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1 Scattering Setup

An electromagnetic plane wave is incident on a material. The charges in the
material begin to move under the influence of the incident wave, and the accel-
eration of the charges generates electromagnetic fields. Question: By measuring
the resulting fields, from afar, what can we say about the nature of the material?

In the simplest configuration, an electromagnetic plane wave travels along
the z axis, and we’ll take the polarization to be x̂ as shown in the figure below.
The (real) fields are

ẑ

ŷ

x̂

c
E0x̂

r

↵

Figure 1: A plane wave travels along the z axis, polarized in the x direction.

E = E0 cos(k(z − ct))x̂ B =
E0

c
cos(k(z − ct))ŷ. (1)

These fields act on a charge q (with mass m) initially at rest at the origin. The
equations of motion

mr̈(t) = q (E + ṙ(t)×B) (2)

become, in Cartesian coordinates,

mẍ(t) = qE0 cos(k(z(t)− ct))− qE0
ż(t)

c
cos(k(z(t)− ct))

mÿ(t) = 0

mz̈(t) = qE0
ẋ(t)

c
cos(k(z(t)− ct)).

(3)
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We’re already in trouble — except for y(t) = 0, we cannot easily obtain solutions
to the coupled, nonlinear ODEs we are presented with.

So we begin making assumptions about the motion. Initially, the charge is at
rest, and we see that the magnetic component of the force goes like v/c, so that
as long as the charge doesn’t start moving at relativistic speeds, the dominant
force contribution will be from the electric field. If we remove the magnetic
force, then we can solve z̈(t) = 0 with the given initial conditions, z(t) = 0, and
the equation of motion for x(t) is solvable by quadrature,

x(t) =
qE0

mk2c2
(1− cos(kct)) . (4)

What does our “non-relativistic” assumption mean here? We have

ẋ(t)

c
=

qE0

mkc2
sin(kct), (5)

which has a maximum value (qE0/k)/(mc2). If we define the length d ≡
(qE0/k

2)/(mc2), then our assumption that the velocity is small amounts to
d� 1/k, or, using the wavelength of the original incident plane wave, λ = 2π/k,
d� λ.

Given the solution (4), we have an oscillating dipole p(t) = qx(t), which
itself generates the radiation fields

Bd = − µ0

4πrc
(r̂× p̈(tr))

= −µ0qẍ(tr)

4πrc

(
sinφθ̂ + cos θ cosφφ̂

)
Ed = −cr̂×Bd

=
µ0qẍ(tr)

4πr

(
− cos θ cosφθ̂ + sinφφ̂

)
.

(6)

with tr ≡ t− r/c. Putting in the expression for the acceleration,

Ed =
µ0q

2E0

4πmr
cos(kctr)

(
− cos θ cosφθ̂ + sinφφ̂

)
Bd = −µ0q

2E0

4πmrc
cos(kctr)

(
sinφθ̂ + cos θ cosφφ̂

)
.

(7)

The quantity µ0q
2/(4πm) ≡ ` defines a length scale (the “classical electron

radius,” if the oscillating particle is an electron). In terms of this length scale,
the Poynting vector is

Sd =
1

µ0
Ed ×Bd =

1

µ0c
E2

0

`2

r2
cos2(kc(t− r/c))

(
cos2 θ cos2 φ+ sin2 φ

)
r̂. (8)

We can average over one full cycle of the dipole radiation to get the intensity,
which just picks up a factor of 1

2 as usual,

Id = 〈S〉 =
1

2

(
1

µ0cr2
E2

0`
2

)(
cos2 θ cos2 φ+ sin2 φ

)
r̂. (9)
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The incoming plane wave has intensity

I0 =
1

2

1

µ0c
E2

0 ẑ (10)

and we can write the dipole intensity in terms of the magnitude I0:

Id = I0
`2

r2

(
cos2 θ cos2 φ+ sin2 φ

)
r̂. (11)

As a final note, this intensity is often quoted with the angle between the dipole
vector and the field point. Call that angle α, then for our x̂-directed dipole
moment, cosα = x̂ · r̂ = sin θ cosφ and then sin2 α = cos2 θ cos2 φ + sin2 φ,
giving

Id = I0
`2

r2
sin2 αr̂. (12)

1.1 Scattering Cross-Section

In order to find the power radiated by the oscillating charge, we compute the
flux of the intensity through a sphere of radius R,

P =

∫
∂Ω

Id · da =

∫ 2π

0

∫ π

0

IdR
2 sin θdθdφ. (13)

In order to capture the geometry of the radiation passing through the sphere,
we use a short-hand for the angular elements, dΩ = sin θdθdφ, known as the
“solid angle,” and then we can quote the angular distribution of the intensity
using the notation,

dP

dΩ
= IdR

2 = I0`
2
(
cos2 θ cos2 φ+ sin2 φ

)
. (14)

Be warned: this “differential cross section” notation is generally meant to stand-
in for the integrand of a flux integral, as in (13). It does not indicate that we
have a function P (Ω) whose derivative, w.r.t. Ω is of interest.

