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Preface

A body of mathematics often comes into sharp focus for the student who is
learning it for the second time, to solve an engaging problem. My aim in
writing this book is to provide such a review and application for an advanced
undergraduate or beginning graduate audience. The material is taken from
the classic 1884 text Lectures on the Icosahedron and Equations of the Fifth
Degree by Felix Klein [Kl], and from the 1989 paper “Solving the quintic
by iteration” by Peter Doyle and Curt McMullen [Do-Mc]. The mathemati-
cal curriculum has so evolved since Klein’s day that his subject—traversing
geometry, linear algebra, group theory, complex analysis and Galois theory—
now provides a wonderful consolidation of an undergraduate education, and
using the icosahedron to solve the quintic supplies a fascinating problem in-
deed. Unfortunately, even in English translation the century-old syntax of
Klein’s book is tough going for a contemporary student. (L. E. Dickson’s
1926 Modern Algebraic Theories [Di] covers some of the same material more
accessibly, but it eschews higher mathematics in favor of an elementary pre-
sentation.) Add to Klein’s work the wrinkle of Doyle and McMullen’s recent
result, which updates the classical solution of the quintic by transcendental
functions to a solution by pure iteration, and this text at this level fills a
pedagogical gap and is of mathematical interest.

The prerequisites for this book are semester courses in linear algebra
(including inner product spaces), real analysis (including point set topol-
ogy in Euclidean space), complex analysis (including theory of analytic and
meromorphic functions and conformal mappings), and modern algebra (in-
cluding symmetric groups and acquaintance with rings and fields). Some
beginnings of general topology, Galois theory, and (to a lesser extent) alge-
braic geometry will help one read the book in its intended review-and-apply
spirit, but for an ambitious reader these basics are not required since they
are presented before being used. In any case, general mathematical maturity
can compensate for not having seen a particular topic.
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My expository goal in reviewing undergraduate material is to present it
“right” for the second-time reader, in the senses of

e showing by concise summary that bodies of material that looked
big the first time through aren’t so formidable after all,

e providing, via exercises, a workbook environment for going ac-
tively through material that was previously read more pas-
sively,

e applying reviewed concepts from various areas in the context
of one problem, to demonstrate that using general theorems is
helpful and easy,

e presenting familiar subjects in nonredundant, forward-looking
fashion, by highlighting aspects that may be slighted in a first
presentation and by using graduate language.

Since long expositions can camouflage key ideas, the writing here is deliber-
ately terse: this book is therefore meant to be read slowly, in small doses. 1
make no effort to give exhaustive treatment of every topic that this mate-
rial touches on, especially topics already well covered in other contemporary
texts. The main narrative suitably illuminates the varied terrain it traverses.

Chapter 1 puts structure on the sphere. As the one-point compactifi-
cation of the complex plane, the Riemann sphere is well suited to complex
analysis. And since all meromorphic functions on the Riemann sphere are in
fact rational, they are conveniently viewed as algebraic mappings of the com-
plex projective line, which is yet another version of the sphere. Chapter 2
classifies the finite groups of automorphisms (invertible meromorphic self-
maps) of the Riemann sphere. Up to conjugacy, these are the cyclic groups,
the dihedral groups, and the rotation groups of the Platonic solids. The
cyclic and dihedral groups may also be viewed as the rotation groups of cer-
tain figures, and conversely the algebraic structure of the Platonic rotation
groups is well known: they are the alternating group A4 for the tetrahedron,
the symmetric group Sy for the octahedron/cube, and the alternating group
Ajs for the icosahedron/dodecahedron. Chapter 3 computes for each such
group I' a generator of the field of I'-invariant rational functions. Chapter 4
discusses algebraic aspects of inverting this generator, a problem equivalent
to constructing a certain field extension with Galois group I'. Since all of
the groups catalogued in Chapter 2 except the icosahedral group are solv-
able, Galois theory shows that radicals (i.e., nth root extractions) invert
the generator in all but the icosahedral case. Inverting the icosahedral gen-
erator turns out to be equivalent to solving a certain quintic polynomial,
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the Brioschi quintic, which is not solvable by radicals. Chapter 5 reduces
the general quintic to Brioschi form. Carrying out this reduction requires a
square root that is auxiliary to the set-up of the general quintic. Chapter 6
proves Kronecker’s Theorem, which asserts that the auxiliary square root is
necessary for any such reduction. Chapter 7 discusses Doyle and McMullen’s
solution of the Brioschi quintic by purely iterative algorithm.

While it may be unduly optimistic for me to envision this book as the
summer poolside reading rage for budding mathematicians between college
and graduate school, I do hope that individual students and student seminars
will use it for independent study. To this end, related readings are recom-
mended at the beginning of each chapter. The exercises intertwine closely
with the exposition and are cited freely, making them an integral part of the
text. They should all be contemplated, even if not solved. Most of the chap-
ters begin with general theorems and then proceed to specific calculations,
which are meant to keep the material vividly explicit. These calculations get
quite elaborate, so the book may be more profitably (and less laboriously)
read with the help of a computer algebra package such as Maple or Mathe-
matica. The sophistication of the material increases through the book, with
Chapters 6 and 7 considerably more advanced than the others.

The work here is largely a collaboration with Reed College students,
whose contribution is a pleasure to acknowledge. James T. Brown and Bruce
Fields wrote their senior theses on portions of the material. Ben Dayvis,
Mark Jefferys, Josh Levenberg, Ye Li, Zeb Strong, and Greg Vande Krol
suggested many improvements to the course notes that have evolved into
this text. Douglas Squirrel worked carefully through a near-final draft. And
Josh Levenberg produced the more attractive computer illustrations using
a ray-tracing program. Among the many colleagues who helped me with
the project, Joe Buhler, Cris Poor, and especially David Cox merit special
thanks for their remarkable generosity.
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CHAPTER 1

The complex sphere

The first step toward studying the symmetries and function theory of the
sphere is to supplement its geometric definition with additional structure.
This chapter defines the Riemann sphere and the complex projective line,
the first suitable for complex analytic methods, the second for algebraic
ones, and both equivalent to the sphere. The equivalence is topological: the
sphere maps bijectively to each via a homeomorphism, meaning a continuous
map with continuous inverse. The Riemann sphere consists of the complex
numbers and one more point. It is not geometrically round but it is confor-
mally equivalent to the sphere, meaning that angles are preserved under the
topological map between them. The meromorphic functions on the Riemann
sphere, superficially analytic objects, are in fact the rational functions in one
variable, which are algebraic. These are in turn conveniently represented as
pairs of homogeneous polynomials in two variables, describing self-maps of
the complex projective line.

Recommended reading: Chapter 1 of Jones and Singerman [Jo-Si] dis-
cusses the sphere, overlapping some with the discussion here. Also, the first
appendix to [Jo-Si] provides a quick review of complex analysis. For more
review, see Ahlfors [Ah], Marsden and Hoffman [Ma-Ho], or any of count-
less other good complex analysis texts for a development of analytic and
meromorphic functions and conformal mappings.

1. Topological preliminaries

Euclidean space R? with points p = (p1,p2,p3) and the usual absolute
value |p| = \/p? + p3 + p3 contains the sphere S? = {p: [p| = 1} as a sub-
set. This chapter lays the groundwork for a careful study of the sphere by
constructing two other objects equivalent to it under continuous mappings.
The first order of business is therefore to discuss continuity.

The definition of continuity for mappings between Euclidean spaces relies
1
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on the absolute value

Ip| =

n
Zp% for p = (p1,...,pn) € R™.
i=1

Specifically, let f : R® — R™ be a mapping. By definition f is continuous
if the following condition holds for each point p € R"™: given € > 0 there
exists § > 0 such that for z € R",

lz—pl<d = |f(e) - flp)l <e.

But not all mathematical spaces are Euclidean, so this definition is limited
in scope.

Rephrasing continuity in the language of point set topology generalizes
it widely and illuminates its properties. The absolute value allows the def-
inition of open set. For p € R™ and r > 0, the ball of radius r about p
is

B(p,r)={z € R": |z —p| <r}.
A set O C R" is open if it is a union of open balls, or equivalently, for each
point p € O some ball B(p,r) lies in O. (Exercise 1.1.1 asks for a proof of
the equivalence.) These open sets are called the usual topology on R"
and have the following properties (Exercise 1.1.2):

1.  and R™ are open,

2. any union of open sets is open,

3. any finite intersection of open sets is open.

The key idea is that continuity can be expressed in terms of open sets. Again
take f : R™ — R"™. The inverse image of any set 7" C R™ is the set of
points in R™ that map to it under f,

fUT) ={z € R": f(x) € T}.
Exercise 1.1.3 now shows that f is continuous exactly when
for any open set T in R™, the inverse image f~!(T) is open in R™.

This is the topological definition of continuity.

To discuss continuous mappings from the sphere S? C R3, consider more
generally a subset A of R™ and a mapping f : A — R™. The - definition
for f to be continuous on A is exactly as given above except that the test
points p and z must now lie in A. Switching to topological language, the
open sets of A are specified as all sets

O,=0nNnA
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where O C R" is open. This is the induced topology on A. In particular,
the open subsets of the sphere S? are unions of the curved disks obtained by
intersecting it with balls in R3. The three properties of open sets transfer
immediately to A from R"™ via intersection (Exercise 1.1.4). The topological
definition of continuity equivalent to e-§ also remains essentially unchanged
(Exercise 1.1.5): f is continuous exactly when

for any open set 7 in R™, the inverse image f~'(T') is open in A.

In general, topological terminology generalizes Euclidean space and is the
appropriate language for discussing continuous mappings. A topological
space is a set X and a topology 7, meaning a collection of subsets of X
(the open sets), such that

1. ¢ and X are open,
2. any union of open sets is open,
3. any finite intersection of open sets is open.

Strictly speaking, the space should be denoted by the pair (X, 7), but when
T is clearly established we simply call the space X. A mapping of topological
spaces f : X — Y is continuous if

for any open set T in Y, the inverse image f~'(T') is open in X.

A mapping of topological spaces f : X — Y is a homeomorphism if it is
a bijection and both f and f~! are continuous.

Exercise 1.1.4 generalizes directly to show that any subset W of X is a
topological space in its own right with the induced topology it inherits from
X via intersection, Ty = {ONW : O C X is open}.

A subset of R" is closed if its complement is open and bounded if it
sits in some ball. Subsets of R™ that are both closed and bounded have the
following topological characterization (Exercise 1.1.6):

(1.1.1) HEINE-BOREL THEOREM. Let K be a subset of R". Then K is
closed and bounded if and only if K satisfies the following condition as a
topological space with the induced topology from R"™:

(HB) Any collection of open subsets of K whose union is K (an
open cover of K ) contains a subcollection consisting of finitely
many subsets whose union is still K (a finite subcover).

A topological space K satistying (HB) is called compact. Compact
sets in R™ are easy to recognize by their nontopological characterization; in
particular the sphere S is clearly compact. The topological characterization
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(HB) of compactness is intrinsic, meaning it refers to the topological space
K but to no external objects. Compactness is invariant under continuity:

(1.1.2) THE CONTINUOUS IMAGE OF A COMPACT SPACE IS COMPACT. Let
K and Y be topological spaces with K compact, and let f : K — Y be
continuous. Then f(K)={f(p):p € K} is compact.

Proving this (Exercise 1.1.9) is straightforward once one establishes some
basic facts about the behavior of images and inverse images of sets under
mappings. These are the subject of Exercise 1.1.8.

The definition of continuity can be turned around to transfer topological
structure from one set to another. Let X be a topological space, Y a set,
and f : X — Y a surjection. Define open sets in Y by the rule

T CY is open = fYT) C X is open.

This quotient topology makes Y a topological space, and if f is bijective
the quotient topology on Y makes f a homeomorphism (Exercise 1.1.11).
In particular, we will use this device in Sections 1.3 and 1.4 to transfer the
topology of the sphere S? to corresponding bijective images.

Exercises

1.1.1. Show that a set O C R" is a union of open balls if and only if for each
point p € O some ball B(p,r) lies in O. (This requires the triangle
inequality: |z — z| < |z —y| + |y — 2| for all z,y,z € R".)

1.1.2. Prove the open set properties for R™.

1.1.3. Prove that topological continuity is equivalent to ¢-d continuity for
mappings between Euclidean spaces.

1.1.4. Prove the open set properties for any subset A C R".

1.1.5. Prove that topological continuity is equivalent to e-§ continuity for
mappings f : A — R™ where A C R" receives the induced topology
from R".

1.1.6. Prove the Heine-Borel theorem. (This is fairly substantial. You
might want to review from a real analysis book.)

1.1.7. Prove the Bolzano—Weierstrass theorem: A subset K of R" is com-
pact if and only if every sequence in K has a subsequence that con-
verges in K.

1.1.8. Let f: X — Y be a mapping between sets, let S and S; (as 7 runs
through some index set) be subsets of X, and let 7' and T; be subsets
of Y. Each of the following pairs is plausibly related:
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(US;) and UFf(S;),

(NS;) and Nf(Ss),

S¢) and (f(S))¢ (S€ is the complement of S),

'(f(S)) and S,

“HUT;) and UfH(T5),

~H(NT;) and NfH(T),
~H(T°) and (f~1(T))",

8. f(f~YT)) and T.

Find the relation in each case, making assumptions about f as needed.

NS ot W
s

In each case, what assumption about f gives equality?

1.1.9. Prove that the continuous image of a compact space is compact.
1.1.10. Prove the Extreme Value Theorem: A continuous function from a
compact space K to R takes maximum and minimum values.
1.1.11. Let X be a topological space, Y a set, and f : X — Y a surjection.

Define open sets in Y by the rule

T CY is open = fY(T) C X is open.

Show that this quotient topology makes Y a topological space. If f
is bijective, show that the quotient topology on Y makes f a homeo-
morphism.

2. Stereographic projection

The equatorial plane {p € R3 : p3 = 0} in Euclidean space R? naturally
identifies with R? via (p1,p2,0) <> (p1,p2). Let n = (0,0, 1) denote the north
pole on the sphere $? = {p € R?: |p| = 1}. Stereographic projection

7:8%\ {n} — R?

is defined by intersecting the line through the north pole n and the in-
put point p with the plane, i.e., 7(p) = £(n,p) N R2, where 4(n,p) =
{(1 —t)n+tp:t e R} is the line through n and p. (See Figure 1.2.1.)

The point (1 —¢)n + ¢p has last coordinate 1 — ¢+ ¢p3. This equals 0 for
t = 1/(1 —p3), when the other coordinates are p;/(1 —p3) for j = 1,2. Thus

(1.2.) wppep) = (12 2.

p3 1—p3

For the inverse map, take ¢ = (¢1, g2, 0) in the plane. Any point p = (1—¢)n+
tq in £(n, q) satisfies |p|? = (1 —1t)%2 +12|g|*>. This equals 1 for t = 2/(|q|*> +1)
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Figure 1.2.1. Stereographic projection

(ignoring ¢t = 0, which gives the north pole), showing that

a1 a0) = 2, 2 qgit+di-1
’ G+ E+@E+1U @ +g+1

Both S? and R? (viewed as the equatorial plane) inherit topologies from
their ambient space R3. The induced topology on R? is the usual one by
Exercise 1.2.1. Stereographic projection is the restriction of a componentwise
rational map from {p : p3 # 1} to R?, so it is continuous by Exercise 1.2.2.

! is also continuous by Exercise 1.2.3,

The componentwise rational map 7~
so 7 is a homeomorphism.

Stereographic projection is conformal, meaning it preserves the angles
between curves. To see this, take a point p € S?\ {n}, let T}, denote the
tangent plane to S? at p, and let T}, denote the tangent plane to S? at n.
Working first in the Onp-plane (see Figure 1.2.2), we have equal angles o and
right angles between the radii and the tangent planes, hence equal angles 3,
hence equal angles 3, and hence equal lengths b.

Now let v be a smooth curve on $? through p, let ¢ be its tangent at

n Tn

3

0 b B

Figure 1.2.2. Side view of stereographic projection
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Figure 1.2.3. Stereographic projection is conformal

p, and let £ be the intersection of the plane containing n and t with R2.
(See Figure 1.2.3.) In fact { is the tangent to 7 oy at m(p). To see this,
recall that 7 is the restriction of a rational, hence differentiable, map (also
called 7) from an R3-neighborhood of p to R? that takes ¢ to # near p. (A
neighborhood of a point is an open set containing the point.) Since v and
t are curves in R3 with the same tangent ¢ at p, moy and wot = { are curves
in R? with the same tangent at m(p). Since # is its own tangent at 7(p), it
is also the tangent to 7 oy there.

The lengths b are equal, hence so are the angles 8, by right triangles.
Repeating this analysis for a second curve 4 through p completes the proof.

For a continuation of this argument, showing that stereographic projec-
tion takes circles to circles, see Hilbert and Cohn-Vossen [Hi-Co).

Exercises

1.2.1. For 1 < k < n, R* embeds canonically in R™ under the map z —
(,0,_%). Show that the embedded copy of R¥ inherits its usual
topology as a subspace of R".

1.2.2. Let X and Y be topological spaces and W a subspace of X. Show
that if f : X — Y is continuous then the restriction fyy : W — Y
is also continuous.

1.2.3. Let X and Y be topological spaces and W a subspace of Y. Show
that f: X — W is continuous as a mapping to W if and only if it
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is continuous as a mapping to Y.

1.2.4. Tlustrate the proof that stereographic projection is conformal when
p lies in the lower hemisphere.

1.2.5. The proof that stereographic projection is conformal tacitly assumed
that ¢ and ¢ meet. Must they? What happens to the proof if they
don’t?

1.2.6. Show that stereographic projection takes circles to circles.

1.2.7. Generalize stereographic projection to a homeomorphism

7 S™\ {n} — R",

where now n = (0,...,0,1) € R*t1,

3. The Riemann sphere and meromorphic functions

Identify the complex number field C with the plane R? via z+iy < (z,v)
(thus C is now a topological space) and let C denote the set C U 00, where
o0 is a formal point not in C. This is the Riemann sphere.

Many complex analysis books develop meromorphic functions on C as
follows: If D\{p} is a punctured disk about a point p € C, and f : D\{p} —
C is analytic, then f has a Laurent expansion

o

flz)= Z apn(z —p)" for all z € D\ {p}.

n=—oo

When the Laurent series is truncated from the left, i.e., ap, = 0 for all n
less than some N, the function f is called meromorphic at p. If the function
g9(z) = f(1/z) is meromorphic at 0 then f is called meromorphic at oo.
(Thus the only entire functions meromorphic at oo are polynomials—this is
Exercise 1.3.1.) A function that is meromorphic at each point p € C and at
o0 is called meromorphic on C. Note that as things stand, a meromorphic
function on C need not even be defined on all of @, though we can use the
Laurent expansion to patch in values—possibly including co—where it isn’t.
The value oo interacts algebraically with C by rules such as oo 4+ z = oo for
all z € C, 00~z = o0 for all z € C\ {0}, etc.

This all feels a bit ad hoc. Giving the Riemann sphere a topology natu-
rally via stereographic projection improves matters by allowing an intrinsic
definition of meromorphy that generalizes to other situations. So, extend
stereographic projection to a bijection 7 : §2 — C by defining, according
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to (1.2.1) and the identification of R? with C,

p1+ipy . 9
——— ifpe s n},
) =4 17 p \ {n}

00 if p=n.
Give C the quotient topology by defining
T c C is open = 7~ (T) C $% is open.

The Riemann sphere is now a topological space and extended stereographic
projection is innately a homeomorphism.

Being homeomorphic to S?, C is topologically indistinguishable from a
sphere (justifying its name) and compact. Also, C contains C, with its usual
topology, as a subspace. The neighborhoods of oo in C are a\K where K is
a compact subset of C, since the neighborhoods of n in $? are $?\ K where
K is a compact subset of $? \ {n}. The inversion map z + 1/z on C\ {0}
corresponds to 180-degree rotation 7 of S? about the zi-axis (showing this
is Exercise 1.3.2), so this map extends continuously to Chbyl /0 = oo and
1/oo = 0 since the rotation of S? exchanges the poles n = 7~!(c0) and
s = 77 1(0).

The Riemann sphere C looks like C in the small; it is a manifold or
Riemann surface. To quantify this idea, define for each point p € C the
local coordinate function

c,,:@\{oo}—)C by cp(z) =2z —p ifpeC,
o : C\ {0} — C Dbycx(z) =1/z ifp=oc.

Each ¢, is a homeomorphism that takes p to 0. These coordinates let us
use the convenient language of C to phrase local notions about C. For
example, extended stereographic projection m is also conformal at its new
domain point n, provided we interpret the statement to apply to cooom. This
follows from the relation ¢, o m = 7 o 1, where r is the 180-degree rotation
of S% mentioned above (which is certainly conformal), since 7 is conformal
at the south pole r(n). (See Exercise 1.3.2.)

Using this new language, define a function f : C —» C to be meromor-
phic if f = 0 (the zero function), or f is locally a nonzero analytic function
times an integer power of the local variable. The second case means that for
each p € C there exist a neighborhood U, an integer N, and an analytic
function ¢, : ¢,(Up) — C with ¢,(0) # 0 such that

(1.3.1) F(2) = cp(2)N dp(cp(2)) for all z € U,,.
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Here 0V ¢,,(0) is defined as oo if N < 0. Since analytic functions are repre-
sented by power series, this definition recovers that every nonzero meromor-
phic f has a suitable Laurent expansion in ¢,(z) for z near each p, mean-
ing there exist a neighborhood U, an integer N, and complex coefficients
{ap,N,ap N+1,0p,N+2,---} With ap v # 0 such that

o
flz)= Z ap ncp(2)" for all z € U,,.
n=N

Thus the convention is that Y72 y ap ,0" = 0o if N < 0. The integer N is
called the order of f at p, written ord,(f). The zeros of f are at the points
p where ord,(f) > 0, and the poles (points mapping to co) are at p where
ord,(f) < 0. Since the zeros and poles are isolated (this follows from the
definition of nonzero meromorphic function) and C is compact, there are
finitely many of each, by the Bolzano—Weierstrass theorem (Exercise 1.1.7).

The meromorphic functions on C form a field K (6) containing a copy
of C as a subfield. Showing this is Exercise 1.3.3.

Every meromorphic function f is analytic in local coordinates, mean-
ing that each p € C has a neighborhood U, such that cypy o f o ¢y 1
¢p(Up) — C is analytic at 0. This is clear if f = 0. Otherwise, if f is
meromorphic at p then by (1.3.1), f o c;l = id" - ¢, on ¢,(U,) (id is the
identity function) for suitable N € Z, ¢, and U,. Since f(p) = oo exactly
when N < 0, it follows that on ¢,(U,),

id™ - ¢, — f(p) if N >0,

crpmofoc,' =
1w r {1/(¢dN-¢p) it N < 0.

This is analytic at 0 in either case, showing that f is locally analytic at p as
claimed.

The converse is not quite true. All but one function f : cC — C
that are analytic in local coordinates are meromorphic. Showing this is
Exercise 1.3.4. The exceptional function, f(p) = oo for all p € 6, prevents
the locally analytic functions from forming a field.

