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Abstract We revisit the problem of two (oppositely)
charged particles interacting electromagnetically in one
dimension with retarded potentials and no radiation reac-
tion. The specific quantitative result of interest is the time it
takes for the particles to fall in towards one another. Starting
with the nonrelativistic form, we answer this question while
adding layers of complexity until we arrive at the full rela-
tivistic delay differential equation that governs this problem.
That case can be solved using the Synge method, which we
describe and discuss.

Keywords Delay differential equation · Relativistic
motion · Synge iteration · Point particle fields

1 Introduction

The fields that solve Maxwell’s equations for a charged
point particle traveling along a trajectory w(t) are given by
(see [1], for example) the following:

E(r, t) = q

4 π ε0

R

(R · u)3

[
(c2 − v2) u + R × (u × a)

]

B(r, t) = 1
c

R̂ × E(r, t) (1)

for R ≡ r−w, v = ẇ, a = ẅ, u ≡ c R̂−v and where w and
all of its time derivatives are evaluated at the retarded time,
tr , defined implicitly by

c (t − tr ) = ‖r − w(tr )‖. (2)
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We have included only the causally relevant retarded time
contribution to the field at point r, time t.

A particle traveling under the influence of these fields
moves according to the relativistic equation of motion:

d

dt




m v

√
1 − v2

c2



 = q E + q v × B, (3)

which is Newton’s second law with relativistic momentum
and electromagnetic forces—we have omitted the radiation
reaction force on the right. The combination of (1), (2), and
(3), taken for a pair of charged particles (where each particle
is dynamically influenced by the field of the other), defines
the “Synge” version of the problem of charged particle
motion (as in [2]). That formulation omits radiation reac-
tion in part because such effective forces do not come from
the usual starting action for this two-particle relativistic
problem (the Fokker–Schwarzschild–Tetrode one, see [3]).
Variants include combinations of half-advanced and half-
retarded interaction, where, for example, circular orbits are
available [4].

Our goal in this paper is to study the one-dimensional
motion of two interacting charged particles progressively,
starting from the nonrelativistic Coulomb interaction, then
introducing relativistic dynamics, and finally, the full delay
differential equation implied by the Synge formulation
above. We will take, as our model setup, a pair of equal and
opposite charges, ±q , with identical mass m sitting on the
x̂ axis. At time t = 0, the charges are separated by a dis-
tance 2 d , and at rest. If we set the charges symmetrically
about zero, then we can describe the motion of the posi-
tive charge by using x(t), and the negative charge will be
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at −x(t). The equation of motion for the positive particle is
then as follows:

d

dt




m ẋ(t)

√
1 − ẋ(t )2

c2



 = − q2

4 π ε0

1

(x(t) + x(tr))
2

c − ẋ(tr )

c + ẋ(tr )

c (t − tr ) = |x(t) + x(tr)|. (4)

The problem will be to find the time it takes the pair of
particles to halve their initial separation distance—we are
looking for t∗ such that x(t∗) = d/2. In the form above, it
is clear that finding x(t∗) requires knowledge of the particle
motion for all times t < 0 (since at t = 0, the right-hand
side of the equation of motion requires us to know the loca-
tion of the particle at tr < 0). That is more initial data than is
ordinarily required in classical mechanics (where the initial
position and velocity suffice to determine x(t∗)). It is not
immediately clear how we should specify this initial data.
We do not have control of the particles for all time prior to
t = 0, so at best, we can only approximately specify the past
history.

We will peel away the complicating elements of the full
problem by studying the answer to our question (“what is
t∗?”) in approximations to the full problem and comparing
those solutions. The specific regimes of interest to us will
be (1) nonrelativistic infall; (2) relativistic infall with spec-
ified initial conditions for all times prior to t = 0; this case
includes relativistic dynamics and the full relativistic field
both without retardation and with retardation; and (3) full
relativistic dynamics with retardation and no assumptions
about the motion of the particles prior to t = 0. In this final
case, we will use a method developed by Synge [2] and rede-
veloped independently in [5]. Again, the goal is to compare
these various regimes with each other, to see how the physi-
cal mechanisms and predictions change in each regime. The
application of the Synge iteration technique is new to this
particular form of the problem, although it was successfully
applied to opposite charges traveling in one dimension with
both retarded and advanced potentials [6].

