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The Problem

The Problem

An infinite line carrying steady current / and uniform charge
density )\ lies along the 2 axis. Question: How does a

particle of charge g, mass m, move under the influence of
the resulting electric and magnetic fields?




We’ll focus on the purely magnetic, A = 0, case first. Any
predictions?
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into page
I ecreasing to the right

.q




The equation of motion,
ma(t) = qv(t) x B(x(t))

cannot be easily solved in closed form. So consider a
numerical method like “Velocity Verlet":

The Problem

x(t + At) = x(t) + v(t)At + %F(t)AtZ,
v(t+ At) = v(t) + % [F(t) + F(t + At)] At.

F(t)



The Problem

X(t + At) = x(t) + v(t) At + %F(t)At{
V(t+ At) =v(t) + % [F(t) + F(t+ A At

If F(t) depends on position only: F(t) = F(x(t)) then we can
evaluate the update: F(t + At) = F(x(t + At)). But the

Lorentz force depends on v: F(t) = F(v(t)), and then the
velocity update equation reads:

v(t+ At) =v(t) + % [F(v(t)) + F(v(t+ At))] At



Because the Lorentz force is linear in v(t), one can (just
barely) develop a consistent update to the Velocity Verlet
algorithm that includes magnetic forcing [2].
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The Problem

Back to our problem, the numerical method gives the
following trajectory:
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(not what | expected)




Analysis

We'll avoid the equations of motion at all costs. Starting
from the Lagrangian:

Analysis L = %mv2 — qv +qv- A.

Working in cylindrical coordinates, with V = 0 (for now)
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Solve for qb and z, and use those in the constant kinetic
energy expression (in cylindrical coordinates):

E= %m (.'92 + 8242 + 22)
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At the energy shown, the motion in s is oscillatory, with a
period, T, defined by the effective potential. From

it is clear that both ¢ and Z will also be periodic with period
T. The integral of Z is of the form

2(t) = ot + £(t)

where ¢ is a constant and f(t) is the indefinite integral of the
right-hand-side above, a function that is also periodic with
period T. This most general type of motion is what we saw
in the numerical solution - periodicity with “drift" in the z and
¢ coordinates of the particle.






No radial motion s =0

Our effective potential supports an s-equilibrium point, for
which s = 0 at s,,. Then from the constants of motion, we
have

nalysis : 14 . Se
Al b= z:alog<sq>,

mqu 1
also constants.




No angular momentum ¢/ =0

We can also study the case of no angular momentum,
¢ = 0. The effective potential becomes

Analysis 1 2 S 2
Veff = Ema IOg ;1 )

which still supports oscillatory behavior - now occurring in a
plane.
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The Problem - with Electric Field

Another opportunity for prediction:
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This time, the Lagrangian reads:
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with 3 = 2. The constants of the motion are unchanged,
but we’ll pick them differently here:
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Then the energy (kinetic plus potential, now) becomes
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same V., as before

There is an energy offset £y = 1mpB2c? — maBclog(si/so),
and a shift in p,, but modulo those constants, no difference
between the pure magnetic case and the magnetic +
electrical case.
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For the magnetic case:
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In the magnetic + electrical problem, we took

gave
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leading to a constant addition, Sc, to the “drift" velocity in
the z direction.




adding The moral of the story: If you had a solution to the magnetic
IEEGEEN  problem s, (1), ¢n(t) and z,(t), then the solution to the
magnetic + electrical problem is

Sem(t) = Sn(t)  fem(t) = Im(t)  Zem(t) = Z(t) + Bet,

with a shift in energy and (canonical) z-component of
momentum that comes along for the ride.



By appropriate tuning of 3, we can turn:
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