Since analytic functions are continuous and local coordinate maps are
homeomorphisms, it follows that every meromorphic function, being analytic
in local coordinates, is continuous.

A function f : C — C is called conformal if it is conformal in local
coordinates, meaning for each p € C there exists a neighborhood U, such
that csp) o f oyt : ¢(Up) — C is conformal at 0. Recall from complex
analysis that a function is conformal at a point if and only if it is analytic
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with nonzero derivative there. Thus by the preceding discussion, any con-
formal function f on C is meromorphic. Since stereographic projection 7
is conformal, any function f on C corresponding under 7 to a conformal
motion of the sphere S? is meromorphic. In particular, any function on C
induced by a rotation of S? is meromorphic. We will discuss these rotations
in Chapter 2.

Any rational expression f(Z) = g(Z)/h(Z) (where g and h are poly-
nomials with complex coefficients and no common factor, A is not the zero
polynomial, and the upper-case Z is an algebraic symbol) defines a mero-
morphic function, also called f, on C. To specify f when g is not identically
zero, note that for any p € C, g takes the form g(Z) = (Z—p)¢§(Z —p) where
d € N and g is a polynomial satisfying g(0) # 0 (this is Exercise 1.3.5), and
similarly h(Z) = (Z — p)°*h(Z — p). So setting

f(2) = 9(2)/h(z) = (z = p)*~*G(z = p) /(2 — p)
= ¢p(2)Chp(cp(z)) for z near p,
where ¢, = g/ h, defines a meromorphic function about p. To define f about

oo, write g(Z) = (1/Z)%G(1/Z) where d € —N and again § is a polynomial
satisfying (0) # 0 (Exercise 1.3.5), and similarly for h, and again setting

F(2) = 9(2)/h(2) = coo(2)"*poc(cao(2))  for 2 near oo

does the trick. This is essentially the procedure outlined at the beginning of
the section. The actual formula for evaluating f is

(9(p)/h(p) ifp € C and h(p) #0,
00 if p € C and h(p) =0,
flp) =10 if p = oo and deg(g) < deg(h),
00 if p = 0o and deg(g) > deg(h),
\ad/bd if p = 00 and deg(g) = deg(h) = d,

where a4 and by are the leading coefficients of g and h; but in practice one
writes less pedantically f(p) = g(p)/h(p) with all the cases being tacit.

Let C(Z) denote the set of formal rational expressions f(Z) = g(Z)/h(Z)
as above. This set forms a field.

(1.3.2) THEOREM. The meromorphic functions on C are precisely the ra-

~

tional functions. That is, K(C) = C(Z).

Note that this theorem identifies a field of functions with a field of formal

expressions. From now on we will move freely between these two objects,
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viewing meromorphic functions as mappings for purposes of analysis and as
rational expressions for purposes of algebra.

PROOF. Let f be a given meromorphic function on C and define a poly-
nomial h(Z) = [1,(Z — b)~°"%{), where the product is over poles of f in
C. Consider the meromorphic function g(p) = f(p)h(p). This has no poles
in C, hence its restriction to C is entire and has a power series representa-
tion, g(z) = Yo ganz™ for all z € C. Thus g(z) = Y 72 anCoc(z)”™ for all
z € C. Since g is meromorphic at oo, the sum must contain only finitely
many terms. So g is a polynomial, and f = g/h is rational. O

(1.3.3) COROLLARY. For every nonzero meromorphic function f on 6,

Z ord,(f) =0.

peC

PRrOOF. Let f(p) = k[[,(p — a)®/I1;(p — b), where a runs through the
zeros of f in C and b runs through the poles of f in C. (Note how the
Fundamental Theorem of Algebra is being used here.) Then f has order e,
at each a, —ep at each b, and zero at all other p € C, so }°,ccordy(f) =
Y a€a — 2pep As for orde(f), note that

(Ea e“) 1—a
o) = e B 20D ) (B ) g )
p\ &) T1,(1 = b/p)
with ¢oo(0) = 1 (Exercise 1.3.7 asks for the function ¢o). This formula
shows that orde(f) = >y es — Y, €a, canceling the other terms. O

Exercises

1.3.1. Use the first definition of meromorphic in the section to show that
the only entire functions meromorphic at oo are polynomials.

1.3.2. Let 7 : S? — S? be the 180-degree rotation given by r(z, zo, z3) =
(z1, -2, —x3). For any p € S?\{n,s} (s is the south pole), show that
1/m(p) = w(r(p)). In other words, the following diagram commutes,
meaning that going either way around it produces the same effect.

§2\ {n,s} —— 52\ {n,s}

~| K
1/z
C\{0} —— C\{0}
What functions on C \ {0} correspond to the other two 180-degree
rotations of $2 about coordinate axes?
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1.3.3. Prove that the meromorphic functions on C form a field containing
a copy of C as a subfield. (If you want to cite Theorem 1.3.2, first
prove that the product of meromorphic functions is meromorphic, a
fact used in its proof.)

1.3.4. Prove that all but one function f : C — C that are analytic in local
coordinates are meromorphic, the exception being f(p) = oo for all
peC.

1.3.5. Let g(Z) be a nonzero polynomial with complex coefficients. Show
that for any p € C, g(Z) = (Z — p)¢§(Z — p) where d € N and § is
a polynomial satisfying §(0) # 0. Show that g(Z) = (1/2)%3(1/Z)
where d € —N and again ¢ is a polynomial satisfying g(0) # 0.

1.3.6. Prove that a meromorphic function f on C with no poles is constant.

1.3.7. What is the function ¢ in the proof of Corollary 1.3.37 Why is ¢
analytic about 07

1.3.8. Prove that a nonconstant meromorphic function f on C takes each
value in C the same number of times, counting multiplicity. (Why
does it suffice to show that f takes the values 0 and oo the same
number of times?) What is this number in terms of g, h where f =

g/h?

4. The complex projective line and algebraic mappings

The complex projective line P!(C) is topologically equivalent to the
Riemann sphere and algebraically convenient. To define it, put an equiv-
alence relation on the set C? by identifying all nonzero scalar multiples of
each vector:

(21,22) ~ (w1, we) if (21,22) = c- (w1, ws) for some c € C*.
Then P!(C) is the set of equivalence classes in C?\ {0}, the class of (21, 22)
being denoted [z : z2]. Specifically, P}(C) = {[z:1]:2€ C} U]l : 0], so
as a set P!(C) contains a copy of C and one more point. The natural map
P : C?\ {0} — P!(C) given by P(z1,20) = [21 : 23] gives P}(C) the
quotient topology,

T c P!(C) is open = P(T) c C*\ {0} is open.

(Of course, C? gets its topology from R*.) In particular, if S is a subset of
C then [S : 1] is open if and only if P=1([S : 1]) is open in C? \ {0}, and
this is equivalent to S being open in C (Exercise 1.4.1). Thus the topology
of P!(C) extends that of C, and the coordinate map (akin to ¢y on the
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Riemann sphere)
o1 P (C)\{[1:0]} —C where cjg.qj[z : 1] = 2

is a homeomorphism. The construction of P!(C) is symmetric in the coordi-
nates 21 and 2z, so also P}(C) = {[1: 2] : z € C}U[0 : 1], and the coordinate
map (akin to ¢)

K P!/(C)\{[0:1]} — C where cjy.[1 : 2] = 2

is a homeomorphism.

The bijection ¢ : C —s PI(C) given by ¢(z) = [z : 1] for z € C,
¢(00) = [1 : 0] is a homeomorphism. To show this, compute that cp.; o
¢ and ¢ 0 p o col are both the identity map on C, which is certainly
homeomorphic. The various coordinate functions are homeomorphic and
C=cCu ¢ C, so the proof is complete by the topological fact shown in
Exercise 1.4.2.

Let C[Z,Z5] denote the ring of polynomials in the unknowns Zi, Z,
over C. (As with the rational functions in the preceding section, the upper-
case unknowns should be thought of as purely algebraic variables, while
lower-case symbols will take honest values.) A polynomial G € C[Z;, Z5] is
homogeneous if all of its terms have the same degree, i.e., for some d € N,
G(Z1,Z5) = Y% ya; Zi Z3™". Equivalently (Exercise 1.4.3), G(CZ1,CZ;) =
C%G(Zy,Z5). Homogeneous polynomials are called forms. The set of all
degree-d forms in Z1, Z, is written Cy4[Z; : Z5] and the set of all forms of
any degree is written C[Z; : Z3]. Since the polynomial 0 is a form of every
degree, each Cy4[Z; : Z5] is an abelian group. Forms will often be denoted by
upper-case characters to distinguish them from polynomials of one variable.

Any pair (G(Z1, Z2), H(Z1,Z3)) of same-degree forms with no common
zeros gives rise to an algebraic mapping

f:PYC) — PYC) by flz1 : z2] = [G(z1,22) : H(z1,22)].

This is well-defined, meaning [G(z1, 22) : H(z1, 22)] indeed depends only on
the equivalence class [z1 : 29| (Exercise 1.4.4). Algebraic mappings with
H not identically zero correspond naturally to rational (i.e., meromorphic)
functions on C by

[G(Z1, 2Z0) - H(Zy,Z5)] — G(Z,1)/H(Z,1) 2 ¢(Z)/n(Z)
and

9(2)|M2) v [239(21 Z2) : Z$1(21 ) Z)| 2 (G20, Zo) : H(Z1, Zo)],
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where d = max{deg(g),deg(h)}. To examine the correspondence, it helps to
introduce homogenization and dehomogenization operators. For any form
G(Z,, Z3), define a polynomial G.(Z) = G(Z,1). For any polynomial g(Z)
define a form g*(Z1, Z2) = deg(g)g(Zl /Z32). The idea is that the dehomoge-
nization operator throws away Zs, for example (Z} +127,73), = Z*+122Z,
while on the other hand the homogenization operator contributes powers
of Zy to even out the total degrees of terms, for example (Z* + 122)* =
Z}+127,Z3. The operations aren’t quite inverse to each other, for instance
(Z2Z2+1221Z3).)* = (Z%2+122)* = Z2+1271Z5 loses the Z3 that divides
all terms of the original form. For all forms G, G and polynomials g, § the
following hold: (GG), = G.G., (99)* = g*§%, (¢%)x = g, and (G,)* = Z, °G
where e is the highest power of Z; dividing G. These are Exercise 1.4.6.

In the language of these operators, the correspondence between algebraic
mappings and rational functions becomes

(1.4.1) (G: H]— G,/H,

and
(1.4.2)

s [g* : zJee@)=deeM px) it deg(g) > deg(h),
g —
[deg(h) deg(g)g* : h*] if deg(h) > deg(g).

These are inverse to one another (Exercise 1.4.7). Indeed, taking func-
tions to forms to functions does nothing as one simply multiplies by powers
of Z, and then removes them; taking forms to functions to forms is a lit-
tle trickier, relying on the fact that Zy can only divide one of G and H.
The correspondence is natural in that it commutes with the homeomor-
phism ¢ : Cc — P!(C) defined earlier, meaning that for any algebraic map
[G : H], the following diagram commutes.

¢ G/ g
(1.4.3) 0| le
pl(c) ¢, pi(y

Proving this (Exercise 1.4.8) necessarily involves inspecting cases, but once
this is done algebraic maps are a more convenient substitute for rational
functions because their defining formula doesn’t require lots of cases to take
oo into account.
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1.4.3.
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Exercises

Let S be a subset of C. Show that S is open in C if and only if
P~Y([S : 1]) is open in C2\{0}. (This exercise is rather technical. For
the “ = 7 direction, suppose S C C is open and let (z,w) € P~ 1([S :
1]). The goal is to find some positive R such that B((z,w),R) C
P~Y([S : 1]). Since z/w lies in S (why is w nonzero?), some ball
B(z/w,r) sits in S. Find an expression in z, w and r that works as
R.)

Let X and Y be topological spaces, and f : X — Y a bijection of
sets. Suppose X = UO; with each O; open in X, each f(O;) open in
Y, and each restriction f; : O; — f(O;) a homeomorphism. Show
that f is a homeomorphism.

Show that any polynomial G € C[Z1, Z3] is homogeneous of degree
d if and only if G(CZ,,CZy) = C4G(Z1, Z3).

Verify that algebraic mappings as described in the text are well-
defined.

Prove Euler’s identity: For G € Cy[Z) : Zo), Y7, Z:D;G = dG,
where D; is the ith partial derivative.

Verify that for all forms G, G and polynomials ¢, § the following
hold: (Gé)* = G*é*a (99)" = g%3", (9")« = g, and (G.)* = Z;°G
where e is the highest power of Z, dividing G.

Show that the correspondences (1.4.1) and (1.4.2) are inverse to one
another.

Show that diagram (1.4.3) commutes.

5. Summary

Each of three homeomorphic copies of the sphere—S? itself, the Riemann

sphere é, and the complex projective line P!(C)—has its advantages: S2 is

best for thinking geometrically, C has the same angles between curves as 52

and is suited for analysis, and the algebraic maps on P!(C) are convenient

for studying functions without worrying about infinity or cases. From now

on we will move freely among the three models of the sphere as convenient.



CHAPTER 2

Finite automorphism groups of the sphere

This chapter shows that the finite groups of meromorphic bijections from
the sphere to itself are classified up to conjugacy by rotation groups. The
conjugacy classes of rotation groups are restricted to only a few types: cyclic,
dihedral, and the rotations of the Platonic solids.

Recommended reading: Chapter 2 of Jones and Singerman [Jo-Si] com-
plements this chapter, containing details and topics not included here. Cox-
eter’s books [Co 1], [Co 2] are lovely sources for pursuing geometry and
symimetry.

1. Automorphisms

An automorphism of the Riemann sphere is a bijective meromor-
phic function on C. The set of such automorphisms is denoted Aut(a).
Since any nonconstant meromorphic function f = g/h takes each value
in C the same number of times counting multiplicity, that number being
max{deg(g),deg(h)} (this was Exercise 1.3.8), Aut(C) consists of the frac-
tional linear transformations

az+b
fz) = cz+d

(the nonzero determinant excludes the constant functions).

with a,b,¢,d € C and ad — bc # 0

The general linear group of 2-by-2 complex matrices with nonzero
determinant,

GLQ(C):{l(Z Z] ca,b,c,d € C, ad—bc;éO},

maps naturally to Aut(a) by m — f,,, where if m = [ “ Z ] then corre-
c

. az+b
spondingly f,(z) = ot d
any m,n € GLa(C), fin = fm © fn, meaning that the image of GLy(C) is a

group. Any automorphism takes the form f,, for some m € GLy(C), so in
17

A calculation (Exercise 2.1.1) shows that for
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~ ~

fact the image of GLy(C) is all of Aut(C), and the map GLy(C) — Aut(C)
is a surjective group homomorphism. Its kernel is C*I = {Al : A € C*},
where I is the identity matrix (this is Exercise 2.1.2), so by the First Iso-
morphism Theorem of group theory (Exercise 2.1.3),

Aut(C) = GLy(C)/C* IZ'PGL,(C).

This is the projective general linear group, meaning (as with the complex
projective line) equivalence classes modulo scalar multiplication. Thus the
elements of PGLy(C) are cosets of matrices,

but one usually denotes them with individual matrix representatives. This
is all perfectly intuitive: a matrix specifies an automorphism, while an au-
tomorphism only specifies a matrix up to scalar multiples since (Aaz +
Ab)/(Aez + Ad) = (az + b)/(cz + d) for all A € C*. The isomorphism
PGLy(C) =5 Aut(C) is handy because multiplying matrices is more con-
venient than composing maps, but when manipulating matrices in lieu of
automorphisms we need to remember to identify complex scalar multiples,
which isn’t always easy to do by quick inspection.

Normalizing the automorphism-representing matrices to have determi-
nant 1 cuts down the difficulty of recognizing when two of them represent
the same map. To do this, introduce the special linear group of 2-by-2
complex matrices with determinant 1,

SL,(C) = {li Z] -a,b,c,d € C, ad—bc:l}.

Let G = GLy(C), H = SLy(C), and K = C*I. Then K <G, G = HK and
HNK = {xI} (Exercise 2.1.4), so by the Second Isomorphism Theorem
(Exercise 2.1.5),

PGLy(C) = HK/K = H/(H N K) = SLy(C)/{= I} 2'PSL,(C).

This last group is, of course, the projective special linear group of 2-by-2
complex matrices. The upshot of all this is that to compose automorphisms,
one may multiply their representing matrices of determinant 1, viewing any

pair m and —m of such matrices as equivalent. From now on we view Aut(C),
PGLy(C) and PSLy(C) as identical, not merely isomorphic, and we freely use
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ele ele/2 0
matrices to denote mappings. For example, 0 1|°= 0 e—ia/2

is the mapping z — e'®z.

Constructing the projective group of matrices PGLo(C) from the linear
group GLo(C) is compatible with constructing projective space P'(C) from
affine space (without the origin) C? \ 0, in the sense that the action of
GL2(C) as linear mappings of C? descends to the natural action of PGLy(C)
on P1(C). In other words, the following diagram commutes (Exercise 2.1.7).

GLy(C) x C2\0 —— C2\0
(2.1.1) PxPl lP
PGLy(C) x P}(C) —— P!(C)

This is just a fancy way of saying that constants pass through linear maps
and are absorbed by projective classes.

Exercises

2.1.1. Show that for any m,n € GLo(C), fmn = fm © fn, and that conse-
quently {fm : m € GLy(C)} forms a group.

2.1.2. Show that the kernel of the homomorphism GLy(C) — Aut(C),
where m — fi,, is C*I = {A\I : A € C*}.

2.1.3. Prove the First Isomorphism Theorem: A group homomorphism o :
G — G with kernel K induces a natural isomorphism & : G/K —>
oG.

2.1.4. Verify that K «G, G = HK and HN K = {+I} when G = GLy(C),
H = SLy(C), and K = C*I. Do all three assertions remain valid if
C is replaced by R throughout? Are PGLy(R) and PSLy(R) isomor-
phic?

2.1.5. Prove the Second Isomorphism Theorem: Let G be a group, H C G a
subgroup, and K <G a normal subgroup. Show that H K is a subgroup
of G, that K <« HK, that (H N K) < H, and that there is a natural
isomorphism H/(HNK) — HK/K.

2.1.6. Recall that the elements g, h of a group G are conjugate if h = p~lgp
for some p € G. Show that m = 11 and n = -1 L a

0 1 0 -1
conjugate as elements of PSLy(C) but not as elements of SLy(C).

re

2.1.7. Verify the commutative diagram (2.1.1) by showing that for suitable
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matrices and vectors, the following diagram of elements commutes.

(2.1.2)

( ch 2 ,(zl,z2)> —— (az1 + bzo, cz1 + dzg)
PxPl lp

[ a b T

( e dl [21 : zz]> — [az1 + bzy : cz1 + dzo]

2. Rotations of the Riemann sphere

A rotation of the sphere S? is a map r = Tp,o described by spinning the
sphere (actually, spinning the ambient space R?) about the line through the
origin and the point p € S?, counterclockwise through angle a looking at p
from outside the sphere. (See Figure 2.2.1.)

<£0°
/
P

Figure 2.2.1. The rotation r, ,

Thus r is the linear map that fixes p and rotates planes orthogonal to p
through angle a. Let g be a unit vector orthogonal to p. Then the matrix
of r is (viewing p and ¢ as column vectors)

1 0 0 .
mr:[p q pxq] 0 cosa —sina [p q qu] .
0 sina cosa

(Exercise 2.2.1 asks for the proof.) The set Rot(S?) of such rotations forms
a group, most naturally viewed as a subgroup of GL3(R). Showing this
requires some linear algebra.

Recall that if m € M3(R), meaning m is a 3-by-3 real matrix, then its
;
for 4,7 = 1,2,3, where the subscripts specify matrix entries. The transpose

transpose m' is obtained by flipping about the diagonal; thus m};, = mj;
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is characterized by the more convenient condition
(mz,y) = (z,mly) for all z,y € R3,

where ( , ) is the usual inner product (z,y) = >_ z;y; (Exercise 2.2.2). The
matrix m is orthogonal if m'‘m = I or equivalently (Exercise 2.2.3) if m
preserves inner products,

(mx, my) = (z,y) for all z,y € R3.

The orthogonal matrices form a group O3(R) C GL3(R), and the special
orthogonal matrices

SO3(R) = {m € O3(R) : detm = 1}

form a subgroup of index 2 (Exercise 2.2.4). With these facts in place it is
not hard to prove (Exercise 2.2.5) that Rot(S?) forms a group, and

(2.2.1) THEOREM. As a subgroup of GL3(R), Rot(S?) = SO3(R).

A rotation of the Riemann sphere Cisa map f: C—C correspond-
ing under stereographic projection to a true rotation r of the sphere S2. In
other words, the following diagram commutes.

T

A

Let Rot(C) denote these rotations. Since Rot(S2) forms a group, Rot(C)

1

forms an isomorphic group under 7 — w o7 o~ +. Since any rotation r

is conformal on S2, the corresponding bijection f is conformal on C and
is therefore an automorphism, so Rot(C) is a subgroup of Aut(C). With
some more linear algebra we can describe Rot(@) explicitly as a subgroup
of PSL2 (C) .

If m € My(C) is a 2-by-2 complex matrix then its adjoint m* = m’

*

(the overbar means complex conjugation, thus my;

= my; for 4,5 = 1,2) is
characterized by the condition

(mz,y) = (z,m*y) for all z,y € C?,

where now ( , ) is the complex inner product (z,y) = > Tjy;. (See Ex-
ercises 2.2.7 through 2.2.9 for proofs of the statements in this paragraph.)
The role of the adjoint in the algebra of complex matrices is analogous to
the role of the conjugate in the algebra of complex numbers. The matrix



22 CHAPTER 2. FINITE AUTOMORPHISM GROUPS OF THE SPHERE

u is unitary if u*u = I, which generalizes the unit complex numbers, or
equivalently
(uz,uy) = (z,y) for all z,y € C%.
The unitary matrices form a group Us(C). The special unitary matrices
SU2(C) = {u € Ug(C) : detu = 1}
form a subgroup. A matrix is special unitary if and only if it takes the form

b
[ % _ ] with |a|? + |b|? = 1. The projective unitary group is
-b a

PU3(C) = U2(C)/(U2(C) N C*I),
and the projective special unitary group is
PSU3(C) = SUL(C)/(SU3(C) N C*I) = SU(C)/{£I}.

As in Section 2.1 with the general and special linear groups, PUy(C) =
PSU,(C), and PSU,(C) is more convenient since its elements are two-
element cosets {+u}.

(2.2.2) THEOREM. As a subgroup of PSLy(C), Rot(C) = PSU,(C).

)
With Theorem 2.2.1 this says that PSUy(C) = SO3(R). See Exer-

~

cise 2.2.10 for an elegant proof, which shows that Rot(C) is a group without
reference to SO3(R). The next result says how to compute explicitly in
PSUj(C) while thinking of Rot(S5?). For any rotation rp o of §2, let fr() a

denote the corresponding rotation of C.