2 Nonrelativistic Infall

In the simplest case, where the particles are not traveling
too fast, and are relatively close together, we can use the
Coulomb force. The force on the positive charge, due to the
negative one is

F = − q2

4 π ε0 (x(t) − (−x(t)))2 , (5)

and then the equation of motion is just

ẍ(t) = − q2

4 π ε0 m (2 x(t))2 . (6)

We will introduce dimensionless quantities, in preparation
for the numerical work to come. The convention will be that
lower case variables have dimension, and their upper case
forms are dimensionless. So set x = x0 X and t = (x0/c) T ,
then the equation of motion is

d2X

dT 2 = −
q2

4 π ε0 x0

m c2
︸ ︷︷ ︸

≡α

1
4 X2 , (7)

where the dimensionless parameter α is the ratio of the char-
acteristic electrostatic potential energy to the relativistic rest
energy.

We can multiply both sides of (7) by dX
dT ≡ X′ and

integrate, recovering the usual conservation of energy for
particle motion in E&M:

1
2

(
X′)2 = α

4 X
+ Ex. (8)

The constant Ex can be set using the initial conditions:
X(0) = D ≡ d/x0 and X′(0) = 0 gives Ex = − α

4 D . Now
taking the square root of both sides of (8) (choose the neg-
ative root for infall), we can set up an integral to find T ∗:

− 1√
α

∫ D/2

D

dX
√

1
X − 1

D

=
∫ T ∗

0
dT = T ∗, (9)

or performing the integration

T ∗ =
√

1
8 α

(2 + π) D3/2. (10)

3 Relativistic Infall

The full point-source fields of E&M depend on both the
position and velocity of the particle producing the field. In
addition, the evaluation of the field at any location x must
take into account the amount of time it took for the field
information to come from the source particle location at x ′.
That information travels at c, so the time of flight is defined
by

(t − tr ) = |x − x ′|/c. (11)

Since we are studying moving particles, x(t) (the location
of the charge q) and x ′(t) (the location of the charge −q)
are both functions of time, and the retarded time definition
becomes an implicit one:

c (t − tr ) = |x(t) − x ′(tr )|. (12)

For our symmetric setup, where the particles lie on a line,
the force on the particle at x(t) due to the particle at −x(t)

is given by (see [1], Problem 10.18) the following:

F = − q2

4 π ε0

1

(x(t) + x(tr ))
2

c − ẋ(tr )

c + ẋ(tr )
. (13)
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In addition to using the full form of the fields coming
from the Liénard–Wiechert potentials, we must also use the
relativistic form of Newton’s second law:

d

dt




m ẋ(t)

√
1 − ẋ(t )2

c2



 = F. (14)

Putting these together with the definition of retarded time,
we have the following nonlinear delay differential equation
for the motion of the positive charge located at x(t):

d

dt




m ẋ(t)

√
1 − ẋ(t )2

c2



 = − q2

4 π ε0

1

(x(t) + x(tr))
2

c − ẋ(tr )

c + ẋ(tr )

c (t − tr ) = |x(t) + x(tr)|. (15)

We will record the full problem in our dimensionless vari-
ables,

d

dT

[
X′(T )

√
1 − X′(T )2

]

= − α

(X(T ) + X(Tr ))
2

1 − X′(Tr)

1 + X′(Tr)

T − Tr = X(T ) + X(Tr). (16)

3.1 No Retardation

Our first approximation will be to take tr = t in the evalua-
tion of the force (13), and this amounts to assuming that the
particles are so close together that the time of flight for light
is essentially zero. Here, the problem then reduces to

d

dT

[
X′(T )

√
1 − X′(T )2

]

= − α

4 X(T )2

1 − X′(T )

1 + X′(T )
, (17)

which can be integrated once. Rather than do that, we will
use this as an opportunity to define the numerical method
that we will use for the rest of the investigations in this
paper.