The total power can be computed, with the angular integrals throwing in an
overall 2π4/3,

P =
8π

3
`2I0. (15)

1.2 General Polarization

The dipole moment of the charge above was in the x̂ direction because that was
the electric field’s direction. But we can take any polarization for the plane wave,
as long as it is perpendicular to the propagation direction. Let that remain z,
and this time, we’ll let the polarization vector point anywhere in the xy plane:

E = E0 cos(k(z − ct)) [cosψx̂ + sinψŷ]︸ ︷︷ ︸
≡n̂

(16)
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where ψ is the angle made by E with respect to the x̂ axis.
Again, assuming the magnetic field’s contribution is negligible, the dipole

oscillation of the charge is now

p(t) =
q2E0

mk2c2
cos(kctr)n̂ (17)

with

Bd = −E0

c

`

r
cos(kctr)r̂× n̂

Ed = E0
`

r
cos(kctr) (r̂× n̂)× r̂.

(18)

The Poynting vector, written in terms of α, the angle between the dipole vector
and the field point, is

Sd =
1

µ0c
E2

0

`2

r2
cos2(kc(t− r/c)) sin2 αr̂. (19)

and then the intensity vector is

Id =
I0`

2

r2
sin2 αr̂. (20)

In a typical “scattering” setup, we write our results in terms of the “scat-
tering angle,” the angle between the incident wave direction and the field point
r. Since we have aligned the direction of propagation with the z axis, the
scattering angle is the polar θ. To recover the spherical coordinates from
the angle between the polarization vector and the field point, we note that
cosα = n̂ · r̂ = sin θ cos(φ− ψ), so that

sin2 α = 1− (n̂ · r̂)
2

= 1− sin2 θ cos2(φ− ψ) (21)

with

Id =
I0`

2

r2

(
1− sin2 θ cos2(φ− ψ)

)
r̂. (22)

The scattering of incident electromagnetic radiation with a free electron,
which is what we have developed here, is called “Thompson scattering,” and it
is standard to average the intensity over all available polarizations,

Īd ≡
1

2π

∫ 2π

0

Iddψ =
I0`

2

2r2

(
1 + cos2 θ

)
r̂. (23)

Thompson scattering has the special property that its intensity is indepen-
dent of the frequency (ω = kc) of the incoming radiation. This is surprising from
the point of view of an oscillating dipole, p(t) = p0 cos(ωt) which has ω4 in its
Poynting vector (p̈(t)2). What happened here? How did we lose the frequency
dependence of the dipole oscillation?
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2 Lorentz Model

Thompson scattering occurs when a free electron moves under the influence of
electromagnetic waves. For electrons that are attached to atoms or molecules by
forces that we model as springs, we have a damped, driven harmonic oscillator
once the electromagnetic radiation impinges on the material.

Let’s again take a wave that is traveling along the z axis, polarized, as
above, in the xy plane with n̂ = cosψx̂+ sinψŷ. We’ll again drop the magnetic
force, under the assumption that v/c� 1 for the particle motion. Then, in the
direction of the polarization vector, the equation of motion reads

mü(t) = −mω2
0u(t)−mτ ...

u (t) + qE0e
ik(z−ct)) (24)

where ω0 is the angular frequency of the “charge oscillation,” τ is the timescale
associated with radiation damping (τ ≡ µ0q

2/(6πmc)), and the last term is the
driving force provided by the plane wave. We have switched over to a complex
exponential description of both the driving force and the position u(t) — at the
end of our calculation, we’ll take the real part.

As in the Thompson scattering case, we know that z̈(t) = 0, which gives us
z(t) = 0 once the initial conditions are in place. Then letting kc ≡ ωe, we have

ü(t) = −ω2
0u(t)− τ ...

u (t) +
qE0

m
e−iωet. (25)

Now if we make the ansatz u(t) = u0e
−iωet, we find

u0 =
qE0

m (ω2
0 − ω2

e − iω3
eτ)

. (26)

x Let the damping factor γ ≡ ω2
eτ to make this damped, driven harmonic

oscillator solution look more familiar. The steady state solution is

u(t) =
qE0

m (ω2
0 − ω2

e − iγωe)
e−iωet =

qE0

m

e−iωet+iφ√
(ω2

0 − ω2
e)

2
+ γ2ω2

e

(27)

with φ ≡ tan−1(γωe/(ω
2
0 − ω2

e)).
Putting it all together, the steady state motion of the particle, is

r(t) =
qE0 cos(ωet+ φ)n̂

m

√
(ω2

0 − ω2
e)

2
+ γ2ω2

e

. (28)

For the Poynting vector, we have

Sd =
1

µ0c
E2

0

`2

r2

ω4
e

(ω2
0 − ω2

e)
2

+ γ2ω2
e

cos2(ωet+ φ) sin2 αr̂, (29)

with α the angle between n̂ and r̂ as usual.
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We can carry out the time-averaging, as usual, and write the resulting in-
tensity in terms of the incident intensity, I0, as we have done previously,

Id =
I0`

2

r2

ω4
e

(ω2
0 − ω2

e)
2

+ γ2ω2
e

sin2 αr̂. (30)

Putting the spherical coordinates back in so that we can look at the power
distribution, and returning γ → ω2

eτ ,

Id =
I0`

2

r2

ω4
e

(ω2
0 − ω2

e)
2

+ τ2ω6
e

(
1− sin2 θ cos2(φ− ψ)

)
r̂, (31)

and averaging over polarization angle ψ,

Īd =
I0`

2

2r2

ω4
e

(ω2
0 − ω2

e)
2

+ τ2ω6
e

(
1 + cos2 θ

)
r̂. (32)

For ω0 = 0 and τ = 0 (no damping, and neglecting radiation reaction), we
recover the Thompson result. The total power radiated, as a function of ωe, is

P =

(
8π

3
I0`

2

)
ω4
e

(ω2
0 − ω2

e)2 + τ2ω6
e)
. (33)
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