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Problem (as given in assignment)

We discussed the gradient operator:

∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

and identified its action on a scalar function as indicating the direction of greatest increase.
Use this observation to generate the basis vector in spherical coordinates.

Presentation

In this problem, we are asked to use the gradient operator, expressed in Cartesian coordi-
nates,

∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(1)

to develop the unit basis vectors in spherical coordinates, {r̂, φ̂, θ̂}.
The gradient is a useful tool for this problem because when it is applied to a scalar

function like f(x, y, z), it returns the direction of greatest increase of f . That characteristic
feature of the gradient can be established quickly using Taylor expansion: For a point
{x, y, z}, we know the value of f . At a nearby point, displaced from the original by (small)
dx, dy and dz, the value of f is approximately:

f(x+ dx, y + dy, z + dz) ≈ f(x, y, z) + dx
∂f

∂x
+ dy

∂f

∂y
+ dz

∂f

∂z
, (2)

or, defining d` ≡ dxx̂ + dyŷ + dzẑ,

f(x+ dx, y + dy, z + dz) ≈ f(x, y, z) + d` · ∇f(x, y, z), (3)

and the way to maximize the dot product is to take d` ‖ ∇f(x, y, z).
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In any coordinate system, the basis vectors point in the direction of increasing coordi-
nate value. For the function r(x, y, z) ≡

√
x2 + y2 + z2 that defines the radial coordinate,

the direction of greatest increase, at {x, y, z}, is ∇r(x, y, z), all we have to do is calculate
the derivatives:

∂r

∂x
=

1
22x√

x2 + y2 + z2
=

x√
x2 + y2 + z2

(4)

with the y and z derivatives obtained by taking x → y and x → z respectively. The
gradient of r is then

∇r(x, y, z) =
1√

x2 + y2 + z2
[xx̂ + yŷ + zẑ] . (5)

We want r̂, the unit vector pointing in the direction of greatest increase for the coordinate
r, but it is clear that ∇r(x, y, z) above already has ∇r(x, y, z) · ∇r(x, y, z) = 1, so we have

r̂ = ∇r(x, y, z) =
1√

x2 + y2 + z2
[xx̂ + yŷ + zẑ] . (6)

Moving on to the angular pieces, we have φ = tan−1(y/x). Our first job is to identify
the derivative of the arctangent. One useful trick is to note that

ψ = tan−1(tanψ), (7)

then let u ≡ tanψ.1 Taking the u-derivative of the equation that defines u gives

1 =
d tanψ

dψ

dψ

du
−→ dψ

du
= cos2 ψ =

1

1 + u2
. (8)

Now taking the u derivative of both sides of (7), we have

dψ

du
=
d tan−1(u)

du
=

1

1 + u2
. (9)

Returning to φ, the x and y derivatives are

∂φ

∂x
=

1

1 +
( y
x

)2 (− y

x2

)
= − y

x2 + y2
∂φ

∂y
=

1

1 +
( y
x

)2 (1

x

)
=

x

x2 + y2
. (10)

The gradient of φ is, then,

∇φ =
−yx̂ + xŷ

x2 + y2
. (11)

1Inverting u ≡ tanψ can be achieved by noting that u2 = (1 − cos2 ψ)/ cos2 ψ and isolating cos2 ψ =
1/(1 + u2).
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Normalizing to get φ̂ gives

∇φ ‖ φ̂ =
−yx̂ + xŷ√
x2 + y2

. (12)

Finally, for θ ≡ tan−1(
√
x2 + y2/z), we just have more application of the chain rule.

The derivatives are

∂θ

∂x
=

xz√
x2 + y2 (x2 + y2 + z2)

∂θ

∂y
=

yz√
x2 + y2 (x2 + y2 + z2)

∂θ

∂z
= −

√
x2 + y2

x2 + y2 + z2

(13)
and the gradient is

∇θ =
xzx̂ + yzŷ − (x2 + y2)ẑ√
x2 + y2 (x2 + y2 + z2)

. (14)

Normalizing gives

∇θ ‖ θ̂ =
xzx̂ + yzŷ − (x2 + y2)ẑ√
x2 + y2

√
x2 + y2 + z2

. (15)

None of these expressions for the spherical basis vectors look at all familiar, but that is
because they are written in Cartesian coordinates. Using x = r sin θ cosφ, y = r sin θ sinφ
and z = r cos θ, we recover

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

φ̂ = − sinφx̂ + cosφŷ

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ.

(16)

It is interesting to note that the gradient’s role in determining directions of increase
holds even in spaces that are not “flat” (ones that have a different definition of length than
the usual Pythagorean one). How might we determine the relevant unit basis vectors in a
setting that was not just a coordinate transformation away from Cartesian?
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