We will start by rendering the second-order differen-
tial equation into a pair of first-order ones. Define the
dimensionless relativistic momentum P(T ) ≡ X′(T )/√

1 − X′(T )2, and then we have as follows:

dX

dT
= P√

1 + P 2

dP

dT
= − α

4 X2

1 − P√
1+P 2

1 + P√
1+P 2

= − α

4 X2

[
1 + 2 P

(
P −

√
1 + P 2

)]
. (18)

To approximate the solution to this pair of equations
numerically, we define a grid in (dimensionless) time: Tj ≡
j $T for constant spacing $T . Now, assume X(Tj ) ≡ Xj

and P(Tj ) ≡ Pj are the projections of the true solution onto
the grid. The derivatives can be approximated using finite
differences:

X′(Tj ) ≈ Xj+1 − Xj−1

2 $T
P ′(Tj ) ≈ Pj+1 − Pj−1

2 $T
.

(19)

Using these in (18), we can define a recursive update
scheme for Xj and Pj :

Xj+1 = Xj−1 + 2 $T
Pj√

1 + P 2
j

Pj+1 = Pj−1 − α $T

2 X2
j

[
1 + 2 Pj

(
Pj −

√
1 + P 2

j

)]
.

(20)

All we need in order to get this numerical procedure going
is X−1 and P−1, the position and momentum of the positive
charge just prior to T = 0. Let us take those to be X−1 = D

and P−1 = 0, i.e., they will take on their values at T = 0.
We run the iteration (20) and extract from the result-

ing sequence the value closest to 1
2 D, returning the time

at which it occurs. We use α = 1
4 and a time step of

$T = 0.0005 to probe a variety of starting displacements
D, shown in Fig. 1. There, we can see that the time it takes
to halve the initial separation is less than the nonrelativis-
tic result. This is because the force governing the motion is
larger than the Coulomb force by a factor of 1+|X′|

1−|X′| (X(T )

that is decreasing for T > 0, so X′(T ) < 0).

D

T
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Fig. 1 The value of T ∗ as a function of D for the relativistic (nonre-
tarded) numerical solution is shown as points. The parameter α = 1

4 .
The curve is the nonrelativistic result (10), again with α = 1

4
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3.2 Retarded Time

We now return to the full retarded time description of the
problem (16)–all that has changed in the iteration is in the
force evaluation. We now need to solve

Xj+1 = Xj−1+2$T
Pj√

1+P 2
j

Pj+1 = Pj −1− 2 α $T

(Xj +Xk)2

[
1+2 Pk

(
Pk−

√
1+P 2

k

)]

k = min%

[
|Tj − T% − (Xj + X%)|

]
, (21)

where the last equation defines the index k to be the index
% that minimizes

∣∣Tj − T% − (Xj + X%)
∣∣, so that k is the

appropriate retarded time index, and Tr ≈ k $T .
Operationally, the presence and determination of k is the

only major difference between (21) and (20). But as a delay
differential Eq. (16) requires more “initial” information: we
must be able to find the correct retarded time for the force
evaluation at T = 0, and that means we need the past history
of our particles. For now, let us agree that for all time T < 0,
X(T ) = D and P(T ) = 0.

A plot of the results, for our test case with α = 1
4 , and a

variety of starting values for D is shown in Fig. 2. The inclu-
sion of retarded time evaluation for the force has an effect
here—the time it takes to reach 1

2 D is longer, which makes
sense, since at earlier times, the pair of particles is further
apart, and their speed is less. Then the force on q at T is less
using retarded time evaluation than if we use instantaneous
evaluation. It is interesting to note, in Fig. 2, that the T ∗

values here are better approximated by the nonrelativistic,
instantaneously evaluated Coulomb force values.

