associated conserved J^{μ} (i.e. find J^{μ} using Noether's theorem), with $\partial_{\mu}J^{\mu} = 0$?

For a true field theory, the sources must themselves be fields. If you have a conserved J^{μ} , you can couple it to E&M via a term of the form $pJ^{\mu}A_{\mu}$ (for coupling constant p) in the combined Lagrangian:

$$\mathcal{L} = \frac{1}{4\mu_0} F^{\alpha\beta} F_{\alpha\beta} + \frac{1}{2} \partial_\alpha \phi \partial^\alpha \phi + p J^\mu A_\mu.$$
(7)

Use the J^{μ} you found above to make this combined Lagrangian, and compute the field equations for ϕ and A^{μ} – they will now be coupled together.

Problem 2*

For the infinitesimal rotation matrices, \mathbb{L}_x , \mathbb{L}_y and \mathbb{L}_z , we can recover the non-infinitesimal form by exponentiating, for example:

$$e^{\theta \mathbb{L}_z} = \mathbb{O}_z. \tag{8}$$

If you have a vector $\hat{\mathbf{n}}$, and you want to generate a rotation about the $\hat{\mathbf{n}}$ axis, the exponentiation of $\hat{\mathbf{n}} \cdot \mathbb{L}$ with $\mathbb{L} \equiv \mathbb{L}_x \hat{\mathbf{x}} + \mathbb{L}_y \hat{\mathbf{y}} + \mathbb{L}_z \hat{\mathbf{z}}$ will give you the appropriate rotation transformation matrix.

Working by analogy with rotations, find the Lorentz boost associated with an arbitrary velocity vector \mathbf{v} (i.e. generate a boost in the $\hat{\mathbf{v}}$ direction with speed v).

Problem 3*

There is a nice review article on meta-materials:

John B. Pendry, David R. Smith, "Reversing Light with Negative Refraction," *Physics Today*, **57** (6), 37–43 (2004).

Study it, and summarize its content, focusing on the implications of a negative index of refraction.