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The Problem

An infinite line carrying steady current I and uniform charge
density λ lies along the ẑ axis. Question: How does a
particle of charge q, mass m, move under the influence of
the resulting electric and magnetic fields?
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ŝ

?

q

m

V = � �

2⇡✏0
log

✓
s

s0

◆

A = �µ0I

2⇡
log

✓
s

s0

◆
ẑ
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We’ll focus on the purely magnetic, λ = 0, case first. Any
predictions?
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The equation of motion,

ma(t) = qv(t) × B(x(t))

cannot be easily solved in closed form. So consider a
numerical method like “Velocity Verlet":

x(t + ∆t) = x(t) + v(t)∆t +
1

2m
F(t)∆t2,

v(t + ∆t) = v(t) +
1

2m
[F(t) + F(t + ∆t)] ∆t .
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x(t + ∆t) = x(t) + v(t)∆t +
1

2m
F(t)∆t2,

v(t + ∆t) = v(t) +
1

2m
[F(t) + F(t + ∆t)] ∆t

If F(t) depends on position only: F(t) ≡ F(x(t)) then we can
evaluate the update: F(t + ∆t) = F(x(t + ∆t)). But the
Lorentz force depends on v: F(t) ≡ F(v(t)), and then the
velocity update equation reads:

v(t + ∆t) = v(t) +
1

2m
[F(v(t)) + F(v(t + ∆t))] ∆t
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Because the Lorentz force is linear in v(t), one can (just
barely) develop a consistent update to the Velocity Verlet
algorithm that includes magnetic forcing [2].
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Back to our problem, the numerical method gives the
following trajectory:

ẑ
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x̂

(not what I expected)
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Analysis

We’ll avoid the equations of motion at all costs. Starting
from the Lagrangian:

L =
1
2

mv2 − qV + qv · A.

Working in cylindrical coordinates, with V = 0 (for now)

L =
1
2

m
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)
− µ0qI

2π
log

(
s
s0

)
ż.

This L is independent of z and φ, so the associated
canonical momenta are conserved - define α ≡ µ0qI
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Solve for φ̇ and ż, and use those in the constant kinetic
energy expression (in cylindrical coordinates):
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At the energy shown, the motion in s is oscillatory, with a
period, T , defined by the effective potential. From

φ̇ =
`

ms2 ż = α log

(
s
s1

)

it is clear that both φ̇ and ż will also be periodic with period
T . The integral of ż is of the form

z(t) = σt + f (t)

where σ is a constant and f (t) is the indefinite integral of the
right-hand-side above, a function that is also periodic with
period T . This most general type of motion is what we saw
in the numerical solution - periodicity with “drift" in the z and
φ coordinates of the particle.
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No radial motion ṡ = 0

Our effective potential supports an s-equilibrium point, for
which ṡ = 0 at seq. Then from the constants of motion, we
have

φ̇ =
`

ms2
eq

ż = α log

(
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s1

)
,

also constants.
ẑ

ŷ
x̂
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No angular momentum ` = 0

We can also study the case of no angular momentum,
` = 0. The effective potential becomes

Veff =
1
2

mα2 log

(
s
s1

)2

,

which still supports oscillatory behavior - now occurring in a
plane.
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The Problem - with Electric Field

Another opportunity for prediction:
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This time, the Lagrangian reads:

L =
1
2

m
(

ṡ2 + s2φ̇2 + ż2
)

+
qλ

2πε0
log

(
s
s0

)
− µ0qI

2π
log

(
s
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)
ż

=
1
2

m
(

ṡ2 + s2φ̇2 + ż2
)

+ mα (βc − ż) log

(
s
s0

)
,

with β ≡ λc
I . The constants of the motion are unchanged,

but we’ll pick them differently here:
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= mż − mα log

(
s
s0

)
= mα log

(
s0

s1

)
+ mβc



The Problem

Analysis

Adding
Electric Field

Then the energy (kinetic plus potential, now) becomes

E =
1
2

mv2 − mαβc log

(
ss1

s1s0
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mṡ2 +
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α2 log
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︸ ︷︷ ︸
same Veff as before

+E0

There is an energy offset E0 = 1
2mβ2c2 − mαβc log(s1/s0),

and a shift in pz , but modulo those constants, no difference
between the pure magnetic case and the magnetic +
electrical case.
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For the magnetic case:

mż − mα log

(
s
s1

)
= 0

gave

ż = α log

(
s
s1

)
.

In the magnetic + electrical problem, we took

mż − mα log

(
s
s1

)
= mβc,

so that

ż = βc + α log

(
s
s1

)
,

leading to a constant addition, βc, to the “drift" velocity in
the z direction.
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The moral of the story: If you had a solution to the magnetic
problem sm(t), φm(t) and zm(t), then the solution to the
magnetic + electrical problem is

sem(t) = sm(t) φem(t) = φm(t) zem(t) = zm(t) + βct ,

with a shift in energy and (canonical) z-component of
momentum that comes along for the ride.
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By appropriate tuning of β, we can turn:
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ŷ

x̂
ẑ
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