D

T
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Fig. 2 T ∗ as a function of D for the relativistic cases with retarded
time (top set of points), no retarded time (bottom set of points), and for
reference, the nonrelativistic result from (10) is shown as a curve

4 Synge Iteration

We are still missing a complete solution to the problem.
In the Newtonian formulation of this physical configura-
tion, we specify that “at T = 0, the pair of particles is
at rest with separation 2 D”. If we are to keep that initial
value observation, then we technically need to solve (21)
in the absence of trajectory data prior to T = 0. That
sounds impossible, and it is hard to imagine how to proceed.
Faced with this ill-posed mathematical question, Synge gave
a clever response [2]: Start with a constant velocity parti-
cle trajectory for −q that matches the initial condition at
T = 0. Using that, generate the electric fields at +q and
allow the positive charge to move under the influence of
these fields; that will give some approximation to the tra-
jectory of the positive charge that is defined for some range
−T0 < T < Tf (where Tf is defined by the initial length
of our constant velocity trajectory). Using that trajectory for
+q , find the electric field at the negative charge and allow
the negative charge to move under its influence, so we will
have an updated trajectory for the motion of −q , for a range
−T1 < T < Tf . We lose a piece of the negative charge’s
trajectory, since the −T0 point of the +q trajectory is not
causally connected to the −T0 point of the −q trajectory
(it takes some time for the information about +q at −T0 to
reach the negative charge, and that means we will have to
start at T1 < T0, where we first have field information at
the −q location). So at each stage of the iteration, the tra-
jectories get shorter. The process of going back and forth
continues iteratively until “convergence”, or until we lose
causal contact between the trajectories altogether.1

For our one-dimensional problem, the initial trajectory
for the positive charge is “at rest at D”; we iterate three
times, and the resulting trajectories are shown in Fig. 3. Note
that given this initial trajectory, the first iteration should be
precisely the solution trajectory from Section 3.2. We can
again solve for the time it takes to fall to halve the initial
position for a variety of initial separations 2 D and once
again find a different answer. For all D we tested, the Synge
iteration approach gives a slightly larger value for T ∗ as
shown in Fig. 4.

5 Discussion

For the nonrelativistic and relativistic with no retardation
cases, there exist closed form formulae like (10) for com-
parison (with a numerical method), and those results are

1These trajectories are (numerically) finite, and they shrink as the iter-
ation proceeds; hence, we lose points that are out of causal contact
with the current iterative pass.
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Fig. 3 The top row shows the
initial (X0(T )) trajectory and
the first three iterations (X1(T ),
X2(T ), and X3(T )) for the
positive charge as determined by
Synge iteration (the two charges
start from rest separated by
2 D = 3). The bottom plot
shows all four of these on one
set of axes, together with the
negative charge’s trajectories
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relatively straightforward. Once retardation is introduced in
the evaluation of the forces, the standard numerical meth-
ods become much more involved. We have used the simplest
possible approach; the sketch (21) is basically Verlet [7]
with a recursive bisection to find the root in (16). That is
just a start when it comes to solving delay differential equa-
tions, and we only use it to display the basic qualitative
progression shown in Fig. 4.

The Verlet method we use, defined for the relativistic
problem by (20), has per-step accuracy of O($T 2). Since
we save the position and momentum information on a tem-
poral grid with spacing $T , we can only isolate the retarded
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T

Fig. 4 All four values of T ∗: fastest (black points) is the relativis-
tic (no retardation) case; the solid curve is the nonrelativistic result
from (10); then the relativistic with retardation; and finally, the slow-
est of all, the Synge iteration considered in this section. In all cases,
we set α = 1

4

time to within O($T/2) (without employing some sort of
interpolating function to approximate values off the tempo-
ral grid), rendering the method basically O($T ). For our
work here, where we are trying to find the time it takes to
get to half the starting separation, we use the rough rule
of thumb that we should choose $T , so that all of our
calculations have the following:

max ‖Xc − D/2‖ ≤ $T

2
(22)

for Xc the position closest to D/2 in a given trajectory,
that is what led to $T = 0.0005.2 While it is clear
from Fig. 4 that the four cases that we have considered have
quantitatively different values for T ∗, we are not claiming
particularly high accuracy for T ∗. The accuracy is, however,
good enough to distinguish between the cases in Fig. 4—the
temporal separations between the values of T ∗ shown there
are all well above $T .