(2.2.3) THEOREM. Let p = (p1,p2,p3) € S? and let o € R. Then

f?f(p),oz = [

PRrOOF. Either by geometry or by a calculation using the commutative di-

a Ca - a
cos3 t+ip3sing —posing +1p;sSins

e e & o &
p2sing +ip; sin § cos § — ip3sin g

agram after Theorem 2.2.1, ry o induces the automorphism f o(2) = ey
- eia/2 0
of C, ie., fooo=

0 oo ] (Exercise 2.2.11).
Next consider the rotation r(g 1) of S? counterclockwise about the
positive zo-axis through angle ¢. We will find the corresponding rotation
fi7¢ of @

A rotation r of S? takes (0,1,0) to n and (0,—1,0) to s; the corre-
sponding rotation f of C takes i to oo and —i to 0, so it has the form flz)=

k(z+1i)/(z—1) for some nonzero constant k. Since (g 1,0y =1 'orggor, the
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corresponding result in Rot(C) is fig = f 10 foop0 f, O f0 fip = foop© f-
Thus for all z € (A},

k- =e y
fz',¢>(z) —1 zZ—1
The k cancels, leaving e™'/2(fi 4(2) +i)(z — i) = €"/2(fi4(2) — i)(z + 1),
[P
and some algebra gives f; 4 = C(_)S (2b S (%
sin 3 Cos 3

Now let the point p € S? have spherical coordinates (1,8, ¢), meaning

cos @ = p1/\/p? + p3, sinb = pa/\/p? + p3, cos ¢ = p3, and sin$ = |/p? + p3.
(See Figure 2.2.2.)

Figure 2.2.2. Spherical coordinates
To carry out 7, , move p to the north pole via rotations about the north
pole and (0, 1,0), rotate about the north pole by «a, and restore p; to wit,
lrpaa = Tnaa ° T(():l’o)ad) °© lrn7a © 71(071,0)’_(1) ° lrnz_e'

The corresponding rotation of C is

ei0/2 0 cos? —sin % ela/2 0
fw(p),a = 0 e—10/2

2
sin % cos g 0 e /2
cos % sing e~10/2 0
— sin% Cos g 0 ei?/2 |-
Multiplying this out and using a little trigonometry gives the result. O
) ) ) d+ic —b+1 )
Any special unitary matrix takes the form + ?c + z'a with
b+ ia d—ic

a,b,c,d € R and a? + b + ¢ + d? = 1, and the conditions a = p; sin(a/2),
b = pasin(a/2), ¢ = p3sin(a/2), d = cos(a/2) determine values of p € S?
and o € R for which the matrix represents fr(,) - (This is Exercise 2.2.13.)
Going from a, b, c,d to p,a and from there to the special orthogonal matrix
representing 7, o gives the isomorphism PSUy(C) — SO3(R).

The spherical rotations Rot(S?) are convenient for geometric intuition,
while PSU3(C) is well suited for computation.
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2.2.5.
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Exercises

Explain why the rotation r = r}, , has matrix m, as given in the text.
Show that the definition of transpose is equivalent to its inner product
characterization. That is, show that indeed (mz,y) = (z, mly) for all
z,y € R3, and conversely if (mz,y) = (z,ny) for all £,y € R3 then
n = m'. (Compute (me;, ;) and (e;, ne;) where e; and e; are standard
basis vectors.) Use the inner product characterization of transpose to
show that (mn)! = n'm! for all m,n € M3(R), that I' = I, and that
(m 1)t = (mt)~! for all m € GL3(R).

Prove the following useful lemma: For m,n € M3(R),

(z,my) = (z,ny) for all z,y e R? <= m=n.

(Hint: subtracting the right side in each equality reduces this to the
case n = 0.) Use the lemma to show that the two characterizations
of orthogonal are equivalent.

The condition m!m = I shows that orthogonal matrices are in-
vertible and |detm| = 1 if m is orthogonal. Use the inner prod-
uct characterization of orthogonal to show that O3(R) contains the
identity, is closed under multiplication and is closed under inver-
sion, so it forms a subgroup of GL3(R). Use the homomorphism
det : O3(R) — {z € R : |z| = 1} to show that SO3(R) is a subgroup
of O3(R) of index 2.

This exercise shows that Rot(S?) is a group isomorphic to SO3(R).
Fill in details as necessary. Given a rotation r = 7, 4, its matrix as
given in the text,

1 0 0 .
m,z[p q qu] 0 cosa —sina [p q qu] ,
0 sina cosa

is special orthogonal. On the other hand, take any special orthogo-
nal matrix m. Since 3 is odd, m has a real eigenvalue A. Any real
eigenvalue \ with eigenvector p satisfies

A(p,p) = (Ap, Ap) = (mp, mp) = (p,p),

i.e., A = £1. Since detm = 1, and the determinant is the product
of the eigenvalues, and any imaginary eigenvalues occur in conjugate
pairs, m in fact has 1 for an eigenvalue with unit eigenvector p. Take
any nonzero vector ¢ perpendicular to p. Some rotation r = r, , takes
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g to mgq and has matrix m, € SO3(R). Thus the matrix
m, Im
lies in SO3(R) and fixes both p and ¢. It is therefore the identity,
showing m = m, is a rotation matrix.
A rigid motion of R? is a mapping R : R® — R? such that

(R(y) — R(z),R(z) — R(z)) = (y —x,z — x) for all z,y,z € R®.

2.2.7.

2.2.8.

2.2.9.

This exercise proves that the rigid motions are precisely the affine
mappings R(z) = Az + b where A € O3(R) and b € R3.

(a) Prove that any such affine mapping is rigid.

(b) Now let R : R® — R? be rigid. Show that R is a bijection.
Let b = R(0) and define S : R® — R? by S(z) = R(z) — b. Thus
S(0) = 0. Apply the definition of rigidity to S with z = 0 to get
(S(y),S(2)) = (y,2) for all y,z € R3. Show that for any z,y,z €
R3, (S(z +v),S(2)) = (S(z) + S(y), S(2)), so S preserves addition.
Similarly, show that S preserves scalar multiplication, so S is linear.
Therefore S(z) = Az for some matrix A € M3R. Finally, (Az, Ay) =
(S(z),S(y)) = (z,y), so A € O3(R).

Repeat Exercises 2.2.2, 2.2.3, and 2.2.4 with transpose and orthogonal
in M3(R) replaced by adjoint and unitary in Ms(C). Note that the
index of SU3(C) in Uy(C) is infinite.

Show that a matrix m € Ms(C) is special unitary if and only if it
b
takes the form m = % _ ] with |a|? + [b]? = 1.
-b a

Show that Ug(C) N C*I = {AI : |A] = 1}. If u € Uy(C), show
that Au € Ug(C) if and only if |A| = 1. Show that Uy(C) = SUs(C) -
(Ug(C)NC*I). Show that Uy(C)NC*I<Uy(C). Show that SU3(C)N
C*I = {£I}. Show that PUy(C) = PSU(C), and the elements of
PSUy(C) are two-element cosets {t+u}.

2.2.10. Here is a proof of Theorem 2.2.2. We show first that any rotation

lies in PSU,(C), second that any element of PSU5(C) is a rotation.
Show that if the antipodal pair p, —p € S?\ {n,s} have stereographic
images z,z* € C, then z* = —1/Z, where the overbar is complex
conjugation.

b
Now let f = [ “ d ] (normalized to determinant 1) be a rotation
c

of C induced by a rotation r of S2. Since r takes antipodal pairs
to antipodal pairs, f must satisfy the corresponding relation f(z*) =
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f(z)* for all z € C\ {0}. Show that this condition is that for some
A e Cr,

d=Xa, a=M, c=-Xb, b=-)c

Use these relations and ad — bc = 1 to show that A = 1 and therefore
f € PSUL(C).
For the converse, let f = l ‘_; 2 ] € PSU,(C). Show that if £(0) =
0 then f(z) = e*®z for some «, so f is a rotation. If f(0) = z # 0 then
some rotation f, € Rot(C) C PSUs(C) takes z to 0,s0 g = f, Lo f €
PSUy(C) fixes 0 and is thus a rotation. Therefore f = f, 0 g is also a
rotation and the proof is complete.

2.2.11. Show that the rotation ry, of S? induces the rotation fuoa(2) =
ez of C.

2.2.12. Carry out the two calculations omitted from the proof of Theo-
rem 2.2.3.

2.2.13. Show that the conditions a = p;sin(a/2), b = pesin(e/2), ¢ =
p3sin(a/2), d = cos(a/2) determine values of p € S? and « € R.

3. Finite automorphism groups and rotation groups

The finite automorphism groups of the sphere, i.e., the finite subgroups
of Aut(a), collectively form too unwieldy a set to classify conveniently. In
general, if a classification problem is too hard, one simplifies it by putting
an equivalence relation on the objects to be classified and then classifying
equivalence classes instead. Recall that two subgroups G; and G2 of a group
G are conjugate if Gy = gG1g ! for some g € G. The next theorem shows
that in the case of finite automorphism groups of the sphere, conjugacy is a
happy choice of equivalence because each conjugacy class of such groups is
represented by a rotation group, meaning a subgroup of Rot(@). Classifying
the finite rotation groups in turn is an essentially geometrical process which

we will carry out in Section 2.6.

(2.3.1) THEOREM. Any finite automorphism group of the sphere is conju-
gate to a rotation group.

~

Recall that Aut(C) is identified with PSLy(C) and that under this identi-
fication Rot(C) = PSUs(C). Thus, in projective matrix terms the theorem is
that any finite subgroup of PSLy(C) is conjugate to a subgroup of PSUy(C).

This assertion reduces easily to a nonprojective counterpart.
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(2.3.2) PROPOSITION. Any finite subgroup G of GLy(C) is conjugate to a
subgroup of Ua(C).

To prove Theorem 2.3.1 from the proposition, take any finite group of
automorphisms I' C PSLy(C). This lifts to a finite group IV C SLy(C) with
twice as many elements as I' (see Exercise 2.3.1), which by the proposition
is conjugate to a subgroup of SUs(C). The matrix p € GLy(C) such that
pI'p~! C SU3(C) may be taken to have determinant 1, so it defines an
element of PSLy(C), also called p, such that pI'p~! C PSUy(C), QED.

Before proving Proposition 2.3.2 we review some inner product theory.
The usual inner product on C2, (z,y) = 3 Tjy;, is linear in the second
argument, skew symmetric, and positive definite, meaning

(z,ay +y') = a{z,y) + (x,y') foralla € Cand z,y,y' € C?,

(y, z) = (z,y) for all z,y € C?,
(x,z) >0 for all z € C?,

with equality if and only if x = 0.

These are called the standard properties of the inner product (Exer-
cise 2.3.2). By referring to these rather than to the coordinate-dependent
definition, proofs in inner product theory apply more broadly to any inner
product satisfying the same three properties. For example, the first two
properties show that the inner product is conjugate linear in the first

argument, meaning
(az + ', y) = a(z,y) + (z’,y) foralla € Cand z,2',y € C°.

(This is Exercise 2.3.3.)

Any inner product [ , ] on C? satisfying the standard properties defines
a matrix m € My(C) with entries m;; = [e;, e;] for 4,5 = 1,2, where ¢;,¢€;
are the ith and jth standard basis vectors. Linearity and conjugate linearity
show that the matrix m characterizes the new inner product in terms of the
usual one, [z,y] = (z, my) = z*my, where z* means to transpose z into a
row vector and conjugate its entries (Exercise 2.3.4). Skew symmetry implies
that m is Hermitian (or self-adjoint), meaning m* = m; positive definite-
ness says that m is positive, meaning z*mz > 0 for all nonzero z € C?
(Exercise 2.3.5). Conversely, given a Hermitian positive matrix m, the inner
product [z,y] = (z,my) satisfies the standard properties (Exercise 2.3.6).
Thus inner products are characterized by Hermitian positive matrices.
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Every Hermitian matrix has real eigenvalues and is diagonalized by a uni-
tary matrix. Indeed, if m is Hermitian with eigenvalue A and corresponding
unit eigenvector x then

A= XNz, z) = (z,\z) = (z,mz) = (z,m*z) = (mz,z) = (\z,7) = Nz, 7)
=\,
so A € R. And if y is a unit vector orthogonal to z, meaning (x,y) = 0, then

(@, my) = (z,m"y) = (mz,y) = (Az,y) = Xz,y) =0,

so also my is orthogonal to z. Since dim(C?) = 2, this says that my = uy

for some p. Thus the matrix u = [z y] € Uy(C) satisfies u™! = u* and

u mu = .
0 n

(Exercise 2.3.7 asks for details and the generalization to the n-by-n case.)
This diagonalization shows that a Hermitian matrix m is positive if and only
if all of its eigenvalues are positive reals, which in turn is equivalent to the
condition m = p? where p is also Hermitian positive (Exercise 2.3.8). Thus
any inner product satisfying the standard properties takes the form

[z,y] = (z,my) = (z,p"py) = (pz,py) for some Hermitian positive p.

Now it is easy to show that any finite subgroup G of GL9(C) is conjugate
to a subgroup of Us(C).

PROOF OF PROPOSITION 2.3.2. Define an inner product [ , ] on C? by av-
eraging the usual one over G,

[z, ] Z VT, YY) for all z,y € C2.

|G |
veEG

This new inner product is G-invariant, meaning [gz, gy] = [z,y] for all g € G

and z,y € C? (Exercise 2.3.9). It satisfies the usual inner product proper-

ties, so [z,y] = (pz,py) (and equivalently, (z,y) = [p~!

Hermitian positive p and all z,y € C2. Therefore, for any g € G,

z,p~ty]) for some

-1 1

z,p" 'yl = [gp~ "z, gp~y] = (pgp~ 'z, pgp~'y) for all z,y € C?

-1

(z,y) =Ip

and so pgp~ " is unitary. O

The proposition generalizes immediately to n-by-n matrices, and proves
that any complex representation of a finite group is similar to a unitary
representation.
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Actually, a stronger result than Theorem 2.3.1 holds. An element -y of
PSLy(C) is called elliptic if some p, € PSLy(C) conjugates it to a rotation,
ie., pyyp;1 = ry for some r, € PSU3(C). Each v € PSLy(C) of finite order
is elliptic, but not all elliptic elements have finite order. Thus finite sub-
groups of PSLy(C) consist of elliptic elements, but a subgroup of PSLy(C)
whose elements are elliptic need not be finite. The stronger result is that
if G is a subgroup of PSLy(C) whose elements are elliptic, then G is con-
jugate to a subgroup of PSUy(C)—that is, a single p conjugates all v € G
to rotations. For a proof, see [Jo-Si] or their reference, Lyndon and Ullman
[Ly-Ul].

Exercises

2.3.1. Let f : @ — G be a surjective group homomorphism. Suppose
H C @G is a subgroup. Define H' = f~'(H) C G'. Show that H' is a
subgroup of G'. If ker f and H are finite, show that |H'| = |ker f||H|.

2.3.2. Show that the usual inner product on C? has the standard properties.

2.3.3. Show that any inner product with the standard properties is conju-
gate linear in the first argument.

2.3.4. Given any inner product [z,y] on C? satisfying the standard proper-
ties, define a matrix m € My(C) by m;; = [e;, ;] for 4,5 = 1,2. Show
that [z,y] = (z, my) = z*my.

2.3.5. Show that the matrix m associated with an inner product [z,y] sat-
isfying the usual properties is Hermitian positive.

2.3.6. Given a Hermitian positive matrix m, show that the inner product
[z,y] = (z,my) satisfies the standard properties.

2.3.7. Supply details as necessary in the proof that a Hermitian matrix m
is diagonalized by a unitary matrix. Generalize to the n-by-n case.
(Show that the subspace of C™ orthogonal to x is preserved under m,
and use induction.)

2.3.8. Show that a Hermitian matrix m is positive if and only if all of
its eigenvalues are positive reals, which in turn is equivalent to the
condition m = p? where p is also Hermitian positive.

2.3.9. Show that the inner product in the proof of Proposition 2.3.2 is G-
invariant.

2.3.10. Show that all elements of PSLy(C) of finite order are elliptic by
inspecting the Jordan forms of their matrix representatives. (Recall
that (p~1Jp)™ = p~1J"p.) When does an elliptic element have finite
order?
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4. Group actions

To continue the classification program, we need to connect the geometry
of the sphere to the algebra of its rotation group. The next salvo of termi-
nology is for analyzing the interplay between a group and a set it permutes.

An action of a group G on a set S is a map

GxS—8,

notated by the juxtaposition (g,s) — gs, such that 1gs = s for all s € S
and (g192)s = g1(ges) for all g1,g0 € G and s € S. The points s1,s9 € S are
congruent modulo G if s = gs; for some g € G. This is an equivalence
relation (Exercise 2.4.1). The orbit of a point s € S under the action is the
set of points congruent to s modulo G, Os = {gs : g € G}. Orbits are equal
or disjoint since congruence modulo G is an equivalence on S (Exercise 2.4.1
again). The action is transitive if all points of S are congruent modulo G,
i.e., there is only one orbit. The length of an orbit is its cardinality |Os|.
The stabilizer of s is stab(s) = {g € G : gs = s}, a subgroup of G. The
Orbit-Stabilizer Theorem says that |G| = |O;s| - |stab(s)|. (G might be
infinite, in which case so is at least one of O, and stab(s).) If S is a subset
of S, a symmetry of S is a group element g € G such that gS = S. The
symmetries of S form a subgroup sym(S' ) of G, called the symmetry group
of S; in particular, sym({s}) = stab(s). (Exercise 2.4.3 asks for proofs of
these statements.)

The kernel of the actionof Gon Sis K = {g € G: gs = s for all s € S},
a normal subgroup of G. If K is trivial, the action is called faithful because
each group element acts differently, meaning no information is lost going
from the group to its action. If S is a finite set of n elements, G/K is
isomorphic to a subgroup of S,,, the group of symmetries on {1,...,n}; so in
particular, if the action is faithful, then G itself is isomorphic to a subgroup
of Sp. (See Exercise 2.4.4.)

In the next set of exercises, the group G acts on the set S.

Exercises

2.4.1. Prove that congruence modulo G is an equivalence relation, and
therefore orbits are equal or disjoint.

2.4.2. Let T be the set of triangles in the complex plane. What subsets of T’
are the orbits under the actions of the following groups? (a) G; =

{[g (1’] ePGLQ(C)},(b)GFHg Zl’] ePGLz(C):Ia|=1}a
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(c) Gs, the group generated by G; and complex conjugation, (d) Gy,
the group generated by G2 and complex conjugation.

2.4.3. For any subset S of S, prove that sym(g) is a subgroup of G, so
in particular stab(s) is a subgroup for each s € S. Prove the Orbit-
Stabilizer Theorem.

2.4.4. Let the action of G on § have kernel K. Show that K is a normal
subgroup of G. Show that if K is trivial then each element of G acts
differently on S. If S is a finite set of n elements, show that G/K is
isomorphic to a subgroup of S, so if the action is faithful, then G
itself is isomorphic to a subgroup of S,,.

2.4.5. Suppose H C G is a subgroup, which inherits an action on S from G,
and O is an H-orbit containing the point s. Show that for any v € G,

YyONO#£D = v € H - stab(s) - H.

2.4.6. Suppose S1 and Ss are subsets of S with symmetry groups G; and G,
subgroups of the symmetry group G of S. Extending the terminology
in the text, the sets S and S are congruent modulo G, written
S1 = 82 (mod G), if So = ¢S for some g € G. Recall that G; and
G5 are conjugate in G, written G; ~ G5 (mod G), if Go = gG1g~*
for some g € G. Show that the geometric condition that S; and
S are congruent implies the algebraic condition that G; and G are
conjugate, i.e., S1 = So (mod G) implies G; ~ G2 (mod G). Does
the converse hold?

2.4.7. For any positive integer n, the group Aut(C) acts on the set of or-
dered m-tuples of distinct points of C by the rule f(p1,...,pn) =
(f(p1),---,f(pn)). For what n is this action transitive? What are the
orbits at the smallest n for which the action is intransitive? (This
is a problem about cross-ratios in disguise, see for example [Jo-Si],
Section 2.5.)

5. The Platonic solids and their rotations

We now work in R3.

At some point one encounters the Platonic solids—tetrahedron, cube,
octahedron, dodecahedron, icosahedron—and hears that these are the only
such. (See Figure 2.5.1.) This section constructs these five solids and shows
that indeed they are exhaustive.

A Platonic solid is a regular convex polyhedron, meaning a compact
intersection of finitely many half-spaces in R3 with congruent regular n-gon
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Figure 2.5.1. The Platonic solids

faces and some fixed number m of edges meeting at each vertex.

This definition is actually a bit naive. If the notion of polyhedron is gen-
eralized to allow nonconvex objects (see [Co 2], p.12), or to higher dimen-
sions, the geometric and combinatorial conditions defining “regular” aren’t
so clear and natural. The right idea is that a polyhedron is regular if it has
lots of symmetries, meaning rigid motions of R3 carrying the polyhedron
back to itself. (See Exercise 2.2.6 for a description of the rigid motions of
R3. In particular, placing a polyhedron with its center of gravity at the ori-
gin makes its symmetries orthogonal.) The symmetry group of a polyhedron,
superficially extrinsic to the figure itself, gives the most natural description
of its geometry. Incorporating these ideas into the definition makes it nat-
ural to study the symmetry groups of the Platonic solids in exhibiting the
solids themselves.

(2.5.1) DEFINITION. A flag of a polyhedron is a sequence (v,e, f) where
v is a vertex, e is an edge containing v, and f is a face containing e. A
Platonic solid is a polyhedron whose symmetry group acts transitively on
its flags, that is, any flag can be taken to any other.

This immediately forces a Platonic solid to have congruent regular n-
gons for faces and some fixed number m of edges meeting at each vertex, as
before (Exercise 2.5.2). The geometrical Exercise 2.5.3 limits the possible
values of (m,n) to (3,3), (3,4), (4,3), (3,5), (5,3). Since three equal angles
fit together in at most one way at a vertex in space, there exists at most one
Platonic solid, up to similarity, for any pair (3,n). The dual of a Platonic
solid, obtained by placing vertices at the face-centers of the original and
connecting the pairs that came from adjacent faces, has the same symmetries
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as the original and its flags correspond bijectively with those of the original
(Exercise 2.5.4), so it is another Platonic solid replacing (m,n) by (n,m).
Thus Platonic solids with n = 3 are also unique. Every pair (m,n) above
contains a 3, so each possible Platonic solid is unique. It remains to construct
them.

The cube, with (m,n) = (3,4), is geometrically evident. Evident cube
rotations are the identity, six rotations of order 4 (about each antipodal face-
center pair), nine rotations of order 2 (about the three antipodal face-center
pairs and the six antipodal mid-edge point pairs), and eight rotations of order
3 (two about each antipodal vertex pair). In fact, these are the only possible
cube rotations. Indeed, any nonidentity cube rotation is about a point p,
which lies in some face, nearest some vertex, as shown in Figure 2.5.2.

Figure 2.5.2. Center of rotation?

