Particle Motion in a Magnetic Field [1]

J. Franklin with David Griffiths (Reed College) and Nelia Mann (Union College)

April 8th, 2024

Outline

Electric Field

(1) The Problem

(2) Analysis
(3) Adding Electric Field

The Problem

Adding Electric Field

An infinite line carrying steady current I and uniform charge density λ lies along the $\hat{\mathbf{z}}$ axis. Question: How does a particle of charge q, mass m, move under the influence of the resulting electric and magnetic fields?

We'll focus on the purely magnetic, $\lambda=0$, case first. Any predictions?

The equation of motion,

$$
m \mathbf{a}(t)=q \mathbf{v}(t) \times \mathbf{B}(\mathbf{x}(t))
$$

cannot be easily solved in closed form. So consider a numerical method like "Velocity Verlet":

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\mathbf{v}(t) \Delta t+\frac{1}{2 m} \mathbf{F}(t) \Delta t^{2} \\
& \mathbf{v}(t+\Delta t)=\mathbf{v}(t)+\frac{1}{2 m}[\mathbf{F}(t)+\mathbf{F}(t+\Delta t)] \Delta t
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\mathbf{v}(t) \Delta t+\frac{1}{2 m} \mathbf{F}(t) \Delta t^{2} \\
& \mathbf{v}(t+\Delta t)=\mathbf{v}(t)+\frac{1}{2 m}[\mathbf{F}(t)+\mathbf{F}(t+\Delta t)] \Delta t
\end{aligned}
$$

If $\mathbf{F}(t)$ depends on position only: $\mathbf{F}(t) \equiv \mathbf{F}(\mathbf{x}(t))$ then we can evaluate the update: $\mathbf{F}(t+\Delta t)=\mathbf{F}(\mathbf{x}(t+\Delta t))$. But the Lorentz force depends on \mathbf{v} : $\mathbf{F}(t) \equiv \mathbf{F}(\mathbf{v}(t))$, and then the velocity update equation reads:

$$
\mathbf{v}(t+\Delta t)=\mathbf{v}(t)+\frac{1}{2 m}[\mathbf{F}(\mathbf{v}(t))+\mathbf{F}(\mathbf{v}(t+\Delta t))] \Delta t
$$

Because the Lorentz force is linear in $\mathbf{v}(t)$, one can (just barely) develop a consistent update to the Velocity Verlet algorithm that includes magnetic forcing [2].

Back to our problem, the numerical method gives the following trajectory:

(not what I expected)

Analysis

We'll avoid the equations of motion at all costs. Starting from the Lagrangian:

$$
L=\frac{1}{2} m v^{2}-q V+q \mathbf{v} \cdot \mathbf{A}
$$

Working in cylindrical coordinates, with $V=0$ (for now)

$$
L=\frac{1}{2} m\left(\dot{s}^{2}+s^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)-\frac{\mu_{0} q I}{2 \pi} \log \left(\frac{s}{s_{0}}\right) \dot{z}
$$

This L is independent of z and ϕ, so the associated canonical momenta are conserved - define $\alpha \equiv \frac{\mu_{0} q l}{2 \pi m}$:

$$
\begin{aligned}
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m s^{2} \dot{\phi}=\ell \\
& p_{z}=\frac{\partial L}{\partial \dot{z}}=m \dot{z}-m \alpha \log \left(\frac{s}{s_{0}}\right)=m \alpha \log \left(\frac{s_{0}}{s_{1}}\right)
\end{aligned}
$$

Solve for $\dot{\phi}$ and \dot{z}, and use those in the constant kinetic energy expression (in cylindrical coordinates):

$$
\begin{aligned}
E & =\frac{1}{2} m\left(\dot{s}^{2}+s^{2} \dot{\phi}^{2}+\dot{z}^{2}\right) \\
& =\frac{1}{2} m \dot{s}^{2}+\underbrace{\frac{\ell^{2}}{2 m s^{2}}+\frac{1}{2} m \alpha^{2} \log \left(\frac{s}{s_{1}}\right)^{2}}_{\equiv V_{\text {eff }}}
\end{aligned}
$$

At the energy shown, the motion in s is oscillatory, with a period, T, defined by the effective potential. From

$$
\dot{\phi}=\frac{\ell}{m s^{2}} \quad \dot{z}=\alpha \log \left(\frac{s}{s_{1}}\right)
$$

it is clear that both $\dot{\phi}$ and \dot{z} will also be periodic with period T. The integral of \dot{z} is of the form

$$
z(t)=\sigma t+f(t)
$$

where σ is a constant and $f(t)$ is the indefinite integral of the right-hand-side above, a function that is also periodic with period T. This most general type of motion is what we saw in the numerical solution - periodicity with "drift" in the z and ϕ coordinates of the particle.

