Problem Set 11

Physics 322
Electrodynamics II

Due on Friday, April 19th, 2024

Problem 1

a. Render the following expression in summation notation:

$$
\begin{equation*}
A^{\mu \nu}=\sum_{\alpha, \beta=0}^{3} F^{\mu \alpha} b_{\alpha} G^{\nu \beta} f_{\beta} \text { for } \mu, \nu=0,1,2,3 \tag{1}
\end{equation*}
$$

b. Restore the summation symbol and "magic words" in the following:

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} g_{\alpha \beta} R^{\alpha \beta}=\kappa T_{\mu \nu} \tag{2}
\end{equation*}
$$

c. Show that $A^{\mu} B_{\mu}=A_{\mu} B^{\mu}$.

Problem 2

For $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$, we need to lower indices to get $F_{\mu \nu}$. Use the Minkowski metric to lower indices and write out the components (in terms of the Cartesian components of \mathbf{E} and \mathbf{B}) of

$$
\begin{equation*}
F_{\alpha \beta}=\eta_{\alpha \mu} \eta_{\beta \nu} F^{\mu \nu} \tag{3}
\end{equation*}
$$

Construct the scalar $F^{\mu \nu} F_{\mu \nu}$, express it in terms of \mathbf{E} and \mathbf{B}.

Problem 3

The "dual field strength tensor," $G^{\mu \nu}$, is defined by: $G^{\mu \nu}=(1 / 2) \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$ where $\epsilon^{\mu \nu \alpha \beta}$ is the four-dimensional Levi-Civita symbol:

$$
\epsilon^{\mu \nu \alpha \beta} \doteq \begin{cases}1 & \text { if } \mu \nu \alpha \beta \text { is an even permutation of } 0,1,2,3 \tag{4}\\ -1 & \text { if } \mu \nu \alpha \beta \text { is an odd permutation of } 0,1,2,3 \\ 0 & \text { else. }\end{cases}
$$

1 of 3

Write out the components of $G^{\mu \nu}$, and compute the scalars $F_{\mu \nu} G^{\mu \nu}$ and $G_{\mu \nu} G^{\mu \nu}$, write all expressions in terms of the Cartesian components of \mathbf{E} and \mathbf{B}.

Problem 4

Show that a second rank tensor, $T_{\alpha \beta}$, can be written as a sum of a symmetric tensor $S_{\alpha \beta}=S_{\beta \alpha}$ and an antisymmetric tensor $A_{\alpha \beta}=-A_{\beta \alpha}$. Show that for antisymmetric $A_{\mu \nu}$ and symmetric $S^{\alpha \beta}, A_{\rho \sigma} S^{\rho \sigma}=0$. Using these results, show that for a tensor $T^{\mu \nu}$ with symmetric piece $T_{s}^{\mu \nu}$ and antisymmetric piece $T_{a}^{\mu \nu}$, the scalar sum of $T^{\mu \nu}$ with an antisymmetric $A_{\mu \nu}$ is: $T^{\mu \nu} A_{\mu \nu}=T_{a}^{\mu \nu} A_{\mu \nu}$.

Problem 5

The scalar stress tensor is:

$$
\begin{equation*}
T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{2} \eta^{\mu \nu}\left(\partial^{\alpha} \phi \partial_{\alpha} \phi\right) . \tag{5}
\end{equation*}
$$

Show that for a scalar field (i.e. one that satisfies its field equation, $\partial_{\mu} \partial^{\mu} \phi=0$), $\partial_{\mu} T^{\mu \nu}=0$.

Problem 6

Under what conditions does $A^{\mu}=P^{\mu} e^{i k_{\alpha} x^{\alpha}}$ with constant P^{μ} and k_{α} solve

$$
\begin{equation*}
\square A^{\beta}=0 \text { with } \partial_{\gamma} A^{\gamma}=0 \text { ? } \tag{6}
\end{equation*}
$$

Write your constraints on P^{μ} and k_{α} using indexed notation.

Presentation Problems

Here are some presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you choose to present one, either in-class or in written form, it will be due on Friday, April 19th (I'll ask for volunteers for in-class presentations on Monday, April 15th).

Problem 1*

A Lorentz boost in the $\hat{\mathbf{x}}$ direction gives coordinates related by:

$$
\left(\begin{array}{c}
c \bar{t} \tag{7}\\
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
\gamma & -\frac{v}{c} \gamma & 0 & 0 \\
-\frac{v}{c} \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{\equiv \mathbb{B}_{x}}\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

Write the infinitesimal form (for small v / c) of the matrix \mathbb{B}_{x} appearing in the transformation, it should look like: $\mathbb{B}_{x} \approx \mathbb{I}+(v / c) \mathbb{K}_{x}$. By considering infinitesimal boosts in the y and z directions, identify the set $\mathbb{B}_{x}, \mathbb{B}_{y}, \mathbb{B}_{z}$, and associated $\mathbb{K}_{x}, \mathbb{K}_{y}$ and \mathbb{K}_{z}. Compute the commutators of the \mathbb{K}-matrices with each other. ${ }^{1}$ Write the commutation relations in index form (i.e. $\left[\mathbb{K}_{i}, \mathbb{K}_{j}\right]=$? for $i, j=1,2,3)$.

Problem 2*

The complex scalar field Lagrangian

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi+\mu^{2} \Phi^{*} \Phi \tag{8}
\end{equation*}
$$

is unchanged by a complex rotation: $\Phi \rightarrow e^{i \theta} \Phi$ for constant θ. What is the associated conserved "charge" and current density?

Problem 3*

A rock skips across a pond - each skip produces ripples that travel with the characteristic speed of waves in the water, call it v. Suppose the rock moves with a speed $v_{r}>v$, sketch the ripple patterns as time goes on. Show (graphically) that there is a "wedge" of ripples behind the rock (think of the wake of a boat) and find the angle of that wedge. What are the implications of motion faster than the local wave propagation speed for calculations of, for example, the retarded time?

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ commutator of two matrices is the difference: $[\mathbb{A}, \mathbb{B}] \equiv \mathbb{A} \mathbb{B}-\mathbb{B} \mathbb{A}$.