If p is a vertex, we have already counted the rotation. Otherwise the
rotation permutes the vertices nearest p, moving them all (only p and its
antipode are fixed), so p has at least two nearest vertices. This forces it to
be a face-center or a mid-edge point, again giving a rotation already listed.

Thus the rotation group of the cube has 24 elements. The group is
structurally a subgroup of Sy by Exercise 2.4.4, because it acts faithfully
on the set of four diagonals connecting antipodal cube vertices, so since
|S4| = 24, the cube rotations are all of S;. The reflection R of R? through
the plane 1 = x5 is also a symmetry of the cube, so in fact the cube has
48 symmetries (see Exercise 2.5.5). Cube symmetries act on the set of cube
flags and any flag has trivial stabilizer, so transitivity of the action now
follows easily by counting that there are 48 flags (Exercise 2.5.6).

The octahedron, with (m,n) = (4,3), comes from dualizing the cube.

For the tetrahedron, with (m,n) = (3,3), connect a set of four non-
neighboring vertices of the cube, as in Figure 2.5.3. Of the cube’s rotations,
the identity, three rotations of order 2 (about antipodal face-centers), and
the eight rotations of order 3 preserve the tetrahedron, so the tetrahedral
rotation group is A4, the unique subgroup of index 2 in S4. One can also
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Figure 2.5.3. Tetrahedron

verify directly that the tetrahedral rotations act as A4 on the cube diago-
nals. The reflection R is also a tetrahedral symmetry, so the full group of
tetrahedral symmetries has order 24, and again transitivity is easy to check
(Exercise 2.5.6).

Constructing the icosahedron, corresponding to (m,n) = (5,3), takes
more work. Let g denote the golden ratio, i.e., the positive root of g = 1—g.
(This g lies between 0 and 1, and is the reciprocal of what some authors call
the golden ratio.) Center rectangles of sides 2, 2g in the three coordinate
planes. Call the configuration G. (See Figure 2.5.4.)

Consider the vertex v = (1, —g,0) in the figure. Its distance from any of

X1

Figure 2.5.4. Golden configuration
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{(0,-1,+g), (g9,0,%1)} (the four unlabeled dots in the figure) satisfies
@ =(g-1)7+g"+1=2(¢"+1-g) = 4¢°,

so d = 2g, which is also the distance from v to (1,g,0). All other vertices
are farther from v. Thus five vertices are nearest to v; call such vertices
neighbors of v. The rotations of G include those of order 2 about each
axis and an order 3 rotation about (1,1,1) (from the cube group), so they
include the tetrahedral group A4. The only rotation of G that stabilizes v is
the identity, so since G has twelve vertices, the Orbit-Stabilizer Theorem says
that its rotations are precisely A4, which acts transitively on the vertices.
It follows that each vertex has five neighbors at distance 2g. Connecting
neighbors gives the icosahedron (Figure 2.5.5), which will be a Platonic solid
once we verify that its symmetries act transitively on its flags.

Figure 2.5.5. Icosahedron

Possible icosahedral rotations are limited to the identity, fifteen rotations
of order 2 (about antipodal mid-edge point pairs), twenty rotations of order
3 (two about each antipodal face-center pair), and twenty-four rotations of
order 5 (four about each antipodal vertex pair). The argument that these
are the only possible rotations is similar to the case of the cube and is
Exercise 2.5.9.

To show that the sixty rotations actually exist, return to the configura-
tion G and the vertex v in Figure 2.5.4. The rotations of G, which form a
tetrahedral group A4 as already shown, are certainly icosahedral rotations.
A cyclic group Cj of rotations about v by multiples of 27 /5 is evident once
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we settle the slightly sticky point that the five neighbors of v are evenly
distributed about a circle normal to the vector v. This holds because the
icosahedral vertices lie on a sphere. Now, since A4 and Cj5 intersect trivially
(their orders are relatively prime, and the order of a group element divides
the order of the group), the set Ay - Cs has sixty elements. So all sixty
icosahedral rotations exist.

Reflecting R3 through any coordinate plane is visibly an icosahedral
symmetry also. Thus the icosahedral group has 120 elements, and now
transitivity on flags follows from counting them (Exercise 2.5.10).

To show that the icosahedral rotation group is abstractly As, first note
that C5 takes G to itself and four congruent golden configurations, each
containing six icosahedral edges and the twelve icosahedral vertices. (See
Figure 2.5.6.) These are the only possible such golden configurations. Call
them gl, ey g5.

Figure 2.5.6. Five golden configurations

The icosahedral symmetries act faithfully on the five-element set {G;}.
To see this, note that each icosahedral edge is a rectangular edge from some
Gi. Up to reindexing, the arrangement about any vertex is shown in Fig-
ure 2.5.7. Inspecting the figure shows that rotating the icosahedron about
a face-center, a mid-edge point, or a vertex permutes the labels 1 through 5
nontrivially, and the permutation is even (Exercise 2.5.11). Thus the sixty
icosahedral rotations are sixty even permutations in S5, which must be As.

For more icosahedral geometry, Exercise 2.5.13 shows that the face-
centers are the vertices of five intertwined tetrahedra. Finally, the dodeca-



5. THE PLATONIC SOLIDS AND THEIR ROTATIONS 37

Figure 2.5.7. Edges of the five configurations

hedron, with (m,n) = (3,5), is the dual of the icosahedron.

2.5.1.

2.5.2.

2.5.3.

Exercises

(a) Give a convex polyhedron with congruent faces that are not reg-
ular.

(b) Give a convex polyhedron with congruent regular n-gons for faces
but not the same number of edges meeting at each vertex.

(c) Give a polyhedron with congruent regular n-gons for faces and m
edges meeting at each vertex that is not a Platonic solid.

Show that a Platonic solid as defined in the text has congruent regular
n-gons for faces and the same number of edges per vertex.

This exercise classifies the possible Platonic solids combinatorially.
(a) Show that the interior angles of a convex plane n-gon, not nec-
essarily regular, sum to (n — 2)w. (Sum the complementary external
angles first.) In particular, the interior angle of a regular plane n-gon
is (1 —2/n)m.

(b) Illustrate this proof from Euclid that when three rays make a
solid angle in space, any two of the angles between them exceed the
third. Consider the configuration in Figure 2.5.8. The goal is to show
that o+ 8 > . If @ > 7 there is nothing to show, so take a < +.
Put a point F in the ABC-plane inside Z/BAC so that /BAFE = «
and AE = AD. Adjusting C, we may assume B, E,C are collinear.
By side-angle-side, triangles ABD and ABFE are congruent, showing
BD = BE. Also, BD + DC > BC = BE+ EC = BD + EC, so
DC > EC. Thus triangles ACD and ACE share the side AC, have
equal sides AD and AFE, while DC > EC. This shows that § > v—«
and the proof is complete.

(c) Now suppose m rays meet in convex fashion at a point v in space,
where m > 3. Show that the angles at v sum to less than 27 by
summing the angles «, 8, € over all triangles in Figure 2.5.9.

(d) If a Platonic solid has n-sided faces meeting m per vertex with
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2.5.4.

2.5.5.

2.5.6.

2.5.7.

2.5.8.

2.5.9.

CHAPTER 2. FINITE AUTOMORPHISM GROUPS OF THE SPHERE

i)

Figure 2.5.8. Solid angle

B

2N
Figure 2.5.9. Angles at a vertex

n,m > 3, show that m(1 —2/n)m < 27 and consequently (m —2)(n —
2) < 4. List the possibilities for (m,n).

Show that a Platonic solid and its dual have the same symmetries,
and the flags of the dual correspond bijectively to the flags of the
original.

A rigid motion of R? that fixes the origin may be viewed as a matrix
A € O3(R). The motion is a rotation if in fact A € SO3(R). Let
G be a subgroup of O3(R) and let H = G N SO3(R), a subgroup of
G. Show that [G : H] = 1 or 2 by considering the homomorphism
det : G — {£1}. In particular, a Platonic solid has either as many
or twice as many symmetries as it has rotations.

Show that the symmetries of the cube act transitively on flags. Do
the same for the tetrahedron.

Write an explicit correspondence between the rotations of the cube
and Sy4. Check that the tetrahedral rotations map to Ay.

Show that the icosahedron has fifteen pairs of antipodal mid-edge
points and ten pairs of antipodal face-centers.

Show that the only possible icosahedral rotations are those enumer-
ated in the section.

2.5.10. Show that the icosahedral symmetries act transitively on flags.

2.5.11. Verify by inspecting Figure 2.5.7 that rotating the icosahedron about

a face-center, a mid-edge point, or a vertex permutes the five golden
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configurations nontrivially, and the permutation is even.

2.5.12. A set of six antipodal pairs on a sphere with one common distance
from every point to its five neighbors is an icosahedral configu-
ration. This exercise shows that such a configuration is indeed the
icosahedral vertices. Consider an icosahedral configuration Z on the
unit sphere. After a rotation the north pole n is in Z. Let p be one of
its neighbors. The other four neighbors and p share a latitudinal circle
S1. Show that no point in an icosahedral configuration has antipo-
dal neighbors, and use this to rule out the possibility that S; is the
equator itself. The remaining six antipodal points are the south pole
and five points on the opposite circle S3. Show that no three points
of S; are equidistant from p, and similarly for S5, so p must have two
neighbors on each circle. Argue similarly for the other neighbors of
n to obtain a polyhedron with congruent equilateral triangular faces
and five edges meeting at each vertex. Since Z was completely spec-
ified by a pair of neighbors, any rotation of the sphere taking two
neighbors back to points in Z is in fact a polyhedral symmetry. These
include all rotations by m about mid-edge points, by +27/3 about
face-centers, and by +27/5 and +47/5 about vertices. The previous
exercise shows transitivity on flags.

2.5.13. This exercise shows that the icosahedral face-centers are the ver-
tices of five intertwined tetrahedra (see Figure 2.5.10). Recall from
Exercise 2.4.5 that if the group G acts on the set S, H C G is a

Figure 2.5.10. Five tetrahedra



40 CHAPTER 2. FINITE AUTOMORPHISM GROUPS OF THE SPHERE

subgroup, and O is an H-orbit containing the point s, then for any
v € G, yYONO £ 0 if and only if v € H - stab(s) - H. Working in
the coordinate system of the golden rectangle configuration of Fig-
ure 2.5.4, specialize to G the group of icosahedral rotations, S the set
of icosahedral face-centers, H the subgroup of 180-degree rotations
about the coordinate axes, O the orbit of the face-center s = (1,1,1)
(after scaling). Show that O is the vertices of a tetrahedron. Show
that stab(s) is cyclic of order 3 and H - stab(s) - H is a tetrahedral
group A4. Let y denote rotation about v by 27/5, of order 5. Show
that v ¢ H - stab(s) - H, and therefore the sets O, yO, ..., ¥*O are
disjoint. Thus the twenty icosahedral face-centers form five tetrahe-
dra. (Note: replacing s by the face-center (1,1, —1) gives five different
tetrahedra.)

6. Finite rotation groups of the sphere

We continue to work in R®. Along with some obvious groups, the Pla-
tonic rotations of the preceding section exhaust the possible finite rotation
groups of the sphere.

(2.6.1) THEOREM. Each finite rotation group of the sphere is isomorphic
to one of the following groups:

1. Cyclic groups Cp, = (s : 8" =1) forn > 1,

2. Dihedral groups D, = (s,t : s" = t2 = 1,tst = s~ ') for

n > 2,

3. Platonic rotation groups A4, S4 and As.

Any two finite rotation groups of the same form are conjugate, so these
isomorphism classes are also the conjugacy classes.

PROOF. Let G be a finite rotation group. Take |G| > 1 since the case |G| =1
is clear. The group G acts on the set S2. By Exercise 2.6.1, G is cyclic if and
only if there exists an orbit {p} of length 1, and all cyclic rotation groups
of the same order are conjugate. If the smallest orbit is {p,p} of length 2,
then in fact p = —p and G is dihedral, generated by a rotation about p and
a 180-degree rotation exchanging p and —p, and all such groups of the same
order are also conjugate. This is Exercise 2.6.2.
To address the general case, start from the formula

Gl=1+45 Y (stab(p)| ~ 1) =147 3 <%— )

peS? pES?
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The first sum counts G \ {1¢} since each nonidentity element of G stabilizes
an antipodal pair in S2. Nonzero summands come from points with degen-
erate orbits, meaning points p such that |O,| < |G|. Summing over such
orbits rather than points gives

(2.6.2) G| = 1+% Y (% _ )

0:0|<|q|

so by some algebra, letting np = |G|/|O| = |stab(p)| for any p € O (Exer-
cise 2.6.3),
1 1
(2.6.3) 2 (1 - —> = > (1 - —) :
|G| 0:0/<|G| no
Another flurry of algebra on the condition 2 < np < |G| (which holds for
each degenerate orbit) gives
k 1 1
(2.6.4) < Y (1——)§k<1——),
2 0:0/<|G| no G|

where k£ is the number of degenerate orbits; with (2.6.3) this gives kK = 2 or
k = 3 (Exercise 2.6.4).
All that’s left to do is some arithmetic mopping up. If & = 2, (2.6.3)

2 1 1
becomes — = — + —, forcing n; = ng = |G| which implies two length-1
G 1 1 1
orbits, so G is cyclic. If K = 3, (2.6.3) becomes 1 + — = — + — + —;
|G| ny Mg N3

indexing so that ni > no > ng forces ng = 2 and the following possibilities
for n1, ny and |G| (Exercise 2.6.5).

n1 ny nz |G| |01 |0y |Os

(@ | n 2 2 2n 2 n n
(2.6.5) (b)|3 3 2 12 4 4 6
|4 3 2 24 6 8 12
@[5 3 2 60 12 2 30

In case (a), there is an orbit of order 2 and so G is dihedral. The other three
cases are the rotation groups of the tetrahedron, octahedron, and icosahe-
dron, with Oy the vertices, O the face-centers and O3 the mid-edges. For
example, in case (d), let p be a point from the orbit O; of length 12. Then
since stab(—p) = stab(p), —p also sits in an orbit of length 12, which must
be O;. Thus O; consists of six antipodal pairs. Since stab(p) is cyclic of
order 5, five points of 01 \ {p, —p} are distributed evenly about a circle
S1 equidistant from p, and the other five points are their antipodes on the
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circle S5 the same distance from —p, so p has five or ten neighbors in O;.
The case of ten occurs only when S; = S is the equator, but then each
point ¢ € O1 \ {p, —p} has only two neighbors, contradicting the number of
neighbors of the generic point p. Thus all p have five neighbors, making O,
the vertices of an icosahedron (see Exercise 2.5.12) and the elements of G
icosahedral rotations. Since |G| = 60, G is the full group As. Since all unit
icosahedral configurations are congruent under rotation, all G of this form
are conjugate by Exercise 2.4.6.

Cases (b) and (c) are similar. O

Since the cube and dodecahedron are the duals of the octahedron and
icosahedron, the three Platonic groups in the theorem are exhaustive. No
further reference will be made to the cube and dodecahedron.

Exercises

2.6.1. (a) Let G be a finite rotation group of S2. Show that if G is cyclic

then S? contains an orbit of length 1. Conversely, show that if S?
contains an orbit {p} of length 1, i.e., a point fixed by G, then G is
a cyclic group of rotations about p. (Every nonidentity ¢ € G takes
the form r, , with a € (0,27). Take the rotation s of minimal o and
show it generates all of G.)
(b) Suppose that a cyclic group G as in part (a) has order n. Show
that G is the rotation group of the set S containing p and n points
distributed evenly about the equator between p and —p. Now use
Exercise 2.4.6 to show that any two cyclic groups of the same order
are conjugate.

2.6.2. (a) Let G be a finite rotation group of S? and suppose the smallest
orbit is {p,p} of length 2. Show that G is dihedral. (Let H = stab(p).
Then |H| = |G|/2 and H is cyclic, generated by some s. If |[H| =1
then G is cyclic and S? has a length-1 orbit, contradiction. So |H| > 1
and the only other point H stabilizes is —p, showing p = —p. Any
t € G\ H exchanges p and —p, so it is a 180-degree rotation about
some point g on the equator between p and —p. Certainly s and ¢
generate G. The product stst fixes p and g, so it is the identity and
G is dihedral.)

(b) As in the previous exercise, show any two dihedral groups of the
same order are conjugate.

2.6.3. Obtain formula (2.6.3) from (2.6.2).
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2.6.4. Explain the condition 2 < np < |G|, show how it implies (2.6.4), and
show how (2.6.4) implies 2 < k < 3.

2.6.5. Justify table (2.6.5).

2.6.6. Discuss cases (b) and (c) from table (2.6.5).

7. Projective representations of the finite rotation groups

For the sake of pending explicit calculations, this section exhibits conju-
gacy class representatives of the finite automorphism groups as subgroups of
PSU,(C). Doing so is a geometric process of putting the appropriate figures
into standard position in R? and then using Theorem 2.2.3 to write down a
few rotation matrices.

For the cyclic group C,, put the two one-point orbits at n and s. Let
Cm = €2™/™ for any positive integer m. The generator is then

C2n
0 G

Each noncyclic group I' is generated by two elements sp and tr. For the

Sn = foo,27r/n = [ ] 12 (p2.

dihedral group D, put the two-point orbit at {n,s} and put a fixed point
of an order-2 element at (1,0,0). Take s, as in the cyclic group and

tD:f1,W:[q Z] Zl—>1
1 0 z
Then D, = (sp,tD).

For the tetrahedral and octahedral groups, place a cube with its vertices
on the sphere at {(+1,+1,+1)/v/3}. Number its diagonals 1 through 4 so
that diagonal 1 passes through (1,1,1)/+/3 and the indices increase coun-
terclockwise about the four upper vertices. Take the tetrahedral vertices at
{(£1,41,41)/V/3 : z1x223 > 0}. To generate the tetrahedral group 'z, set
i 0

ST:fOO,Tl': 0 —i

]:zn—>—z,

which acts as (13)(24) on the cube diagonals; set
1

Z+1
tr = Fra) Ve = 5

-
zZ—1

1+7 =141
1+ 1—1

which acts as (243). Identifying rotations with the permutations they induce,
compute (remembering to compose right to left)

t1st = (234)(13)(24)(243) = (14)(23).
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Figure 2.7.1. Rotated golden configuration

So (st,tr) contains the Klein group V = {id, (12)(34), (13)(24), (14)(23)}
(also known as the four-group) and Cjs, giving twelve elements and hence
all of A4.

To generate the octahedral group I'p, set
1 l 1+i 0

SO:foo,ﬂ'/Qzﬁ 0 l_i]:zl—m'z,

which acts as (1234) on the cube diagonals; take to = t7 from the tetrahedral
group. Since s = sr, the group (so,to) contains the tetrahedral group As.
Since sp acts as an odd permutation, the group is all of Sy.

For the icosahedral group Iy, first rotate the golden rectangle configura-
tion G by 7(,_1,0)arctan ¢ @8 shown in Figure 2.7.1. This puts two vertices af
the poles and the other ten equally spaced along two latitudinal circles, cf.
the proof of Theorem 2.6.1. With the vertices so positioned, the generators
are a one-fifth rotation about the north pole,

C10

0 (o
which acts as (12345) on the five golden configurations; and a 180-degree
rotation about the mid-edge point (—g,0,1)/|(—g,0,1)| (see Figure 2.7.2),

SI:foo,27r/5: [ ] 12— (52,

—1 -1 g g—=z
tI = fﬂ-((_gsoyl)”(_91071)‘)7’”— = 2 —g l g 1 ‘| AN gz + 1’

which acts as (23)(45). These generate the full group because ts acts as
(135), and (s~ 2ts)t(s~'ts?) acts as (24)(35) (if the conjugation seems a little
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X3
(-g,0,1)

X1

Figure 2.7.2. Rotated golden rectangle

mysterious, see Exercise 2.7.7 for its geometric genesis); thus (sy, ;) contains
a Klein four-group and cyclic subgroups of orders 3 and 5, so its order is
divisible by 60 and it is all of As.

The radial projections to S? of the tetrahedron, octahedron and icosa-
hedron conveniently describe the degenerate orbits of the Platonic rotation
groups (recall from the proof of Theorem 2.6.1 that an orbit is called den-
generate if it contains fewer elements than the group): these are the vertices,
mid-edge points and face-centers. The degenerate orbits of the dihedral
group D,, can be described analogously. As above, place the two-point orbit
at {n,s} and an n-point orbit equally spaced about the equator, including
(1,0,0). Connect n and s with great half-circles passing through the n-point
orbit. The resulting digon has 2 vertices, n edges and n lunar faces, and the
degenerate orbits of D,, are its vertices, mid-edge points and face-centers.
Finally, the degenerate orbits of the cyclic group C),, n and s, occur at the
vertex and “face-center” of the degenerate figure n.

Exercises

2.7.1. Verify that s = t2, = id (the identity mapping) and tps,tp = s; '

2.7.2. Use Theorem 2.2.3 to confirm the various s and ¢ transformations in
this section.

2.7.3. Illustrate the spherical rotations that give rise to s, t7 and sp, and
confirm their actions on the four cube diagonals.

2.7.4. In the tetrahedral group, the map it = fn((1,1,1)/\/§),27r/3 1z —
(z+1)/(z — 1) maps the upper half plane H to C\ D, the exterior of
the unit disk, since the upper half plane is precisely the points that
are closer to 7 than to —i. Illustrate what’s going on in terms of how
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T(1,1,1)/v3.2x/3 TOtates S%.
2.7.5. Choose elements of A4 other than (13)(24) and (243), e.g., (123), and

find the corresponding elements of I'r in two ways: (1) by geometric
inspection of how to rotate the tetrahedron, and (2) by multiplying
powers of (13)(24) and (243) and then carrying out the corresponding
multiplications of s and tr.

2.7.6. Same as the preceding exercise but with S4 and ['p.

2.7.7. Figure 2.7.3 shows the stereographic projections of the icosahedral
vertices as repositioned in this section, cf. the cover of the book.
The generators sy, t; for I'; are respectively a one-fifth counterclock-
wise revolution about the center-point, and a (non-Euclidean) half-
revolution about the “1.” Complete the labelling of the edges of the
five golden configurations. Describe the geometric effect of sy and #r
on the central pentagon and its edges. Confirm the actions of sy and ¢;
on the five configurations. Explain geometrically why the conjugation
(s72ts)t(s'ts?) acts as (24)(35).

v
N

Figure 2.7.3. Projected icosahedron

2.7.8. List the (extended) complex values of the icosahedral vertices in the
previous problem. They are {oco, s7t700,0, s7t70 : 0 < j < 4}.
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8. Summary

The automorphisms of the sphere are fractional linear transformations,
best viewed as projective special matrix classes. In particular, Theorem 2.2.3
describes rotations in these terms. Any finite automorphism group of the
sphere is conjugate to a rotation group, and geometry shows that the rotation
group classes are one copy each of C,, D,, A4, Si, and As. These have
convenient representations as projective matrix groups.
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CHAPTER 3

Invariant functions

The conjugacy classes of finite automorphism groups now have normalized
rotation group representatives, each preserving an associated geometric fig-
ure. By analogy, this chapter associates an algebraic object to each group.
The idea is that like a geometric figure, a function f on C also can remain
invariant under a group I' of automorphisms. In symbols, the function f is

T-invariant if
foy=f forall y €T

This just means that the value of f at a point p depends only on the point’s
orbit O, under I'. The set of I'-invariant rational functions, denoted C(Z)T,
forms a subfield of C(Z).