No radial motion $\dot{s}=0$

Our effective potential supports an s-equilibrium point, for which $\dot{s}=0$ at $s_{\text {eq }}$. Then from the constants of motion, we have

$$
\dot{\phi}=\frac{\ell}{m s_{\mathrm{eq}}^{2}} \quad \dot{z}=\alpha \log \left(\frac{s_{\mathrm{eq}}}{s_{1}}\right)
$$

also constants.

No angular momentum $\ell=0$

We can also study the case of no angular momentum, $\ell=0$. The effective potential becomes

$$
V_{\mathrm{eff}}=\frac{1}{2} m \alpha^{2} \log \left(\frac{s}{s_{1}}\right)^{2}
$$

which still supports oscillatory behavior - now occurring in a plane.

The Problem - with Electric Field

The Problem

Analysis
Adding
Electric Field

Another opportunity for prediction:

This time, the Lagrangian reads:

The Problem
Analysis
Adding
Electric Field

$$
\begin{aligned}
L & =\frac{1}{2} m\left(\dot{s}^{2}+s^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)+\frac{q \lambda}{2 \pi \epsilon_{0}} \log \left(\frac{s}{s_{0}}\right)-\frac{\mu_{0} q l}{2 \pi} \log \left(\frac{s}{s_{0}}\right) \dot{z} \\
& =\frac{1}{2} m\left(\dot{s}^{2}+s^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)+m \alpha(\beta c-\dot{z}) \log \left(\frac{s}{s_{0}}\right)
\end{aligned}
$$

with $\beta \equiv \frac{\lambda c}{T}$. The constants of the motion are unchanged, but we'll pick them differently here:

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\phi}}=m s^{2} \dot{\phi}=\ell \\
& \frac{\partial L}{\partial \dot{z}}=m \dot{z}-m \alpha \log \left(\frac{s}{s_{0}}\right)=m \alpha \log \left(\frac{s_{0}}{s_{1}}\right)+m \beta c
\end{aligned}
$$

Then the energy (kinetic plus potential, now) becomes

$$
\begin{aligned}
& E=\frac{1}{2} m v^{2}-m \alpha \beta c \log \left(\frac{s s_{1}}{s_{1} s_{0}}\right) \\
&=\frac{1}{2} m \dot{s}^{2}+\frac{\ell^{2}}{2 m s^{2}}+\frac{m}{2}\left(\beta c+\alpha \log \left(\frac{s}{s_{1}}\right)\right)^{2}-m \alpha \beta c \log \left(\frac{s}{s_{1}}\right) \\
&-m \alpha \beta c \log \left(\frac{s_{1}}{s_{0}}\right) \\
&=\frac{1}{2} m \dot{s}^{2}+\underbrace{\frac{\ell^{2}}{2 m s^{2}}+\frac{m}{2} \alpha^{2} \log \left(\frac{s}{s_{1}}\right)^{2}}_{\text {same } V_{\text {eff }}}+E_{0}
\end{aligned}
$$

There is an energy offset $E_{0}=\frac{1}{2} m \beta^{2} c^{2}-m \alpha \beta c \log \left(s_{1} / s_{0}\right)$, and a shift in p_{z}, but modulo those constants, no difference between the pure magnetic case and the magnetic + electrical case.

For the magnetic case:

$$
m \dot{z}-m \alpha \log \left(\frac{s}{s_{1}}\right)=0
$$

gave

$$
\dot{z}=\alpha \log \left(\frac{s}{s_{1}}\right) .
$$

In the magnetic + electrical problem, we took

$$
m \dot{z}-m \alpha \log \left(\frac{s}{s_{1}}\right)=m \beta c
$$

so that

$$
\dot{z}=\beta c+\alpha \log \left(\frac{s}{s_{1}}\right)
$$

leading to a constant addition, $\beta \boldsymbol{c}$, to the "drift" velocity in the z direction.

The moral of the story: If you had a solution to the magnetic problem $s_{\mathrm{m}}(t), \phi_{\mathrm{m}}(t)$ and $z_{\mathrm{m}}(t)$, then the solution to the magnetic + electrical problem is

$$
s_{\mathrm{em}}(t)=s_{\mathrm{m}}(t) \quad \phi_{\mathrm{em}}(t)=\phi_{\mathrm{m}}(t) \quad z_{\mathrm{em}}(t)=z_{\mathrm{m}}(t)+\beta c t
$$

with a shift in energy and (canonical) z-component of momentum that comes along for the ride.

By appropriate tuning of β, we can turn:

The Problem
Analysis
Adding
Electric Field

[1] Joel Franklin, David J. Griffiths \& Nelia Mann, "Motion of a Charged Particle in the Static Fields of an Infinite Straight Wire," Am. J. Phys. 90, 513 (2022).
[2] A. Chambliss \& J. Franklin, "A magnetic velocity Verlet method," Am. J. Phys. 88, 1075 (2020).

