Problem Set 1

Physics 322
Electrodynamics II

Due on Friday, January 26th, 2024

Problem 1

A meter stick is at rest in \bar{L}. The \bar{L} frame moves to the right at speed v in L. In L, the measured length of the stick is $12 / 13 \mathrm{~m}$, what is v ?

Problem 2

A clock moves through a lab L with speed $v=(12 / 13) c$. It goes from $x=0$ m to $x=5 \mathrm{~m}$. How long did its trip take in the lab? How long did the trip take in the rest frame of the clock?

Problem 3

You take off in a rocket, heading away from the earth at a speed of $v=3 / 5 c$. After a year of traveling, you turn around, and head back to the earth at the same speed. When you return, how much time has passed on earth?

Problem 4

a. Two events (t_{1} at x_{1} and t_{2} at $\left.x_{2}\right)$ are causally related if $-c^{2}\left(t_{2}-\right.$ $\left.t_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2} \leq 0$. Show that if event one causes event two in L (i.e. the two events are causally related with $t_{1}<t_{2}$), then event one causes event two in any \bar{L} (where L and \bar{L} are related as usual) - you are showing that for causally related events, if $t_{1}<t_{2}$ then $\bar{t}_{1}<\bar{t}_{2}$ in any \bar{L}.
b. Which of the points shown below could cause the others (make a list)?

Problem 5

For the boost factor associated with a speed a :

$$
\begin{equation*}
\gamma_{a} \equiv \frac{1}{\sqrt{1-\frac{a^{2}}{c^{2}}}}, \tag{1}
\end{equation*}
$$

show that

$$
\begin{equation*}
\gamma_{w}=\gamma_{u} \gamma_{v}\left[1-\frac{u v}{c^{2}}\right] \text { with } w \equiv \frac{v-u}{1-\frac{u v}{c^{2}}} \tag{2}
\end{equation*}
$$