For each rotation group I', this chapter constructs a normalized function
fr that generates the I'-invariant rational functions, meaning that every
I'-invariant rational function is a rational expression in fr. In symbols,

C(2)" = C(fr).

The generator fr takes distinct values on distinct orbits, thus identifying the
set of orbits with the Riemann sphere.

Since rational functions correspond naturally to pairs of forms, which are
convenient to work with, much of the computation is done with forms. The
first three sections of the chapter are general, then the calculation becomes
specific to each group.

Recommended reading: This material is drawn closely from Chapter 1.2
of Klein [KI]. See also Dickson [Di]. Cox, Little, and O’Shea [Co-Li-O’S]

includes lots of nice material on invariants.

1. Invariant forms

Let I" be any finite rotation group of the sphere.
49
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(3.1.1) DEFINITION. A meromorphic function f : C — C is D-invariant
if
fovy=f forallyeT.

As explained above, T'-invariance means that f is really a function of
I-orbits. To verify this definition it suffices to check the condition foy = f
for a set of generators v of I' (Exercise 3.1.1). For example, if C), is the
C2n 0

1 ] : z = (pz then the function
0 CZn

cyclic group generated by s, = [
f(z) = 2™ is Cp-invariant because

(f 0 5n)(2) = [(¢n2) = (¢n2)" = 2" = f(2)

and checking invariance under the generator s, is sufficient.

Recall that a meromorphic function f : Cc —C may be viewed as an
algebraic mapping f[Z; : Zs] = [G(Z1, Z2) : H(Z1,Z5)] : P1(C) — P(C),
where G and H are same-degree forms (homogeneous polynomials) with no
common zeros. For example, the algebraic representation of f(z) = 2™ is
flZ1: Zo) = [Z] : ZF]. The next task is to translate Definition 3.1.1 into a
condition on the component forms G and H of f.

The group I' C PSLy(C), viewed as degree 1 algebraic mappings of
P(0),

b
Y= (cl d] : [Zl : ZQ] — [aZl + b7y : cZy +dZ2],
lifts to a group I’ C SLy(C), viewed naturally as linear mappings of C?,
N = Z Z (21, Zo) > (aZ1 + bZs, cZy + dZs).

Each v € T has two lifts +' € I"". For example, the generator s, of C,, with
algebraic representation s,[Z; : Zo] = [CanZ1 : (o Zo), lifts to the mappings
+5! (Z1, Z2) = £(CanZh, G,y Zo)- The calculations

sh,(C*(Z1, Z2)) = C*(ConZ1, (o Zo),
—8L,(C*(Z1, Z2)) = C*(ConZh, 5y Zo)

show that the actions of the lifts s/, on C?\ {0} descend to P!(C), where
they agree with the original s,,. The same assertion holds in general: both
lifts 7' of any v € " act on P!(C) as v does. (Exercise 3.1.2 asks you
to confirm this by recalling the commutative diagrams from Section 2.1.)
As remarked in Section 2.1, this is just a finicky way of saying that con-
stant multiples pass through linear functions and are absorbed by projective
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classes, so we may be casual about when we discard them. The point is that
(Exercise 3.1.3) for all algebraic mappings f = [G : H] and all v € T, the
composition f oy expressed in components is

foy=[Goy :Hoy]  for either lift 7' of 4.

For example, with f = [Z7 : Z}] and s, = [(onZ1 : (5, Z2] as above, we
already know that

(f 0 8a)[Z1 2 Zo] = [(C2nZ1)" : (G Z)") = [~ 2T : —Z5) = [l 21 : o).

But note that componentwise, f o s, agrees with f only up to the factor —1.
More generally (Exercise 3.1.3 continued),

(3.1.2) PROPOSITION. The algebraic mapping f = [G : H] : P}(C) —
P!(C) is T-invariant if and only if for eachy' € T there exists some nonzero
complex number x (') such that

Goy' =x(v)G and Hov =x(y)H.

In other words, f is ['-invariant if and only if G and H both transform by
some common factor x under I".

Thus to study I'-invariant algebraic mappings f we may study forms
and their transformation under I'. We are interested in forms satisfying the
following condition:

(3.1.3) DEFINITION. Let F € C[Z; : Z3] be a nonzero form. Suppose that
for some function xg : IV — C*,

Foy =xr(y)F  forally €T’
Then F is called T'-invariant with character xp.

Exercise 3.1.4 shows that for such F, the character xr is a homomor-
phism from IV to C* and is therefore specified by its action on the generators
of T'. The image of xp sits in the |I”|th roots of unity. If x takes the same
value on both lifts +7' of each v € T, then it descends to a well-defined
character of T, also called xp. Since —y' = (—I)y' (where I is the 2-by-2
identity matrix), and xr is a homomorphism, and the calculation

(F o (=D))(Z1,Z2) = F(—Z1,—Zs) = (—1)98U)F(Zy, Z,)

shows that xp(—I) = (—1)98(F) the character xr descends to T' exactly
when deg(F) is even.

Returning to the Cp-invariant example f = [Z]" : Z}], the computation
that fos, = [-Z7 : —ZF] shows that the component forms are C/ -invariant
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with character x : s}, = —1. The homomorphic properties of x (or another

direct computation—see Exercise 3.1.5) give x : —s/, — (=1)"*!

, 50 indeed
x descends to C,, exactly when n is even.

The remainder of this section will establish a theorem that makes it easy
to create and recognize I'-invariant forms. Since the second variable in a
form is essentially redundant, the next result is merely a rephrase of the

Fundamental Theorem of Algebra.

(3.1.4) PROPOSITION. Any nonzero F € C[Zy : Z3] factors into linear
forms that are unique up to constant multiples.

PROOF. Let d = deg(F') and let e be the largest degree of Zs dividing F.
Using the homogenization and dehomogenization operators from Section 1.4
(in particular, see Exercise 1.4.6) gives

F(Zy,7Zy) = Z5(Fy(2))* with deg F, =d — e
d—e
=a4-cZ5(] | (Z —3))" with ag_ # 0
i=1
d—e d
=aq-oZ5 [[(Z1 —1i22) = aqe [[(5i%1 — 1iZ2)
i=1 i=1
with ri,...,r4—e uniquely determined, s1,...,84—e = 1, T4g—et1,---,7d = —1,
and sg_et1,...,8¢ =0. O

Each linear factor s;Z1 — r;Z5 of a form F vanishes on the projective
class C*(r;,5;), so the zeros of F in C?\ {0}—call them Z(F)—are a fi-
nite multiset (meaning elements can repeat—see Exercise 3.1.6 for some
formalism) in P!(C); this multiset depends only on the form-class of F,
cl(F) = {\F : X\ € C*}. Conversely, a finite multiset Z in P'(C) specifies
the form-class cl([]j.qcz(sZ1 —rZ2)) rather than any particular form. Thus
nonzero form-classes and finite multisets in P! (C) are in bijective correspon-
dence.

Since either lift 4/ of any element y € T acts on projective classes in C2\
{0} as 7 acts on P(C), it follows that for any form F, Z(Foy') = v~ 1 Z(F):
this is clear for constant forms; it holds for linear forms (Exercise 3.1.7),
whose form-classes correspond to points in P!(C); and it follows in general
since products of form classes correspond to unions of multisets. Now we
can state the theorem.

(3.1.5) THEOREM. A nonzero form F is T'-invariant if and only if Z(F)
is a multiunion of T-orbits in P'(C).
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This follows from the fact that F' is IV-invariant if and only if cl(Fov') =
cl(F)—so correspondingly Z(F o ') = Z(F)—for all ¥/ € T, and from the
relation Z(F ov') = y~1Z(F). Exercise 3.1.8 asks for the details.

3.1.1.

3.1.2.

3.1.3.

3.1.4.

3.1.5.

3.1.6.

3.1.7.

3.1.8.

Exercises

Show that a meromorphic function f is I'-invariant if and only if it
is invariant under a set of generators for I'.

In the notation of the section, use the commutative diagrams (2.1.1)
and (2.1.2) (specialized to determinant 1) to show that both lifts ' €
I’ of v € T act on projective classes in C?\ {0}, i.e., on P!(C), as
. That is, show that :*:’}’,(C*(Zl, ZQ)) = 'Y[Zl : ZQ] for all [Zl : ZQ] €
P!(C).

Let f = [G : H] be an algebraic mapping of P! (C). Use the preceding
exercise to show that foy =[G oy : Ho+] for all vy € T and either
lift 7" of 7, so that foy = f if and only if [Goy' : Hov'] =[G : H]
for all 4/ € T. Prove Proposition 3.1.2 by showing that this second
condition is equivalent to G and H being I'-invariant with the same
character. (This last equivalence is actually a bit subtle. Since G and
H are relatively prime, the condition implies that G oy = x(v)G
and H oy = x(v'")H for some x(v') € C[Z; : Z;]. Comparing degrees
shows that x(v') is constant.)

If the nonzero form F is IV-invariant, show that the character xp :
I — C* such that F oy’ = xp(y')F for all 4/ € T’ is a homomor-
phism. Show that xp(—1I) = (—1)9¢8(F), 50 the character xr descends
to I' if and only if deg(F) is even.

Let f = [Z] : Z8), sn[Z1 ¢ Zo) = [ConZn : Cop Za), and —sL,(Z1, Zo) =
(—Con 2, —C2;L122). Since f is Cj-invariant, its component forms must
be C}-invariant with some character x. The section showed that
x(sl,) = —1. Since x is a homomorphism, it follows that x(—s!,) =
(=1)"(—1), but show this by direct computation.

Define a multiset in a set S to be a formal sum ) ,cgny s (with
each ny, € N), interpreted as ns copies of each element s. What is
the cardinality of the multiset Y ns - s? What are the union and
intersection of the multisets > ng-s and > mg - s?

Show that for any linear form F, Z(F o+') = y~1Z(F). (Show that
both sides are the same point in P!(C)—recall that +/ effectively acts
on P!(C) as vy does.)

Fill in the proof of Theorem 3.1.5.
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2. Orbit-forms and invariant forms

For each finite rotation group I', a full orbit-form is a form of degree
IT'| vanishing on exactly one orbit, with a zero of the same order at each
orbit point. Such a form is IV-invariant by Theorem 3.1.5. To create such
forms, lift each y € T to a linear mapping 7' = (7{,75). Then for any point
p = [p1 : p2] € P}(C), the full orbit-form vanishing on the orbit O, is

Fy(Z1, Z3) = [] (a(p1,p2) Z1 — 71 (p1, p2) Za).
yel

This form has repeated factors when p has nontrivial stabilizer in T, i.e.,
when O, is degenerate, but in any case the degree of Fj, is |I'|. Thus the
“full” in “full orbit-form” refers to form degree, not orbit length. The form
F, is really only defined up to form-class, but rather than maintain such
a fussy distinction we work with class representatives from now on, freely
discarding constant factors.

In the case of the group C, whose generator s, lifts to the mapping
st (p1,p2) = (Conp1, (5 pa), the full orbit-form associated to the point p =
[p1 : po] is

n—1

Fp(Zy, Z2) = [] (Carip2Zy — (1 Z0).
i=0
Since this vanishes precisely when [Z; : Zy] lies in O, = {¢ip : 0 < i < n},
it multiplies out to a constant times p§ Z" — pTZ% (Exercise 3.2.1).

All full orbit-forms share the same character. To see this, note that the
complex coefficients of Fj, € C|[Z1 : Zs] vary continuously with p € P!(C).
Thus for any 7' € I", the corresponding character value x,(v') = (Fpov')/F,
also varies continuously with p. But all characters x, have images in the same
discrete subset of C* (the |IV|th roots of unity, as discussed in Section 3.1),
so in fact x,(7) is locally constant with respect to p. Since any two points
in P1(C) are joined by a path, x,(7’) is constant over all of P1(C).

In the case of C,,, the calculations in the preceding section show that the
forms G(Z1,Z2) = Z7 and H(Z1, Zy) = Z% transform by the same character
X @ s, — —1; so does any linear combination of G and H. Therefore x is
indeed the character for all full orbit-forms F), = p5G — pTH.

For the rest of this chapter, xr denotes the full orbit-form character for
each finite rotation group I'. This notation is slightly misleading since xr
is actually defined on I, but xr descends to I' whenever |T'| is even, which
holds for all T except C,, n odd.
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Recall that each finite rotation group I' has associated degenerate orbits
O1, Oz, and O3 (or just the first two for the cyclic groups) with each |O;| <
IT'|. While the full orbit-form for a nondegenerate orbit O is simply F' =
p,:pojco(P2Z1 — p1Z2), the full orbit-form for a degenerate orbit O; is a
power F' where

(3.2.1) F= 1] 2 -pi2)
[p1:p2]€0O;

has degree |O;|, and n; = |I'|/|O;|. These lower degree forms F; are called
degenerate orbit-forms. Like full orbit-forms, they are invariant by Theo-
rem 3.1.5. Their associated characters are denoted x;. Each x|’ is the full
orbit-form character xr.

For the cyclic group Cy, the degenerate orbits are O = {s} = {[0 : 1]}
and Oy = {n} = {[1:0]}. The corresponding degenerate orbit-forms (3.2.1)
are simply F} = Z; and Fy = Z,. To find their characters, compute

(Fy 0 sL)(Z1, Z2) = Fi(ConZh, (o Zo) = ConZh = ConF1(Z1, Z0),

$0 X1 : 8% +> Cap. Similarly (Exercise 3.2.2) xa : s, + (5, - These characters
do not descend to C,,.

The degenerate orbit-forms are convenient because they generate all full
orbit-forms—in fact, we only need two of them.

(3.2.2) THEOREM. The full orbit-forms are the linear combinations
F=\FM" + \F2, [\ : A2] € PH(C).

PROOF. A form F = A\ F"' + Ao F3? is I'-invariant with character xr and
degree |T'|. Such F is visibly a full orbit-form if \; = 0 or Ay = 0. Otherwise
it vanishes on a multiunion of orbits of total length |T'|, none of which is
Op or Oy. Thus F is F3? or the form of a single full orbit, giving a full
orbit-form in either case.

Conversely, take the orbit O, of any point p = [p; : po], and set [\ :
Xo] = [F5%(p1,p2) : —F{"(p1,p2)]- Then F = A\ F{"* + Ao F5'? vanishes at p
and, as just argued, must be the full orbit-form vanishing on O,. O

Since the invariant forms are the products of orbit-forms, the general
invariant form is (Exercise 3.2.3)
(3.2.3) F=FPFF [ (MFM 4 A Fp2)»
AePI(C)
with 0 < e; < m; for 1 = 1,2,3 and ey, = 0 for all but finitely many A.
(Set F5 =1 in the cyclic case to make this notation work.) The associated
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character is xp = x7' x5’ x5 x% where e = Y, ey, and x3 = 1 for the cyclic

group.

Thus to express all invariant forms in a simple fashion, it suffices to
find the degenerate orbit-forms Fy, F5, and F3. Some classical machinery,
introduced in the next section, carries this out handily. Theorem 3.2.2 shows
that the three forms F;" for any noncyclic group are linearly dependent, so
for each such group there is a linear relation (called a syzygy)

F'™ — gF? — pF = 0.

Finding this syzygy only requires matching terms containing the highest and
next highest powers of Z;.

Exercises

3.2.1. Let C, be the cyclic group with generator s, lifting to the map
sh(p1,p2) = (Conp1, (o p2). Show that the full orbit-form F, asso-
ciated to the point p = [p; : p2] is a constant times p§ Z] — p? Z5.

3.2.2. Compute the character x2 for the cyclic group C,.

3.2.3. Prove that the general invariant form F' is given by (3.2.3). (Hint:
since F' is a product of degenerate and full orbit-forms, Theorem 3.2.2
gives the result except for the conditions on e;, i = 1,2, 3; but also the
forms F;*', i = 1,2,3 are full, so carrying out the division algorithm
on the multiplicity of the degenerate orbit-forms in F' completes the
proof.)

3.2.4. Write the general invariant form for the cyclic group C,.

3. Covariant forms

A covariant with respect to a group I'! of linear maps on C? is a function
C : ClZy : Zy] — C|Z; : Zy] satisfying

C(Fo~')=(CF)o~ forall F € C[Z;:Zy] and o €T".

If for some exponent e, C(aF) = a°CF for all a € C and all F' € C[Z; : Z],
then for any I'-invariant F with character xp,

(CF)oy' =C(Fov')=C(xr(Y)F) = xr(')°CF forally' eI",

showing that C'F is also I"-invariant, with character x5.
The two covariants that we need are the Hessian and the Jacobian.
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Take the matrix
D1 F DppF
My (F) = 11 12
Doy F' Doy F

where D11 means differentiating twice with respect to the first variable, etc.
This is the Hessian matrix of F' from multivariable calculus. The Hessian of
a form F is HF = det(Mg(F)). Since differentiating reduces form degree
by 1, HF is a form of degree 2(deg(F) — 2) (Exercise 3.3.2). To see that H
is a covariant with respect to SLy(C), take any linear mapping 7' = (v, 75)
with matrix [y'] of determinant 1. By two applications of the chain rule, the
entries of My (F') are

[My(F 04)]ij = Dij(F o) = D; Y ((DxF) ov')Diryj,
k=1
=Y (D;((DrF)o7)) =3 > ((DuF) o) Dy
k=1 k=11=1

where My (F) oy = , |- This implies

H(F ov') = det([y']'(Mu (F) o v)[Y]) = det(My (F) o y') = (HF) o/,

so the Hessian is a covariant. Also, H(aF) = a?HF, so if F is I"'-invariant
with character x, then HF is I'-invariant with character xgr = x%.
The Jacobian of a form F' is the determinant
D F Dy F
JF =det| 2
D1HF DsHF

The matrix is the Jacobian matrix for the vector-valued function (F, HF'),
again from multivariable calculus. The Jacobian of F' is a form of degree
3(deg(F) — 2) (Exercise 3.3.2 again). If ¥ is as above, then similarly to the
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computation of the Hessian,

o —det | PrECY)  Da(F o)

J(F o) =det | Di(HF oy') Dy(HF o®) ]

(D1F o )Y+ (D1F oy")[¥']12+
(D2F o' )[¥']21 (D2F o) [¥']22

= det

(DiHF oy)[y'lu+  (DiHF o')[y'l1a+
(D2HF o")[y']1 (D2HF o7")[v']22

_ (DiF)oy"  (D2F)oy '

= det (l (DljﬁIF) on! (D;{F) o M)

= det l (DiF)oy"  (DyF)o ]

(D1HF) oy (DyHF) o~
= (JF) o,

so the Jacobian is also a covariant. Since J(aF) = a3JF, if F is I'-invariant
with character xp then JF is I'-invariant with character x r = x%.

Exercises
3.3.1. Compute the Hessian and Jacobian of the forms F' = Z' + Z3', F =
VAL
3.3.2. Show that the Hessian and Jacobian are forms with deg(HF) =
2(deg(F') — 2) and deg(JF) = 3(deg(F') — 2).
3.3.3. Write a computer algebra routine to compute Hessians and Jacobians.
(This will be quite useful in the next section.)

4. Calculation of the degenerate orbit-forms
As we have already seen, the degenerate orbits 07 = {s} and Oy = {n}

for the cyclic group C,, have orbit-forms

Fic, = 21,
B ¢, = Zs.

Lifting the generator s,, of Cy, to s/, : (Z1, Z2) > (onZ1, Cz_ang) gave F ¢, o
sy, = ConF1,c,, and similarly Fp ¢, o 5], = anng,cn. Thus the characters for
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these forms and the general orbit-form character are as before,
X1,Cn © Sy > Cons
X2,0n = X1.6,»
XT.0n = X5,0, = XCy © 89> —1L.
The first two characters do not descend to C; the last one descends when
n is even.

The other groups have three degenerate orbits each: the vertex orbit Oy,
the face orbit O, and the edge orbit Q3. For the dihedral group, these are
01 = {n,s}, Oy = {¢i¢on : 0 < j <n}and O3 = {¢} : 0 < j < n}, with
orbit-forms (3.2.1) given by

F1\ p, = Z12s,
n—1 )

Fop, = [[(21 - G lenZe) = Z7 + Z3,
§j=0
n—1 )

Fsp, = [[ (21— 2) = 27 - Z3.
7=0

The characters of these forms are determined by their actions on lifts of
0 1 P
sp and tp = [ ) é ], sy, as above and t7, : (Z1,22) v (iZ2,iZ1). Easy

calculations give Fi p, o s;, = Fip, and Fip, oty = —Fp,. Similar
calculations for Fy p, and F3 p, give

! !

X1,Dp : 8y 1, tp — —1,
! ! -

X2,D, : S+ —1, tph =",
!
n

I .
X3,D,, * S —> —1, tD = —Zn,

X1,p, = X%,Dn = X%,Dn =XD, : sy 1, tph e (D)™
The characters x2 p, and x3 p, descend to D, only when n is even. The
other two characters descend for all n. The syzygy on the degenerate dihedral
orbit-forms is
AF('p, = Fyp, + Fip, =0.
For the Platonic groups, recall the table

ni ne ng |G| |O: |0z |Os]
Tetrahedron | 3 3 2 12 4 4 6
Octahedron | 4 3 2 24 6 8 12
Icosahedron | 5 3 2 60 12 20 30
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In each case, |0y = 2(|O01| — 2) and |O3] = 3(|O1| — 2). Thus once F;
is known, F5 and F3 are simply HF} and JF; respectively: they have the
right degrees, and—excepting the tetrahedral case—invariant form-classes
of those degrees are unique since orbits of those lengths are unique. In the
tetrahedral case, where |O;| = |O;|, we need to check that HF, # F;. All
Platonic orbits have even order, so all Platonic characters descend to the
rotation groups and will be defined there.

The tetrahedral vertices in S2, {(£1,41,41)/v/3 : zyz > 0}, project
stereographically to the orbit O; = {+(1 +14)/(v/3—1),+(1 —4)/(v/3+ 1)},
whose form (3.2.1) is a product of four linear factors working out to

Fir =27 — 237373 + Z3.
Consequently,
For = HF 7 = Z{ + 2V3Z} 73 + 73
up to constant multiple. This is distinct from Fj 7 as needed, and in hind-

sight had to be its complex conjugate since the tetrahedral face-centers are
the conjugates of the vertices. Next,

Fysr = JF 7 = 7, Z:(Z} — Z3)

again up to constant multiple. From now on, constant factors will be dis-
carded without comment in computing form classes. The respective charac-
ters are

xiT:st— 1, tr— (3
Xor = X1 = X110
xsr =X =1,
X?,T = X%,T = X%,T =xr = 1.
The syzygy on the degenerate tetrahedral orbit-forms is
FPp — Fyp +12iV3Fi = 0.

