Problem Set 10

Physics 322
Electrodynamics II

Due on Friday, April 12th, 2024

Problem 1

a. In a frame L, we have $V=0$ and $\mathbf{A}=P_{0} \cos (k x-\omega t) \hat{\mathbf{y}}$. Find the electric and magnetic fields in L, and compute the intensity \mathbf{I}.
b. The four-potential, A^{μ} is a four-vector. Find the components of the potential from part a. in a frame \bar{L} moving at speed v to the right through L along a shared x axis. From the potentials, find the electric and magnetic fields, identify the \bar{k} and $\bar{\omega}$ in \bar{L}, show that the wave speed remains c, and find the intensity. What is the frequency of the wave, $\bar{\omega}$, in \bar{L} (i.e. how is $\bar{\omega}$ related to ω)?
c. What happens to the field amplitudes, wave frequency and intensity as $v \rightarrow c$?

Problem 2

You showed that the "four-gradient":

$$
\partial^{\mu} \equiv \frac{\partial}{\partial x^{\mu}} \doteq\left(\begin{array}{c}
-\frac{1}{c} \frac{\partial}{\partial t} \tag{1}\\
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right)
$$

is a vector under a Lorentz transformation. Using this operator, and the fourpotential A^{μ},

$$
A^{\mu} \doteq\left(\begin{array}{c}
V / c \tag{2}\\
A^{x} \\
A^{y} \\
A^{z}
\end{array}\right)
$$

generate the content of:

$$
\begin{equation*}
\mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B}=\nabla \times \mathbf{A} \tag{3}
\end{equation*}
$$

using only the building blocks ∂^{μ} and A^{ν} (i.e. write an equation that has the components of \mathbf{E} and \mathbf{B} on one side, and the correct derivatives of the potential on the other).

Problem 3

Suppose you had an action of the form:

$$
\begin{equation*}
S[x(t)]=\int_{0}^{T} L(x(t), \dot{x}(t), \ddot{x}(t)) d t \tag{4}
\end{equation*}
$$

What are the "equations of motion" here if you have fixed (given) endpoints for both $x(t)$ and $\dot{x}(t)$? Work this out carefully, as we did in class. Can you "guess" what the equation of motion looks like if L also includes dependence on $\dddot{x}(t)$?

Problem 4

a. For the Lagrangian:

$$
\begin{equation*}
L=\frac{1}{2} m \dot{x}(t)^{2}-U(x(t))+F(x(t)) \dot{x}(t) \tag{5}
\end{equation*}
$$

where $F(x(t))$ is some function of $x(t)$, what is the resulting equation of motion for $x(t)$?
b. Is it possible to add a function to the Lagrangian $L=1 / 2 m \dot{x}(t)^{2}-$ $U(x(t))$ in order to get an equation of motion that includes the radiation reaction force:

$$
\begin{equation*}
m \ddot{x}(t)=-\frac{d U}{d x}-m \tau \dddot{x}(t) ? \tag{6}
\end{equation*}
$$

Presentation Problems

Here are some presentation problems (see syllabus for a description of the writeup/in-class presentation). Everyone should solve these problems - if you
choose to present one, either in-class or in written form, it will be due on Friday, April 12th (l'll ask for volunteers for in-class presentations on Monday, April 8th).

Problem 1*

For points in the $x y$ plane, a rotation about the z axis defines new coordinates:

$$
\left(\begin{array}{l}
\bar{x} \tag{7}\\
\bar{y} \\
\bar{z}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)}_{\equiv \mathbb{O}_{z}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Make a sketch of the coordinate axes, is this a clockwise or counterclockwise rotation of the axes?

Write the infinitesimal form (for small θ) of the matrix \mathbb{O}_{z} appearing in the transformation, it should look like: $\mathbb{O}_{z} \approx \mathbb{I}+\theta \mathbb{L}_{z}$. By considering infinitesimal rotations about the x and y axes (keeping the sense of the rotation the same), identify the set $\mathbb{O}_{x}, \mathbb{O}_{y}, \mathbb{O}_{z}$, and associated $\mathbb{L}_{x}, \mathbb{L}_{y}$ and \mathbb{L}_{z}. Compute the commutators of the \mathbb{L}-matrices with each other. ${ }^{1}$ Write the commutation relations in index form (i.e. $\left[\mathbb{L}_{i}, \mathbb{L}_{j}\right]=$? for $i, j=1,2,3$) using the Levi-Civita symbol.

Problem 2*

A square loop of wire (side length \bar{a}) carrying steady, neutral current \bar{I} sits at rest in \bar{L} (moving to the right with speed v through a frame L). The loop's magnetic dipole moment has magnitude $\bar{m}=\bar{I} \bar{a}^{2}$ and its electric dipole moment is zero. What is the electric dipole moment of the loop in L ?

Problem 3*

For the Lagrangian:

$$
\begin{equation*}
L=\frac{1}{2} m v^{2}-q V+q \mathbf{v} \cdot \mathbf{A} \tag{8}
\end{equation*}
$$

show that the equations of motion correctly return: $m \ddot{\mathbf{r}}(t)=q \mathbf{E}+q \dot{\mathbf{r}} \times \mathbf{B}$.

[^0]
[^0]: ${ }^{1}$ A commutator of two matrices is the difference: $[\mathbb{A}, \mathbb{B}] \equiv \mathbb{A} \mathbb{B}-\mathbb{B} \mathbb{A}$.