In terms of physical relevance, taking the Coulomb case
as the base level, we see that the nonretarded evaluation of
force for the relativistic forces in (15) is greater than the
Coulomb case for the same separation, owing to the velocity
dependence in the force. So the acceleration at any sepa-
ration could easily be greater in the relativistic case, even
though the relativistic dynamics puts a cap on the speed (this
is opposite of the result in [8] where the Coulomb force is
used in the relativistic dynamics setting, since there the cen-
tral body was at rest). Moving to the relativistic (retarded
time) case with fixed position and velocity prior to T = 0,

2The actual bound is much better in most cases, especially in the case
of the Synge method, for which we found max ‖Xc − D/2‖ ∼ 10−5.
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we learn that the T ∗ is much closer to the nonrelativistic
Coulomb result; the time it takes to halve the initial distance
is longer. This is because part of the trajectory depends on
the position of the particles at T < 0, where the separation
is fixed at 2 D, larger than the instantaneous evaluation, and
that will lead to smaller forces, hence a longer time. Finally,
in the Synge case, the time is again longer, but there, the +q

charge has positive X′(Tr ) for Tr < 0, which would give a
velocity factor < 1 in (16), implying a smaller force mag-
nitude than in the relativistic, retarded evaluation case; so
again, the force is less, leading to yet more time.

Convergence is hard to define for the Synge method. For
charges of the same sign, it is not clear that the trajectory
of the particles for T > 0 depends strongly on the trajec-
tory prior to T = 0 [9, 10], which is a surprising result, and
suggests that the Synge approach cannot converge in these
cases, since the data prior to T = 0, which Synge treats
in a manner equivalent to the trajectory for T > 0, is then
basically irrelevant and can be chosen randomly. Synge, of
course, had neither computers nor the almost century of
numerical analysis necessary to analyze the convergence
and stability of his method in modern terms, and relied on
physical insight. For the cases considered here, the trajecto-
ries do indeed appear to converge (that is why it is difficult
to pick out the three distinct iterates in the bottom of Fig. 3).
In two dimensions, Angelov [11] has shown that the Synge
iteration method will not converge to the solution, at least
for some “initial” velocities (those specified at t = 0).

6 Conclusion

The problem we discuss here, that of the self-consistent
motion of a pair of charged particles, has well-known intri-
cacies and has been studied carefully for over a hundred
years. We revisit this interesting configuration to remind
ourselves that while classical E&M is the most complete
and tested of the classical forces of nature, there remain
mysteries that defy solution. This problem of motion is also
an interesting vehicle for introducing new physics in the
context of a familiar, and easy to state, problem.

In Fig. 4, we offer four physically distinct solutions to
the problem of electromagnetic infall, each probing a dif-
ferent regime. Where is the final full case, solved by Synge
iteration, physically relevant? For consistency with the rel-
ativistic point fields, we use the relativistic equations of
motion, and that means that the particles we are interested
in are moving at relativistic speeds. In addition, we would
need particles that are widely separated, so that the time of
flight for the force information was significant (i.e., so that
we must use the full retarded force evaluation). Finally, we
need particles whose past histories are unknown, not the
ones that have been sitting in an electron gun waiting to

be fired. In a sense, then, we need particles that are free of
external interaction.

Aside from physical interest in these astronomically sep-
arated massless charged particles moving very quickly, the
Synge method provided an approach to solving problems in
which past histories are not known. In two dimensions, the
Synge iteration technique does not converge to solutions of
the Synge problem (when they exist) [11]. In one dimension,
we have side-stepped the issue of existence and convergence
for our problem, relying instead on the “experimental” ver-
ification provided by Fig. 3 (and previous work on the
one-dimensional problem, [9], for example). But even in
this simplified setting, there are known physical difficulties:
notably, there is a lack of convergence implied in [12, 13] in
which particles of like charge have t > 0 trajectories that are
fixed, in some cases, by specifying only x(0) and ẋ(0). How
does the Synge method handle the lack of dependence on the
t < 0 portion of the trajectory? In addition to this question,
it would be interesting to introduce the radiation reaction
self-force in (3). This force depends on t rather than tr , and
its effects could be studied in either the full “unknown” past
history case (from Section 4) or in the artificial “particles at
rest for all t < 0” limit (from Section 3.2).
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