The octahedral vertices project to O; = {0, 00, £1, 4} with correspond-
ing form (3.2.1) working out to

Fio = Z1Z+(Z} — Z3).

Of course, this is F3 7 since the octahedral vertices are the tetrahedral mid-
edges. For similar reasons (Exercise 3.4.1), Fi o = Fi p,F3p,. Using the
machinery again,

Fyo=HF o= 7% + 142175 + 7§
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and
Fs0=JF0=27{? 332875 — 332178 + Z3*.
The respective characters are
X1,0 80— —1, tor—1,
X2,0 =Xio =1,
X3,0 = X1.0 = X1,0;
X10 = X3,0 = X3,0 = x0 = 1.
The syzygy on the degenerate octahedral forms is
108F o — F3 o + F5 0 =0.

For the icosahedron, the projected vertices are O; = {0, Cgtjo, 00, Cgt[OO :

g

0 < j <4} (this was Exercise 2.7.5). Recall that 5 = l B where the

g
golden ratio g is the positive root of 22 + z — 1 = 0; the negative root

is —g7! = —1 — g, denoted §. Thus t;0 = g and t;o0 = §, so O; =
{0,¢2g,00,¢2G : 0 < j < 4} whose corresponding form (3.2.1) is
4 4
Fir= 717 [[(Z0 - G3922) [[(Z1 — L5 22)
j=0 §=0

= 212(Z7 — 9°Z5)(Z7 — §°Z5)

= Z12(Z,° — (¢° + §°) 225 + ¢°5° Z3°).
Since g, § are the roots of 22> = 1 — z, repeated substitution of 1 — ¢ for ¢°
gives ¢° = 5g — 3 and similarly §° = 5§ — 3; since g +§ = —1, ¢° + §° =
5(g +g) — 6 = —11; and since g§ = —1, ¢g°G®> = —1. Thus the form for O
simplifies to

Fir = Z125(Z° + 112725 — Z,°).
Applying the covariants gives
By =HF 1 =—(Z2°+ Z3°) + 228(Z{°Z3 — Z7 Z5°) — 4947{° Z}°

and
Fyp=JF = (Z3+ 23 +522(Z% 25 — 73 Z2°) —10005(Z2%° 730 + 719 229).

By Exercise 3.4.4, all three associated characters are trivial, as is the char-
acter Xi ;= x%, ;= X%} ; = x1- The syzygy on the degenerate icosahedral
forms is

1728FY, — F3; — F3; =0.
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3.4.1.
3.4.2.

3.4.3.

3.4.4.

3.4.5.

3.4.6.
3.4.7.
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Exercises

Explain geometrically why Fy o = Fy p,F3 p,.

Verify the calculations of the degenerate orbit-forms F; r in this sec-
tion.

(a) Show that any finite subgroup of C* is cyclic.

(b) Let G be a finite group and x : G — C* a character. Show that
X descends to a character on G/K for some K < G such that G/K is
cyclic.

This exercise shows that the only character of the group A,, forn > 5
is the trivial character, x(o) =1 for all o € A,,.

(a) First some general group theory: If g1, go are elements of a group
G, their commutator is [g1,92] = 919297 ‘g5 *, which is 1 exactly
when ¢g; and go commute. The commutator subgroup of G is
[G,G] = ([g91,92] : 91,92 € G), the subgroup of G generated by com-
mutators. Show that [G, G] is normal in G by exhibiting any element
v[g1,92]7~" as a product of commutators. Show that for any normal
subgroup K <« G, G/K is abelian if and only if [G,G] C K.

(b) Working in the symmetric group S, (with right-to-left multipli-
cation), show that all even permutations are products of 3-cycles (it
suffices to show this for (23)(12) and (34)(12)). Show that all 3-
cycles (abc) are conjugate in A, to (123) by evaluating the product

(abcde>(abc)<12345>

1 2 3 4 5 a b c d e

and explaining why the conjugating permutation may be taken as
even. Thus, to show that a normal subgroup K < A4, is all of 4, it
suffices to exhibit a single 3-cycle in K.

(c) Now suppose x : A, —> C* is a character. Let K = ker(x) «
Ay. Use the preceding exercise and part (a) to explain why K con-
tains the commutator subgroup [A4,,Ay] and in particular contains
(354)(132)(345)(123). Complete the proof that x is trivial.

Verify the calculations of the degenerate orbit-form characters x; r in
this section.

Verify the syzygies asserted in the section.

For each rotation group I', for what values of e1, e2, e3, € is the general
invariant form (3.2.3) totally invariant, meaning its character on I
is trivial?
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5. Invariant algebraic mappings

Let T be any of the finite rotation groups, viewed as acting on P!(C).
Recall that an algebraic mapping f = [G : H] : P}(C) — P1(C) is called
[-invariant if f oy = f for all ¥ € I, and this condition is equivalent to G
and H being I'-invariant with the same character.

This section gives a simple description of I'-invariant algebraic mappings.
A technical lemma is required first to dispense with certain irksome possi-
bilities. Call a nonconstant form F exceptional if F = F{'F;*F3® with
0 <e <mn;fori=1,2,3 and deg(F) is divisible by |I'|. (As before, take
F3 = 1 for the cyclic group C, to make the notation uniform.) Think-
ing about zero-sets shows that every I'-invariant form of degree |T'| is a
full orbit-form or an exceptional form. Similarly, every I'-invariant form
of degree divisible by |I'| is a product of full orbit-forms possibly times an
exceptional form. These are Exercise 3.5.1.

(3.5.1) LEMMA. Ewvery ezceptional form has degree |I'|. No ezceptional
form has character xpr. No two exceptional forms share the same charac-
ter.

PROOF. Let F' = F{'F;*F3® be exceptional. Thus Y, ¢;|O;| is a positive
multiple of |T'|. Consider the table in Figure 3.5.1.

01| [Os] O3] [T X1 X2 X3 XT
Cpo| 1 1 0 n|se=Gr  xit 1 s —1
D 9 " n % sh—=1 s -1 s ——1 sy, — 1
" thrs =1ty e =i ) (—1)P
ST = 1 —1
Tr| 4 4 6 12 ¥ 1 1
tr — (3 '
so+— —1
r 6 8 12 24 1
© to—1 X1
'y | 12 20 30 60 1 1 1 1

Figure 3.5.1. Orbit-lengths and characters of the rotation groups

Exercise 3.5.2 asks for verification of the following casewise argument.
For the cyclic group C,,, the conditions on F' are ej,es < n, and so e; +e3 =
deg(F'), being a positive multiple of n, satisfies e; + e2 = n. Thus yr =
XSO sl (5L = (9™ = (€1 these characters are distinct for e; =
1,...,n — 1 and distinct from x¢, . For the dihedral group, the possibilities
for (eq,es,e3) such that 0 < e; < n, 0 < eg,e3 < 2 and 2e; + ney + nes is
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a positive multiple of 2n are (0,1,1), (n/2,1,0), (n/2,0,1), where the last
two assume n is even. The corresponding characters xr are again distinct
and not xp,. For the tetrahedral group, the possibilities are (e1,e2,e3) €
{(2,1,0),(1,2,0)}, with corresponding characters x; 7 and Xf,lT distinct and
nontrivial. For the octahedral group, the only possibility is (e1, ez, e3) =
(2,0,1), and again the character is nontrivial. For the icosahedral group
there are no possible (e1, ez, €3).

The first statement of the lemma falls out from this enumeration, or see
Exercise 3.5.3 for a simple direct proof. O

Now the classification is easy. First the simplest algebraic mappings:
(3.5.2) THEOREM. The T'-invariant algebraic mappings of degree |T'| are
{f=1[G:H]:G and H are distinct full orbit-forms}.
This follows from the more general result,

(3.5.3) THEOREM. The I'-invariant algebraic mappings are

{f =[G : H]:deg(G) =deg(H); G, H are disjoint products
of full orbit-forms}.

PrROOF. Clearly any such f is I™-invariant. For the converse, let f be a
nonconstant ['-invariant algebraic mapping. Then excepting its values on
the degenerate orbits, f takes every value in P!(C) on a multiunion of full
T-orbits, so its degree is divisible by |I'|. Thus by (3.2.3), f = [G : H] with
G and H each a product of full orbit-forms possibly times an exceptional
form. But neither exceptional form can be present if G and H are to share
the same character. O

Exercises

3.5.1. Show that every I''-invariant form of degree |I'| is a full orbit-form
or an exceptional form. Show that every I'-invariant form of degree
divisible by |I'| is a product of full orbit-forms possibly times an ex-
ceptional form.

3.5.2. Confirm the assertions about possible (eq, ez, e3) and the correspond-
ing characters for the various groups in the proof of Lemma 3.5.1.

3.5.3. Here is a direct argument that an exceptional form F must have
degree |I'|. It suffices to show that deg(F) < 2|I'|. Show that for
an exceptional form F', deg(F) < Y ,(n; — 1)|0;| = |T'| >;(1 — 1/ny),
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where the sum is over degenerate orbits. Use (2.6.3) to finish the
proof.

6. Invariant rational functions

Returning finally to the Riemann sphere 6, recall that a rational func-
tion f = g/h : C — C is called T-invariant if f o~y = f for all v € T.
Under the correspondence between algebraic mappings and rational func-
tions, Theorem 3.5.2 becomes

(3.6.1) THEOREM. The I'-invariant rational functions of degree |T'| are

la b |(F")s |a b
{f_lc d](F;2)*.[C d]ePSLz(C)}.

Any two such functions fi1 and fo are fractional linear transformations of

one another.

PROOF. The rational function f corresponding to [G : H|, where G and H
are full orbit-forms G = aF["* + bF,” and H = cF{"" +dF;?, is

G. _ a(FPM). + b(F), _ l a b (EFEM).

F= =, v dEm). | e d| @),

Consequently, any two such functions fi and fo, both being fractional linear
transformations of (F|"')./(F5?)«, are fractional linear transformations of
one another. O

A corollary is that all [-invariant rational functions f of degree |T'| gen-
erate the same field of rational functions C(f). Thus Theorem 3.5.3 gives

(3.6.2) THEOREM. The field C(Z)' of T'-invariant rational functions is
C(f) for any I'-invariant f of degree ||

PROOF. The field is
C(Z)" ={G,/H, : deg(G) = deg(H); G, H are disjoint products
of full orbit-forms}

= {H(GZ)*/(HZ)* : G; and H; are full orbit-forms}

%

_ ai bi | (F1")« | a; b
= {H [ o d ] (F;m)* : l ¢ d; ] € PSLQ(C)} .

3

Each element of this set is rational in (F|"),/(F3?)., which is rational in f.
Thus C(Z)' € C(f). The other containment is obvious. O
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For the cyclic group C,, the obvious generator for C(Z)%" is fg, =
Z™. For the other groups, a normalized generator fr is specified by the
noncanonical conditions that fr(O0:1) = oo, fr(O2) =0, fr(O3) = 1, taken
from Klein. (See Exercise 3.6.2.) Thus for some scalars a and b,

(FF). ().
@&, ~ e,

fr=a

Equivalently, F*"' — aF3? — bF3® = 0, so that for each group I' the scalars
a and b can be read off from the syzygy among the degenerate orbit-forms,
though we only need a. The results are

(F3p,)« (2" +1)?

fDn = 4(F1n,Dn)* = 47n

. 3
b= (For)e _ (24 +2iV322+1
’ (Fir)« Z4 — 20322 +1)°

(F3o)«  (28+142% +1)3

fo= 108(Ff o), 108Z4(zf—1)%"
b= (F3)«  (—220 42287 — 49420 — 22875 — 1)}
T AT8(F ). 172875(Z10 + 1125 — 1)5

Exercises

3.6.1. Let " be a rotation group acting on C. The set of T-orbits is denoted
I'\C. The natural surjection

orb: C — I'\C where orb(p) = O,

induces a quotient topology on F\é, now called the orbit space, by
the usual rule

§ c T'\C is open = orb~1S c C is open.

The map fr: C — C is constant on each orbit, so it induces a map
fr : T\C — C making the following diagram commute.

orb l

ne £, ¢

o

Show that fp is a homeomorphism as follows.
(a) Show that fr is surjective.
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3.6.3.
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(b) Show that fr is injective. (Hint: if fr(0,) = fr(O,) then no
function in C(fr) can take different values on O, and O,. Find a
function in C(fr) that does so.)

(c) Show that fr is continuous. (Recall from Chapter 1 that the
meromorphic function fr is continuous.)

(d) Show that fr is open, meaning it takes open sets to open sets.
(Hint: it suffices to show this for fr, which is nonconstant analytic in
local coordinates.)

Suppose f and g are rational functions related by a fractional linear

b g for some a b € PSLy(C).
d c d

Suppose further that f and g take distinct points pi, p2, ps to distinct
points ¢q1,q92,q3. Show that f = g. Since for each rotation group

. . a
transformation, i.e., f =

T, all T-invariant rational functions f of degree |I'| are related by
fractional linear transformations, this shows that any particular such
f is determined by its values on three distinct orbits.

With the help of a symbolic algebra computer program, verify di-
rectly for some of the rotation groups I' that fr is invariant under the
generators s and ¢ of T'.

7. Summary

For each rotation group I, the field C(Z)" of I'-invariant rational func-

tions is generated by any member of degree |I'|. A noncanonical generator

is fr, normalized (in the noncyclic case) to take the values oo, 0, 1 at the

vertices, face-centers, and mid-edges of the geometric figure corresponding

to I'. All other generators are fractional linear transformations of this one.

Every I'-invariant rational function, and in particular fr, is the quotient of

(dehomogenized) same-degree I'-invariant forms, which are easy to compute

with general machinery.
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CHAPTER 4

Inverses of the invariant functions

For each rotation group I', a normalized rational expression fr of degree
IT'| now generates the field of I'-invariant functions in C(Z), i.e., C(fr) =
C(Z)'. As a function, fr maps the set of I'-orbits in C to another copy of C.
This chapter discusses the problem of recovering an orbit from its fr-value.
Algebraically, the problem is to invert fr: letting W = fr(Z), reconstruct
Z as a multiple-valued expression in W.

In the cyclic case this is easy enough. Since W = f¢ (Z) = Z", the
inverse is the radical Z = {/W. The dihedral case isn’t much harder since
the quadratic formula uses a square root to solve the relation W = fp, (Z) =
(Z™ 4+ 1)2/(4Z™) for Z™ in terms of W, after which an nth root suffices
again. But the Platonic invariants become progressively more complicated,
until inverting them by radicals is infeasible ad hoc and perhaps not even
possible.

The environment for discussing this sort of problem is Galois theory,
a subject whose sheer elegance makes it a crown jewel of undergraduate
mathematics. This chapter begins with general material on fields and Ga-
lois theory, developing ideas that explain when and how to invert by radicals.
Certain useful polynomials called resolvents, presented later in the chapter,
further systematize and illuminate the calculations. For all rotation groups
I" but the icosahedral group, inverting fr reduces to finding the zeros of a
succession of polynomials by field operations and nth roots. For the icosahe-
dral group, inverting fr can not be done by radicals, but instead is equivalent
to solving a specific quintic polynomial with coefficients in the field C(W).
This special quintic, called the Brioschi resolvent, will play a prominent role
in the rest of the book.

Recommended reading: Among the infinitely many good books on Galois
theory, Stewart [Ste] is a successful undergraduate text and Jacobson [Ja I]
presents the material nicely. Lang’s [La] chapters on field theory and Galois
theory are quite accessible. The specific calculations in this chapter are from

69
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Chapter 1.4 of Klein [KI] and Chapter XIII of Dickson [Di].

1. Fields and polynomials

Let k be a field. The natural ring homomorphism ¢ : Z — k such
that ¢(1z) = 1k (see Exercise 4.1.1) has an integral domain as its image.
By the First Isomorphism Theorem for rings (Exercise 4.1.2), ker(p) is an
ideal I such that Z/I is an integral domain, so I is a prime ideal in Z (see
Exercise 4.1.3). Such ideals are {0} and pZ for p prime. If I = {0} then
k contains a copy of the ring Z and therefore contains a copy of the field
Q; otherwise k contains a copy of the field F, = Z/pZ for some prime p.
The copy of Q or F, in k is contained in all subfields of k (indeed, it is their
intersection) and is called the prime subfield of k. When the prime subfield
is (isomorphically) Q, k has characteristic zero, and for any nonzero z € k
and n € Z*, z +x + --- +  (n summands) is nonzero. When the prime
subfield is Fp, k has characteristic p, and forany z €k, z+z+---+ 2z (p
summands) equals 0.

For any field k, the ring k[T"] of polynomials over k in the unknown 7'
contains k as a subring, and the units (invertible elements) of k[T'] are k*.
The polynomial ring k[T'] comes with the degree map deg : k[T] — N U
{—00} where deg(0) = —oo and deg(>"% ; a;T") = d assuming aq # 0. In fact
k[T is a Euclidean ring under this map, meaning that for all g, h € k[T'] with
h nonzero, the relation deg(g) < deg(gh) holds and there exist q,r € k[T
satisfying the division formula g = gh + r, deg(r) < deg(h). By general ring
theory it follows that k[T'] is a unique factorization domain (Exercise 4.1.6
or Exercise 4.1.7). The Euclidean algorithm applies in k[T (Exercise 4.1.8):
given polynomials g and h, there exist G and H such that

Gg + Hh = ged(g, h).

Exercises

4.1.1. Let k be a field. Prove that the condition ¢(lz) = 1k defines a ring
homomorphism ¢ : Z — k. Use the homomorphism ¢ to define
integer multiplication on k, - : Z x k — k, by n-z = ¢(n)z. (This
makes k a Z-module.) Show that for alln € N and x € k, n-z =
z +-+- 4+ (n summands). Thus k has characteristic zero if 0 is the
only integer n such that n-z = 0 for all z € k, and k has characteristic
pifp.-z =0 for all xz € k.

4.1.2. State and prove the First Isomorphism Theorem for rings.
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4.1.3. Prove that the quotient R/I of a commutative ring with unit by an
ideal gives an integral domain if and only if I is prime (if a product
ab lies in I then so does a or b), and gives a field if and only if I is
maximal (the only ideal properly containing I is all of R).

4.1.4. Let p be a prime. Show that p | (g’) for 0 < j < p, so that in any
field k of characteristic p, (z +y)? = 2P + yP for all z,y € k. Show by
induction that for any positive integer n, (z +y)?" = zP" +yP" for all
z,y € k.

4.1.5. Show that the quotient ¢ and remainder 7 in the division formula for
k[T'] are unique.

4.1.6. (a) Show that every Euclidean ring is a principal ideal domain.

(b) Show that every principal ideal domain is a unique factorization
domain. (This is fairly substantial and sometimes omitted in a first
algebra course because the next exercise is easier. It is worth looking
up if you haven’t seen it before and have time.)

4.1.7. Show directly that every Euclidean ring is a unique factorization do-
main. (See, for example, Herstein [He].)

4.1.8. Show that the Euclidean algorithm applies in k[T'].

2. Algebraic extensions

A field extension is a containment k C K of two fields, written K/k.
Since K is a vector space over k, defining the degree [K : k] of the extension
as dimy (K) is meaningful. The extension is called finite when its degree is
finite. (See Exercise 4.2.1.)

Given a field k and an element 7 of some field K containing k, k(r)/k is a
field extension, where k(r) is the intersection of all subfields of K containing
k and 7, or equivalently k(r) is the rational expressions generated by k and 7.
Exercises 4.2.2, 4.2.3, and 4.2.5 establish the following facts: The extension
k(r)/k is finite if and only if r is a root of some nonzero polynomial h € k[T,
in which case r is called algebraic over k. Any r € K algebraic over k is in
fact a root of a unique monic polynomial m € k[T of least degree, called the
minimal polynomial of r. The minimal polynomial m of r is irreducible,
and [k(r) : k] = deg(m). More generally, a field extension K/k is called
algebraic if every element r € K is algebraic over k. Every finite extension
is algebraic, but the converse is not true.

Let k be a field and h € k[T'] a polynomial. The field K is a splitting
field over k of A, written

K= Splk(h),
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if K =k(rq,...,r) (meaning K is the field generated by k and 7q,...,7%),
where h = a[[*_(T — r;) in K[T]. In other words, K is generated over k
by a complete set of roots of h, or equivalently, h factors down to linear
terms in K but not in any proper subfield of K containing k. For exam-
ple, Q(V/2,(3¥/2,(23/2) = Q(V/2,(3) C C is a splitting field over Q of the
polynomial h = T3 — 2, where /2 is the real cube root of 2 and as usual
(3= e2mi/3

In the preceding example, working in the large field C containing all
roots of the polynomial h made exhibiting splg(h) an easy matter. But
since C is extrinsic to the original objects Q and h, this doesn’t feel entirely
satisfactory. Using intrinsic methods, one can start from a field k and a
nonconstant polynomial A € k[T'], and construct a splitting field. First
construct a root field extension k(r)/k, where r is a root of h, as follows.
Let m be a nonconstant irreducible factor of h. Consider the ring

K = k[T]/mk][T].

This is a field because mk[T'] is a maximal ideal in k[T'| (Exercise 4.2.6). In
fact K is a template for the desired k(r) since working in K while suppressing
coset notation gives m(T) = 0, showing T' is a root of m and therefore of h.

The formal construction of k(r) is a bit finicky. The map o : k — K
such that 27 = z + mk[T] (in field theory the action of a map is often
indicated by a superscript in this fashion) is an injective homomorphism, also
called an embedding; so K extends an isomorphic copy of k. Constructing
a corresponding extension of k itself—and thus replacing the embedding o
by a true inclusion—amounts to set-theoretic bookkeeping. Let K be a set
of symbols including the elements of k such that the bijection o : k —
k + mk[T] extends to a bijection o : K — K. Let r be the symbol in K
such that 77 = T 4+ mk[T]. Define operations on K to make the bijection o
a homomorphism; these extend the operations on k and make K a field, so
K /k is a field extension. Since K is generated by T + mk|[T] over k7, K is
generated by r over k, i.e., K = k(r). Finally, if m = Y%, a;T%, compute
that

d d d
m(r)? = (Y air')” = 3 a7 (1) = (@ + mk{T))(T + mk[TI)’
i=0 i=0 i=0
d
= (a;T" + mk[T]) = m + mk[T] = mk[T] = 0
1=0

to conclude that m(r) = 0k, so h(r) = Ok.
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This construction is unique up to isomorphism when h is irreducible.
It shows that the field k(r) is simply the polynomial ring k[r] manipulated
subject to the rule m(r) = 0 to eliminate all polynomials of degree deg(m) or
higher. The most familiar example of this is given by the field splg (T2 + 1),
otherwise known as C. If i denotes a root of 72 4 1 then the other root is
—i, so the splitting field is R.(7); manipulations with the rule i> = —1 recover
the fact that C = {z + iy : z,y € R}.

Tterating the construction yields sply (h). Certainly 7' — r divides h in
k(r)[T]. Set hg = h/(T —r). If hy factors down to linear terms in k(r)[T]
then h has a full set of roots in k(r). Otherwise, replace k and h by k(r) and
ho respectively and repeat the root adjunction process to get an extension
k(r,r2)/k containing at least two roots of h. Continuing this procedure
eventually gives the splitting field. Many algebra books (see, for example,
[La]) prove that “the” splitting field is indeed unique up to isomorphism,
so we will not do so here. Building on the root adjunction process just
described also constructs the algebraic closure of k, the smallest field k
containing k such that the irreducible polynomials in k[T] have degree 1,
i.e., every polynomial in k[T factors down to linear terms. The algebraic
closure is also unique up to isomorphism. Again, [La] gives the details.

Returning to the situation of a field K containing k, an element r € K
is called transcendental over k if it is not algebraic over k, that is, it is
not a root of any polynomial h € k[T]. It follows that r satisfies no rational
relation over k and the field k(r) consists of all formal rational expressions
in 7. Our familiar example of this is the field C(Z) of rational functions
on C.

Exercises

4.2.1. If K/k is a field extension, show that K is a vector space over k.
If also L/K is a field extension, show that [L : k] = [L : K][K : k],
meaning that if one side is infinite then so is the other, and if both
sides are finite then they agree.

4.2.2. Let k be a field and r be an element of some field K containing k.
Show that if the extension k(r)/k is finite then r is a root of some
nonzero polynomial i € k[T]. (Hint: consider the set {1,772, ...}.)
For the converse, first show that the polynomials in k[7] to which r
is a root form an ideal I. Consequently, if r is a root of some nonzero
polynomial h € k[T] then r is a root of a unique monic polynomial
m € K[T] of least degree. Show that this minimal polynomial of r
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is irreducible, and therefore I is maximal. Show that consequently
k(r) = k[r| (consider the natural surjection k[T] — k[r]), and the
extension k(r)/k is therefore finite.

Show that every finite extension is algebraic.

This exercise describes all finite fields. Justify the statements as
necessary. Let p be a prime and n a positive integer. Set ¢ = p" and
let Fy = splg, (h) where h = T? — T € Ep[T]. Show that the roots of
h in F; form a subfield, by verifying that 0 and 1 are roots, and if =
and y are roots then so are z + vy, —z, zy and !, assuming = # 0
for the last case. (Exercise 4.1.4 will help. Checking that —z is a
root requires separate inspection of the cases p = 2 and p odd.) This
subfield must be all of F, by definition of splitting field. The roots of
h are distinct since h and its derivative h’ = —1 share no roots (see
for example [Ja I} —polynomial derivatives and their properties can
be developed purely algebraically with no reference to a limit process
particular to the fields R and C). Thus F; has ¢ elements, exhibiting
a field of any prime power order.

Conversely, let F be any finite field. It must have prime subfield
F, for some p, and being a vector space over Fp, it must contain
p™ = ¢ elements for some positive n. Every z € F* is a root of the
polynomial 79! — 1, so every z € F is a root of h = T9 — T and
F = splg,(h) = F, up to isomorphism. Thus the finite fields just
constructed are all possible finite fields.

Working in a fixed algebraic closure of F,, show that ¥, C F if and
only if ¢’ is a power of q. So, for example, Fg sits in Fg; but not in
For.

Let p be a prime and consider the tower of fields

FpCFp2CFp4CFp8C'-'

Let F = U,'szi be the union of fields in the tower. Show that F/F,
is an algebraic extension that is not finite.

If m € k[T] is irreducible, show that mk([T] is a maximal ideal in k[T].
(Apply the Euclidean algorithm to m and g for any g ¢ mk[T].)

Let k be a field and m € k[T] be an irreducible polynomial. Show
that deg(m) < [splg(m) : k]| and [sply(m) : k] | deg(m)!.

Gauss’ Lemma (to be proved in Exercise 4.4.2) says that if the
polynomial h € Z[T] factors in Q[T], it in fact factors in Z[T']. Eisen-
stein’s criterion says that if m = Y% ;7" € Z[T] and there exists
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a prime p such that p | ag, ..., p | ag_1, pJ aq, p*J ao, then m is ir-
reducible in Z[T] and therefore irreducible in Q[T]. Let p be a prime
and consider the cyclotomic polynomial m = 14+T +T2+4...4TP7L,
Use the geometric sum formula to show that m(T + 1) is irreducible
in Q[T, and therefore so is m. Show that m is the minimal poly-
nomial over Q of (,. Describe the splitting field splg(m). What
is [splg(m) : Q]? Express 1/(, as a polynomial in (, with rational
coefficients.

4.2.9. Let r = \3/2—|- V5 + 6/2 — \/5, taking real cube roots. Find the
minimal polynomial m € Q[T] of r over Q and the degree [Q(r) : Q].
(You may be surprised by the answer.)

3. Galois extensions

If K and L are fields containing the field k then a homomorphism o :
K — L is called a k-map (or, is a map over k) if z7 = z for all z € k,
i.e., o restricts to the identity on k. If 0 : K — L is a k-map, and h € k[T']
is a polynomial, and r € K is a root of h, it follows that h(r?) = h(r)? =

% = O, so 77 € L is also a root of h; that is, k-maps preserve roots of

polynomials over k. The automorphisms of K (isomorphisms from K to K)
over k form a group, denoted Auty(K). Composition of automorphisms is
carried out left-to-right to make the formula z°7 = (z7)" valid.

The algebraic extension K/k is called normal if for every k-map
o : K — k (which must be an injection—see Exercise 4.3.1), in fact
K? = K. Such o is therefore an isomorphism and lies in Auty(K). Thus
normality is a certain closure condition, analogous to how closure under
conjugation in group theory defines a normal subgoup. The preceding para-
graph shows that splitting field extensions are normal (Exercise 4.3.2). More
generally (see [Lal), an algebraic extension K/k is normal exactly when any
irreducible polynomial m € k[T] with a root in K has all of its roots in K.
A simple example of a non-normal extension is Q(+v/2)/Q, where v/2 is the
real cube root of 2. (Exercise 4.3.3 asks why this extension is not normal.)

A polynomial h € k[T'] is separable if it factors as a product of distinct
linear factors in sply (h), i.e., it has no multiple roots. If K /k is an extension,
the element r € K is called separable over k if r is algebraic over k and its
minimal polynomial m € k[T] is separable. The algebraic extension K/k is
separable if each r € K is separable over k.

All algebraic extensions of fields of characteristic zero are separable. To
see this, it suffices to show that for any field k of characteristic zero, each
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irreducible polynomial m € k[T] has distinct roots. Indeed, if m has a
repeated root r in spl(m), then 7 is also a root of the derivative m'. (See
Exercise 4.2.4 for a comment on this.) The ideal of polynomials of which
r is a root is generated by m, so m’, having lower degree than m, must be
the zero polynomial. In characteristic zero, this forces m to be constant,
contradiction.

All algebraic extensions of finite fields (Exercise 4.2.4) are also separable.
Exercise 4.3.4 proves this. Therefore an inseparable extension must involve
infinite fields of characteristic p. See Exercise 4.3.5 for an example.

Any splitting field extension of a separable polynomial is a separable
extension. This is proved in many algebra books, e.g., [La).

A finite algebraic extension K/k is called a Galois extension if it is
normal and separable. In characteristic zero, any finite normal extension,
and in particular any splitting field extension, is Galois. By the fact cited in
the preceding paragraph, a splitting field extension of a separable polynomial
is Galois in arbitrary characteristic. When K /k is Galois, the automorphism
group Auty(K) is called the Galois group of the extension and written
Gal(K/k). The first result of Galois theory, proved in every relevant book,
is

(4.3.1) THE GALOIS CORRESPONDENCE. Let K/k be a Galois extension
with group G. Then there is an inclusion-reversing bijective correspondence
between intermediate fields k C F C K and subgroups H C G, as follows.

{intermediate fields} — {subgroups} by F — Gy

where Gg = {0 € G : z° = z for all x € F} is the subgroup of G that fizes
F pointwise, and

{subgroups} — {intermediate fields} by Hw— K"

where KH = {z € K : 2° = z for allo € H} is the subfield of K fized
pointwise by H. In particular, only k is fized pointwise by G.
The relations

Gp|=[K:F] and [KZ:X]=[G:H]

hold for all intermediate fields F and subgroups H. In particular, |G| = [K :
k]. For any intermediate field F, the extension K/F is Galois with group
Grw, while the extension F/k is Galois if and only if H <« G, in which case
Gal(F/k) = G/H.
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For an example of all this, Exercise 4.2.8 shows that the fifth root of
unity (5 = €>™/% ¢ C has minimal polynomial m = 1+ T + T2 + T3 + T*,
and splg(m) = Q((s5) has degree 4 over Q. The extension Q((5)/Q is Galois.
Let G denote its group, of order 4. Any o € (G is specified by its action on (5
and must take (5 to another root Cg of m. In particular, the automorphism
o : (5 — (2 has order 4 since 02> = go o : (5 A G = (G A C3¢2 = Cgl
is not the identity. Thus G = Cy and its only nontrivial proper subgroup
is Cy generated by o2. Corresponding to the chain of groups {1} <Cy <G
is the tower of Galois extensions Q C F C Q((5), where F = Q(C5)<"2> is
the only proper intermediate field, of degree 2 over Q. (See Figure 4.3.1.)
Explicitly F = Q(¢5 + 45—1) since (5 + Cgl is fixed by ¢ but not by ¢. Thus
Cs+C5 ! must satisfy a quadratic polynomial over Q. Indeed, from m((s) = 0
compute

0=CG+G +G+GE +1=(G+HED+H(GHED) -1,

so that ((5 + {gl)Q =1—(G+ Cgl). Since (5 + Cgl is positive, this poly-
nomial relation identifies it, perhaps surprisingly, as the golden ratio g from
Chapter 2.

Q(¢s) | {1}

F=Q(G) | C= (o)

Q| Cs= (o)
Figure 4.3.1. The Galois Correspondence for Q({5)/Q

For another example, the Galois extension Q(+/2,(3)/Q has group G =
(o,7) where (v/2)7 = (3v/2, ((3)° = (3, and (v/2)7 = V/2, (¢3)" = (2. These
satisfy 0 = 72 = 1 and o1 = 70~!, showing that G = D3. The subgroups
and intermediate fields are shown in Figure 4.3.2, where composition is left-
to-right as usual and the double lines indicate Galois extensions.

Here is a nice connection between Galois groups and polynomial factor-
ization.

(4.3.2) PROPOSITION. Let k be a field, let h € k[T]| be a monic separable
polynomial, let K = sply (h), so K/k is Galois, and let G = Gal(K/k). Then
h is irreducible in k[T| if and only if G acts transitively on the roots of h in
K. More generally, the irreducible factors of h in k[T] are h; = [[,co,(T—T)
where the O; are the G-orbits of roots of h in K.
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{o,7)
Q(V2,(3)
Q(V2) Q(GV2) Q(GV2)
Q(¢s)
Q

Figure 4.3.2. The Galois Correspondence for Q(+v/2,(3)/Q

ProOF. Certainly h = []; hi. Any polynomial in K[T] lies in k[T if and
only if it is fixed by G. Thus each h;, being fixed by G, lies in k[T]. On
the other hand, no factor of an h; is fixed by G, so each h; is irreducible in

K[T].

4.3.1.

4.3.2.
4.3.3.

4.3.4.

O

Exercises

Let k be a field, R be a ring, and ¢ : k — R be a homomorphism.
Show that unless ¢ is identically zero, ¢ is injective. In particular, a
surjective field homomorphism must be an isomorphism.

Show that any splitting field extension is normal.

Show that the extension Q(\S/E) /Q, where /2 is the real cube root
of 2, is not normal.

This exercise shows that any algebraic extension K/k, where k is
a finite field of characteristic p, is separable. It suffices to show that
any irreducible polynomial m € k[T'] is separable, i.e., shares no factor
with its derivative. As argued in the text for characteristic zero, this
can only fail if m' = 0. In characteristic p, m’ = 0 means that
m(T) = m(TP) for some m € k[T]. Use Exercise 4.1.4 and finiteness
of k to show that the p-power map z +— zP is an automorphism (self-
isomorphism) of k. It follows that m(T?) = n(T)?P for some n € k[T,
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contradicting irreducibility of m.

4.3.5. For an example of an inseparable extension, let p be a prime, let
k = F,(W) where W is transcendental over E,, and let K be the
splitting field over k of the polynomial f = TP — W € k[T]. If
Z € K is a root of f, so that W = ZP, then in fact f = (T — Z)P
by Exercise 4.1.4, and K = k(Z). Show that Z ¢ k by supposing a
relation Z = g(W)/h(W) and taking pth powers. Thus the minimal
polynomial of Z over k is m = (T — Z)¢ for some e > 1, and the
extension K/k is inseparable. In fact, e = p, meaning that f is
irreducible over k. To see this, note that Z¢ lies in k since m € k[T].
Since also ZP € k, it follows that Z8°d(e?) ¢ k since ged(e,p) takes
the form ae + bp for integers a and b. Since we have already shown
that Z ¢ k, it follows that gcd(e,p) > 1, i.e., e = p.

4.3.6. Describe the Galois Correspondence for the extension Q(v/2,v/3)/Q.

4. The rotation group extension

Our concern is with a special case of all these ideas. To study the exten-
sion C(Z)/C(fr), where Z is a formal symbol and fr is a formal rational
expression in Z, introduce a new symbol

W = fr(Z).

Like Z, W is transcendental over C, though Z and W are algebraically
related by the definition of W. Letting fr(Z) = ¢g(Z)/h(Z), an equivalent
defining relation between Z and W is g(Z) — Wh(Z) =0, or

pw(Z)=0  where  pw(T) = g(T) — Wh(T) € C(W)[T].

Thus we are studying the extension C(Z)/C(W') obtained by adjoining the
root Z of py to C(W). In fact C(Z) is the splitting field spley) (pw) since
the roots of py are 'Z = {yZ : v € T'}, all of which are rational in Z and
thus elements of C(Z). As a splitting field extension in characteristic zero,
C(Z)/C(W) is Galois. Let G denote its Galois group. A close connection be-
tween G and I seems natural, but expressing it precisely requires some care.
The problem is that the elements of I' are fractional linear transformations
acting on C, while G consists of automorphisms of C(Z).

Any fractional linear transformation v € PSLy(C) defines—but is not
quite the same as—a corresponding automorphism v* € Autc(C(Z)). The
automorphism, called the pullback of v, is given by composition with v; in
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symbols,
Y (r) =roy (ie, v (r(2)) =r(y(Z))) forallre C(2).
(Exercise 4.4.1 asks why v* lies in Autc(C(Z)).) Thus the pullback is a map
*: PSLy(C) — Autc(C(Z)).

Exercise 4.4.3 shows that this map is a bijection.

Now we can return to the connection between the groups I' and G =
Gal(C(Z)/C(W)). Since fr(yZ) = W for all v € T', the pullback identifies
I' with a subset of G. Conversely, any automorphism ¢ € G is determined
by its action on Z and must take Z to another root of py, so it must act on
Z as some v € I'. Thus 0 = «4* and the pullback identifies I' with G. Use
this identification from now on and view G as I acting on rational functions
from the right via composition. Writing this action as 77 is compatible with
the superscript notation for automorphisms, meaning

P =10 () = (rom) 0 = (7).

Since now Gal(C(Z)/C(W)) =T as sets, Galois theory says that [C(Z) :
C(W)] = |I'|. This last equality can also be proved without Galois theory
(Exercise 4.4.4 and again in Exercise 4.4.5 by Gauss’ Lemma from Exer-
cise 4.4.2).

Even though the pullback naturally identifies the sets PSLg(C) and
Autc(C(Z2)), it is not a group isomorphism. For any 7,7 € PSLo(C)
and r € C(Z2),

(1072)'r=ro(v1072) =(rom)eye=(ri(r) = (o)

meaning (y; o y2)* = <3 o~j. Thus the pullback reverses products; it is
an anti-homomorphism or a contravariant map. The clever trick that
modifies the pullback into a homomorphism is combining it with another
product-reversing operation, the inversion map on PSLy(C). Define the
inverse-pullback

~* . PSLy(C) — Autc(C(2))

by v~ *(r) = rov~! for all 4y € PSLy(C) and r € C(Z). This is a group iso-
morphism (Exercise 4.4.6). Thus Gal(C(Z)/C(W)) is not only elementwise
identified with I", the two groups are isomorphic; but the isomorphism is not
the natural identification.



4.4.1.

4.4.2.

4.4.3.

4.4.4.

4.4.5.

4. THE ROTATION GROUP EXTENSION 81

Exercises

Show that for any v € PSLy(C), the pullback v* is an automorphism
of C(Z) over C.

(a) A polynomial p € Z[T] is called primitive if the greatest common
divisor of its coefficients is 1. Show that the product of primitive
polynomials is again primitive.

(b) Use (a) to show that if the polynomial p € Z[T] factors nontrivially
in Q[T'] then it factors nontrivially in Z[7T"]. (Hint: first show that any
nonzero polynomial ¢ € Q[T] takes the form ¢ = ry¢g where 4 is a
rational number and § is primitive in Z[T']. Apply this to the factors
of p.)

(c) Confirm that your proof of (b) goes through verbatim when Z and
Q are replaced respectively by any unique factorization domain and
its field of quotients. The results in (a), (b) and (c) all go under the
name Gauss’ Lemma.

This exercise shows that the pullback * : PSLy(C) — Autc(C(Z))
is a bijection.

(a) Show that the pullback is an injection.

(b) To show that the pullback surjects, take o € Autc(C(Z)). Then
in particular o(Z) = g(Z)/h(Z)C%HW' € C(Z), where g,h € CI[T]
share no factor and aren’t both constant, and this completely specifies
o. Show that [C(Z) : C(W')] = max{deg(g),deg(h)} by using the
ideas of the section: let p(T) = g(T) — W'R(T) € C(W')[T]; then
p is satisfied by Z and is irreducible in C(W')[T]| by Gauss’ Lemma
(Exercise 4.4.2), so it is the minimal polynomial of Z over C(W'),
up to scalar multiple. Since o is an automorphism, C(W') = C(2),
i.e., max{deg(g),deg(h)} = 1, i.e., o acts on Z as an element 7 of
PSLy(C), i.e., o = ~v*.

Prove without Galois theory that [C(Z) : C(W)] = |T'| by justifying
the following argument as necessary. The group I fixes C(W') and acts
transitively on the roots I'Z of pyy. The elements of I'Z occur once
each as roots since they are distinct and deg(pw) = |I'|. No proper
factor of pyy is fixed by T, hence no proper factor lies in C(W)[T], so
pw is irreducible over C(W) and [C(Z) : C(W)] = deg(pw) = |T|.
This proof that pyy is irreducible is similar to the proof of Proposition
4.3.2, which relies on unproven facts about the Galois Correspondence.
Why doesn’t the argument here rely on anything we haven’t proved?
Use Exercise 4.4.2(c) to show that py from the section is irreducible
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by considering it first as an element of C[W][T| = C[T|[W]. (The ring
k[Ty,...,T,] of polynomials over any field in any finite number of vari-
ables is a unique factorization domain—see, for example, [Co-Li-O’S].)
As in the preceding exercise, the relation [C(Z) : C(W)] = |T'| follows.

4.4.6. Show that the inverse-pullback ~* : PSLy(C) — Autc(C(Z)) is a
group isomorphism. (Hint: the inverse-pullback is the composition of
the inversion map on PSLy(C) and the pullback, so it suffices to show
that each of these maps is contravariant and bijective.)

5. The Radical Criterion

Let p € k[T] be a polynomial over a field. This section develops the cri-
terion that Galois gave to determine whether the roots of p can be expressed
in radicals over k. In field language, the question is whether the splitting
field sply (p) is contained in a field obtained by adjoining radicals, starting
from the base field k. Thus the following definition is natural.

(4.5.1) DEFINITION. Let k be a field. A root tower over k is a sequence
of fields k C k; C kg C --- C ky such that

ki = k(a1) where a}' € k for some ny € Z7T,
ko = ki (a2) where ay? € ky for some ny € Z7,
kg = kg 1(aq) where ay* € kq_1 for some ng € Z+.
The exponents nq, ..., ng are taken to be minimal and are greater than 1,

of course.
An ezxtension K/k is constructible by radicals if there there exists a
root tower k C -+ C kg with K C kg.

Galois showed that solvability of the polynomial p by radicals is equiv-
alent to a condition on the group Gal(sply(p)/k). Since finite groups are
comparatively simple objects, this is a tremendous reduction. The relevant
definition is

(4.5.2) DEFINITION. A finite group T is solvable if there exists a chain of
subgroups

{1}=I‘d<1Fd,1<1---<11"1<11"0:F
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each normal in the next and with each quotient I';/T';y1 a cyclic group Cy,.
This chain s called a subnormal series for T'.

This definition is unaffected if the quotients are stipulated to be abelian
rather than cyclic (Exercise 4.5.1). Any subgroup or quotient group of a
solvable group is again solvable (Exercise 4.5.2).

Galois’ criterion in its most general form is more than we need. We are
working over the field C, which contains all roots of unity and has charac-
teristic zero. In a root tower whose base field contains enough roots of unity,
each extension k; /k;_1 is cyclic, meaning it is a Galois extension with cyclic
group, in this case C,,, (Exercise 4.5.3). Roots of unity will also play a role
in Lagrange’s Lemma, to be stated soon. In characteristic zero, any finite
extension K /k is separable and K has a Galois closure over k, meaning
the smallest superfield K’ of K such that K'/k is Galois. This is the field
generated by all k-embedded images of K into the algebraic closure of k—we
skip the details.

(4.5.3) RADICAL CRITERION (OVER C). Let k be a field containing C, let
K/k be a finite extension, and let K' be the Galois closure of K over k.
Then

K/k is constructible by radicals <=  Gal(K'/k) is solvable.

When these conditions hold, there exists a root tower over k whose top field
is K'. In particular, if K/k is Galois with a solvable group then K itself is
the top field in a root tower over k.

PROOF. ( = ) Suppose K/k is constructible by radicals. Applying the
Galois Correspondence to a root tower k C --- C kg gives Figure 4.5.1.
The extension k;/k is Galois with a cyclic group, say Cp,, so I'1 <y and
I'y/T'y = Cy,- Proceeding up the tower in this fashion shows that Gal(k;/k)
is solvable. Recall that K C kg; the Galois closure K’ also lies in k; (Exer-
cise 4.5.4), so Gal(K'/k) is a quotient of Gal(ky/k) and is therefore solvable
as well. O

Proving the other direction requires some preliminary results.

(4.5.4) LINEAR INDEPENDENCE OF AUTOMORPHISMS. Let k be a field.
Any set S of automorphisms of k is linearly independent, meaning that there
s no relation

(4.5.5) a1+ -+ ano, =0

with nonzero a,...,a, € k and distinct o1,...,0p € S.
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kq | Ty = {1}
kg1 |Tg1
k1 'y
k P() = Gal(kd/k)

Figure 4.5.1. Root tower and corresponding chain of subgroups

The proof is Exercise 4.5.5.

(4.5.6) LAGRANGE LEMMA. Let n be a positive integer, and let k be a field
containing a primitive nth root of unity ¢,. Let K/k be cyclic of degree n,
i.e., Galois with group C,. Then there exists an element a € K such that
k(a) = K and o™ € k. That is, K is generated over k by an nth root.

Note that n is the smallest positive exponent such that a™ € k, otherwise
a would satisfy a polynomial of smaller degree over k, violating [k(a) : k] =
[K : k] = |Gal(K/k)| = |Cp| = n. The (, in the Lagrange Lemma need not
be the familiar complex number (,, = e2mi/n for example in the case of finite
fields.

PRrROOF. Let o generate the Galois group. Define 7 = ;‘:_01 fbai. By linear

independence, there exists b € K such that a = b” is nonzero. Compute

n—1 n—1
@ =07 = (L ar) =L G =a =gt
i=0 i=0
Thus a°° = ¢ 'a#afori=1,...,n —1, showing that the fixing subgroup
of k(a) is {1}, so by the Galois Correspondence k(a) = K. And since
(@) = (a°)" = ((ta)" = a, it follows that a™ is fixed by the entire
Galois group, so a” € k. O

Now we can prove the other direction of the Radical Criterion.

PROOF. (<= ) Suppose Gal(K'/k) is solvable. The Galois Correspondence
gives Figure 4.5.2. Since I'; « Ty and I'y/T'y = Cy,, the Lagrange Lemma
shows that ki = k(a;) with af* € k. Proceeding down the subnormal series
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K'| Ty = {1}
kg1 |Ta1

ki | Iy

k | Ty = Gal(K'/k)

Figure 4.5.2. Subnormal series and corresponding tower of fields

shows that the intermediate fields form a root tower. Since K C K', K/k is
constructible by radicals. O

Proving the last two statements of the Radical Criterion is Exercise 4.5.6.

4.5.1.

4.5.2.

4.5.3.

Exercises

Show that changing the word “cyclic” to “abelian” in Definition 4.5.2
does not affect which groups are solvable.

(a) Prove the Third Isomorphism Theorem of group theory: Let G be
a group with normal subgroups N C H. Then H/N <G /N and there
is a natural isomorphism (G/N)/(H/N) = G/H. (Show that the
map G/N — G/H given by gN — gH is well-defined, is surjective,
and has kernel H/N.)

(b) Show that any subgroup or quotient group of a solvable group T’
is again solvable. (If H is a subgroup, intersect a subnormal series
for I' termwise with H. Show that each term in the resulting chain
is a normal subgroup of the next. To study the quotients, note that
the map I'y N H — I'; — I'; /T 41 has kernel I';;1 N H and cite the
First Isomorphism Theorem. Similarly, if I'/N is a quotient group,
map the subnormal series for I' termwise to I'/N. Again each term
in the resulting chain is a normal subgroup of the next. Use the
First Isomorphism Theorem to show that the terms are isomorphic
to I';/(I'; N N), and then use the Second and Third Isomorphism
Theorems to study the new quotients.)

Show that in a root tower over a base field k, each extension k;/k;_;
is Galois with group C,; provided that k contains a primitive n;th
root of unity, i.e., (n, such that (fi =1 # Cﬂ;i for 1 <j < n;.
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4.5.4. In the proof of ( = ) of the Radical Criterion , explain why K’ C kg.

4.5.5. Prove the linear independence of automorphisms as follows. As-
sume a relation ) ;" a;o; = 0 of the form (4.5.5) with minimal n.
Then n > 2. There exists £ € k such that 7' # z°2. Show that
Yo aix’0; =0 and Y1 a;z%0; = 0. Subtracting these relations
gives a contradiction.

4.5.6. Complete the proof of the Radical Criterion.

6. Algebraic inversion of the nonicosahedral invariants

Each finite rotation group I' except the icosahedral group I'y is solvable.
Each nonicosahedral extension C(Z)/C(W), being Galois, can therefore be
constructed by a sequence of root adjunctions, cf. the last sentence of the
Radical Criterion. On the other hand, the icosahedral group is not solvable
(Exercise 4.6.1), so no sequence of root adjunctions to C(W') will produce a
superfield of C(Z) in the icosahedral case.

To invert the cyclic and dihedral equations consider the chain of sub-
groups {1} « Cy, < D,, with corresponding tower of cyclic extensions shown
in Figure 4.6.1. The field containments show that fc, is rational in Z, and
fp,, is rational in f¢, , as we already know from the relations fo, = Z™ and
fp, = (fc, + 1)2/(4fc,). These two relations can be recast as polynomial
conditions. Indeed, setting W = fp_ in the second relation shows that fc,
satisfies the polynomial

Mo 5o, (T3 W) =T? + (2 = 4W)T + 1

whose solutions involve a square root over C(W). (The notation m(T; W)
is meant to suggest a polynomial in 7' whose coefficients depend on W.)

C(2) )
n|C,
C(fe.) > Dy,
2| C,

C(fp,) )

Figure 4.6.1. Tower of fields for {1} «C, <« D,
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Similarly, setting W = f¢, in the first relation shows that Z satisfies the
polynomial

whose solutions involve an nth root /W over C(W). The dihedral inversion
now reduces to a two-step procedure:

(4.6.1) ALGORITHM. To invert any specific equation fp, (z) = w for w €
C,

1. Find a root w' of my, /s, (T5w).
2. Find a root 29 of myys, (T;w'). The z-values over w are
then Dy(zp).
Skipping the first step and taking Cy(29) in the second inverts the equation

fo,(z) =u'.

To invert the tetrahedral and octahedral equations, take the chain of
subgroups {1} <Cy <« Dy «T'r < T (the Dy is the Klein four-group V) with
corresponding tower of cyclic extensions shown in Figure 4.6.2. The bottom
field containment shows that fo is a rational expression in fr. To find this

C(sz) 4 FO

C(fo) )
Figure 4.6.2. Tower of fields for {1} «Cy <« Dy «I'r «T'p
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expression, recall the relations

(F5 1) _ (Fo)- 72 _ B —Fiy
(F2p)s’ O 108(Fp). 3T 12iv/3

Geometry shows that Fi o = F3r and Fo 0 = Fi7F>7 up to constant

fr=

multiples, and in fact the forms are normalized so that these identities hold.
Thus
_ (Fo)e  (FirFp).  (120V3)X(FirFr).
108(Ffp)s  108(Fyp)x  108((FPp)« — (Fip)+)?
SAFFR). gy
(FPr)2(fr—1)2  (fr—1)?

Setting W = fo in this rational relation shows that fr satisfies the polyno-

fo

mial
Mo (TsW) =T + (4/W - 2)T + 1
whose solutions involve a square root over C(W).
Similarly, fr must be rational in fp,. Recall that

ooz 74+ 20322 + 1Y
Dy = "yza T=\zt 22322 +1)’
q te fou it Z4 427241 2Z2+2i\/§Z2 74+ 21322 + 1
11 m = —_ = .
anc compuie Jp, 143 172 172" a4z | 422
Z* — 23722+ 1 o, + 3
Likewi 2 _ .S = (L2258 d setti
ikewise, fp, + (3 172 o fr Font )’ and setting

W = fr in this rational relation shows that fp, satisfies the polynomial
My o (TiW) = (W = 1)T° +3(W(E — )T +3(W ¢ — )T + (W - 1).

Since m oyl fr is a cubic, its roots can certainly be obtained by extracting
square roots and a cube root over C(W) (see Exercise 4.6.3), but in fact
the Lagrange Lemma says that only the cube root is necessary (see Exer-
cise 4.6.4).

Now the octahedral inversion procedure is

(4.6.2) ALcORITHM. To invert any specific equation fo(z) = w for w € C,

1. Find a root w' of mys, s, (T5w).

2. Find a root w" of Mmip / iz (T5 w').

3. Find a root w" of mys, /¢, (T;w").

4. Finally, find a root 20 of mzy . (T;w™). The z-values over

w are then T'o(2p).
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Skipping the first step and taking Tp(zo) in the last inverts the equation

fr(2)

=

Calculating the rational relations among fo, fr, and fp, was undeni-

ably tricky. Exercise 4.6.7 obtains the relations more naturally by geometric,

function theoretic methods, and the next section will introduce some alge-

braic ideas to explain what’s going on. The algebra will also make inroads

in the icosahedral case.

4.6.1.

4.6.2.

4.6.3.

Exercises

(a) Here is an algebraic proof that the alternating group A, is sim-
ple (has no nontrivial normal subgroups) for n > 5. Fill in details
as necessary. Suppose {1} # K < A,,. As in Exercise 3.4.4, show-
ing K contains a 3-cycle shows that K = A,. The claim is that
any nonidentity g € K that fixes a maximal number of {1,...,n} is
in fact a 3-cycle. Otherwise g is one of the following disjoint cycle
products: (a) g = (123 ---) ---, or (b) g = (12)(34) ---, a prod-
uct of transpositions. In case (a), g # (1234), so g moves each of
{1,2,3,4,5}. In either case, take g1 = (345)g(354) (right-to-left),
obtaining (124 ---) --- in case (a) and (12)(45) --- in case (b). In

1 is not the identity and fixes more elements than

both cases go = g19~
g, contradiction.

(b) Here is a geometric proof that the icosahedral group I'; = A5 is
simple. Let H be a normal subgroup. If H contains any element of
order two, it contains all 15 such elements in I'; since all mid-edge
rotations are conjugate. Similarly, if H contains any element of order
three it contains all 20 such, and if H contains any element of order
five then it contains all 24 such (this last case is a little trickier to argue
than the first two—rotations by 27/5 and 47 /5 are not conjugate).

Thus
|H| =1+ 15a + 20b + 24¢  with a,b,c € {0,1}.

Since |H| divides 60, each of a, b, c must be zero and H is trivial.

Derive the polynomialsmy,. /., Mfp, [ frs Mfc, | fon and mz/ e, from

Dn,
the relevant rational relations. !

Here is how to find the roots of the general cubic f(T') = T2 + bT? +
T + d € k(b,c,d)[T] where k is a field of characteristic other than
2 or 3, the symbols b, c,d can be numerical values or unknowns, and

k(b,c,d) contains a primitive cube root of unity. (The procedure is
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given here without motivation. After we develop more theory the cu-
bic will be solved again, systematically, in Exercise 5.1.6. The quartic
is treated in Exercise 5.1.7.)

Step I: Substitute 7= X — b/3 to reduce the problem to finding the
roots of the depressed cubic polynomial g(X) = X3 + pX + ¢ for
certain p,q € k(b, ¢, d).

Step II: Introduce new unknowns U,V such that X = U + V and
UV = —p/3. This gives the pair of conditions U3+V3=—q, U3 =
—p3/27. Therefore U3 and V? are roots of the quadratic polynomial
Y? + qY — p?/27 and can be found by taking a square root.

Step III: Find possible pairs (U, V) by taking cube roots of U3 and V3
subject to the condition UV = —p/3. Substituting back X =U +V
and T'= X — b/3 now gives the roots.

(a) Justify the steps as necessary. Where are the exceptional charac-
teristics 2 and 3 disallowed?

(b) In step I, compute p and ¢ in terms of b, c,d, perhaps with the
help of a symbolic algebra package.

(c) In step II, assuming —3 has a square root in k(b, ¢, d), show that
the square root operation is unnecessary if and only if —4p3 — 27¢? is
a square in k(b, ¢, d). This quantity is called the discriminant of g.
(d) Find the roots over C of the polynomial 7% — 3T + 1.

The Lagrange Lemma guarantees that finding the roots of m oy /fr
doesn’t require square roots. Use a symbolic algebra package to con-
firm that indeed the discriminant of my, ;. is a square in C(W).
Find all z € C such that fp, (z) = 1/2.

Find all z € C such that fr(z) = (2.

This exercise uses geometry and function theory to recalculate fo as
a rational expression in fr, and fr as a rational expression in fp,,
without relying so heavily on formula crunching. Fill in the details as
necessary.

For each noncyclic group I, the function fr has been concocted to
take the value oo at the vertex orbit O; to order n; = |I'|/|O:|; the
value 0 at the face-center orbit Oy to order ny = |I'|/|O2|; and the
value 1 at the mid-edge orbit O3 to order ng = |I'|/|O3] = 2. Each
other value is taken by fr on one full orbit to order 1.

In particular, the octahedral function fo has poles of order 4 at the
octahedral vertices and zeros of order 3 at the octahedral face-centers.
To construct a rational expression in fr that mimics this behavior,
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start with 1/(fr — 1)2, which has poles of order 4 at the tetrahedral
mid-edges—which are precisely the octahedral vertices—and zeros of
order 6 at the tetrahedral vertices. Similarly, fr has poles of order
3 at the tetrahedral vertices and zeros of order 3 at the tetrahedral
face-centers. Thus the product fr/(fr — 1)? has the same zeros and
poles as fo, so fo = kfr/(fr —1)? for some k € C. Evaluating both
sides of the equality at an octahedral mid-edge such as (s shows that
k= —4.

As just mentioned, the tetrahedral function fr has poles of order 3
at the tetrahedral vertices and zeros of order 3 at the tetrahedral
face-centers. The tetrahedral face-centers form a Dy-orbit, so for any
tetrahedral face-center ¢ the difference fp, — fp,(c) is independent
of ¢ and works out to fp, + (3. This has zeros of order 1 at the
tetrahedral face-centers and poles of order 2 at the dihedral vertices
{0, 0}. Similarly for any tetrahedral vertex v, fp,—fp,(v) = fp,+(3.
This has zeros of order 1 at the tetrahedral vertices and poles of
order 2 at {0,00}. Thus fr = k(fp, + (3)*/(fp, + (3)® for some
k € C. Evaluating both sides at the tetrahedral and dihedral mid-
edge 1 shows k = 1.

7. Resolvents

The preceding section showed how to find z satisfying fr(z) = w for
nonicosahedral I', via successive adjunctions of polynomial roots. Field-
theoretically, the adjunctions constructed C(Z) from C(W). The polyno-
mials m(T; W) used to build intermediate fields between C(W') and C(Z)
were obtained from certain rational relations, but they can also be obtained
directly via a general procedure as follows.

Let K/k be a Galois extension with group G. Take an element r € K
that is fixed by the subgroup H C G. Although H need not be normal in G,
the right coset space H\G = {H~ : v € G} makes sense. It contains [G : H]
elements. Every element hy of the coset Hvy acts on r from the right as
does, so for the purposes of acting on r, we may specify the coset space H\G
by a set of representatives y. The resolvent of r is the polynomial

Rxn= |[ (T-7).
YEH\G

This polynomial is G-invariant, since as -y runs through a set of coset repre-
sentatives so does g for any fixed g € G, giving RfK/k =Iema(T—r") =



92 CHAPTER 4. INVERSES OF THE INVARIANT FUNCTIONS

R, x k- Therefore R, k /i lies in k[T'] by Galois theory. It is irreducible since
G acts transitively on its roots, so it is the minimal polynomial of r over k.
The various extensions k(r?)/k obtained by adjoining resolvent roots there-
fore have degree [k(r?) : k] = deg(R, x/x) = [G : H]. (See Exercise 4.7.1
for a description of the fixing subgroups of each k(r?) and of spl (R, x/x)-)
Thus on the one hand, the resolvent lets us write down the minimal polyno-
mial of a specified r once we know its fixing subgroup H, and on the other
hand, by judicious choice of r with appropriate fixing subgroup H we can
construct specified intermediate fields between k and K.

For a familiar example, recall the Galois extension Q({5)/Q with group
(0 : ¢ = ¢2) cyclic of order 4. The element (5 + (5 * € Q(5) is fixed by
the subgroup (¢2) of the Galois group (o). Representatives for (¢2)\(o) are

{1,0}, so
R€5+C5_1,Q(C5)/Q = (T - (C5 + Cs_l))(T - (Cg + C5_2))

Since (2 = 1 and Z;'l:o ¢t = 0, this works out to 7?4+ T — 1, again recovering
that (5 + 45—1’ being positive, is the golden ratio g.

For another example, reconsider the dihedral extension C(Z)/C(fp,)-
The cyclic invariant fc, € C(Z) is fixed by the subgroup C,, of the Galois
group D,. Representatives for Cp,\D,, are {1,tp} where tp(z) =1/z, so

Ry c@)/cip,) = T = fe,)(T — fc, otp) = (T — Z™)(T' —1/Z")
=T? - (Z"+1/Z™)T + 1.

This reduces, as expected, to the familiar my, /z, (T;W) = T? + (2 -
4W)T + 1 where W = fp = (Z™ +1)%/(42Z").

Similarly, return to the octahedral extension C(Z)/C(fo). The tetra-
hedral invariant fr € C(Z) is fixed by the subgroup I'r of the Galois group
I'o. Representatives for I'r\I'o are {1,s4} where s4(z) = iz. Note that
fr oss = 1/fr since s4 exchanges the tetrahedral vertices and the tetra-
hedral faces, where fr = oo and fr = 0 respectively, and preserves the
tetrahedral edges, where fr = 1. Thus,

Ry,.cz)/cto) = (T — fr)(T =1/ fr) = T? = (fr + 1/ fr)T + 1.

Having degree 24 = |I'p| and being I'p-invariant, fr + 1/fr is a fractional
linear transformation of fp. Since it takes the value 2 at the octahedral
vertices (which are the tetrahedral edges), the value oo at the octahedral
faces (which are the tetrahedral vertices and faces), and the value —2 at the
octahedral edge (g, it must be fr+1/fr = —4/fo +2. Now setting W = fo
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in the resolvent recovers the polynomial m /s, (T; W) = T? + (4/W —2)T +
1.

Exercises

4.7.1. Let K/k be a Galois extension with group G, and let r € K be fixed
by H C G. Show that k(r7) = KO 'H7 for all v € G. Show that
sple (R x k) = K" where N = ﬂveH\G('y_lH'y) is the largest normal
subgroup of G contained in H.

4.7.2. Consider the Galois extension Q((5)/Q(¢s+(5 ") with group (7 : (5
¢ 1) cyclic of order 2. Compute the resolvent R —1y.
G51v>e an expression for (5 in radicals over Q. Q)

4.7.3. Recompute the polynomial m o,/ fr 3 @ resolvent. (This is harder
than the examples in the section.)

8. The Brioschi resolvent

The icosahedral extension C(Z)/C(fr) has Galois group I'; containing
five tetrahedral subgroups, each stabilizing a configuration of golden rectan-
gles as described in Section 2.5. Single out the stabilizing group 'z of the
configuration originally set in the coordinate planes but then rotated about
the zo-axis in Section 2.7. Thus f‘T = al'ra~! where _«a is the rotation.
(See Figure 4.8.1.) The field of invariant functions C(Z)I'7 is generated by

fr = fr oa~!l. The corresponding tower of fields is as follows.
C(2)
12 | T'p
C(fr) Iy
5
C(f1)

Any ['r-invariant rational function r has a resolvent R, c(z)/c(s;) of degree

IV f‘T] = 60/12 = 5. Fairly general geometric, function theoretic tech-
niques, akin to Exercise 4.6.7, provide a recipe for computing such R, but
instead we will use a more convenient form-based method.

Let I'; and f‘lf denote the lifts of T'; and T' to SLy(C) and suppose the
form F € C[Z, Zo] is T-invariant with trivial character. The polynomial

R; = H (T - Fo 7
'y’ef’T\I"I

is then well-defined and has degree [} : T = 5. Its coefficients are I'j-
invariant forms with trivial character and therefore lie in C[F} 1, Fo 1, F3 1).
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Figure 4.8.1. Rotated golden configuration

Certain rationalization techniques, better demonstrated explicitly than de-
scribed in general, modify this form resolvent into a resolvent of the fa-
miliar type—that is, a polynomial in C(f7)[T] with a ['p-invariant rational
function for one of its roots.

Obtaining f"T—invariant forms F, needed to compute form resolvents,
from I’/ -invariant forms F, which we already have, is easy in principle. Lift
the relation I'y = alpa~! in PSLy(C) to Iy = o/Th(o/)~! in SLy(C).
If F is I/ -invariant with character xp then Exercise 4.8.1 shows that the
“rotated” form F = F o (o/)~" is f"T-invariant with essentially the same
character, ¥z (aya™!) = xp(7y). (No primes are needed in the notation here
because all Platonic characters descend to projective groups, cf. Section 3.4.)
Since o' = fi,arctan g 15 described explicitly by Theorem 2.2.3, we can thus
compute F, given F.

The simplest tetrahedral form with trivial character under f‘T is _F’?,,T =
F1 0, the vertex form for the rotated octahedron (Figure 4.8.2). (In fact,

1 inspection of the degen-

since I'p = (8%,10), where in general, ¥ = aya~
erate octahedral ground form characters shows that they are all trivial under
I'r. Thus each octahedral form provides a quintic icosahedral resolvent.)

Computing the resolvent for F 1,0 Tequires computing 17’1’0 = F100(c/ )t
itself. A cute shortcut avoids computing (/) ! and the composition. The
idea is that the vertices of the rotated octahedron, where F1,o vanishes,
come in three pairs: {%i}; the fixed points of the icosahedral rotation tr;

and the fixed points of fi_wl/2 otro f;x/2, where the notation f; /2 is as in
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X1

Figure 4.8.2. Rotated octahedron

Section 2.2. The form vanishing at {+i} is Z2 + Z2. The fixed points of ¢;
satisfy (g—z2)/(gz+1) = 2, i.e., 22+(2/g)z—1 = 0, so the form vanishing at
such points is Z2+(2/g) Z1 Zo— Z3. The fixed points of fi;rl/QotIOfi’ﬂ/g satisfy
t1(fix/2(2)) = fix/2(2). Theorem 2.2.3 reduces this to t7((z —1)/(z + 1)) =
(z — 1)/(z + 1) (Exercise 4.8.2), or equivalently, to ((z — 1)/(z + 1)) +
(2/9)(z — 1)/(z +1) — 1 = 0, which works out to 22> — 29z — 1 = 0, so
the corresponding form is Z? — 29Z; Zs — Z2. Multiplying the three forms
together gives (Exercise 4.8.3)

Filo=28+2277, — 52173 — 57} 73 — 22,75 + Z85.

Note the slightly asymmetric distribution of coefficients.
Since deg(F).0) = 6, its form resolvent

R =1T° + a1T4 + GQT3 + CI,3T2 + a4T + a5

F10

has as each coefficient a; a form of total degree 6i in C[Fy 1, Fy 1, F 1]. Since
deg(F1,1) = 12, deg(Fs,r) = 20 and deg(F3 ;) = 30, it follows immediately
that a1 = a3 =0, ag = k'QFL], a4 = k‘4F12’I and as = k5F3,]. In the relation
RFI,O (F1,0) = 0, setting the coefficients of Z3°, Z?°Zy and Z78Z3 of the left
side to zero gives

Rp, , =T° = 10F [T° + 45F7 T — F3,1.

To turn this into a resolvent whose coefficients depend on one parameter,
note that F1,0F12, 1/F5,1, a quotient of same-degree rotated tetrahedral forms
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with trivial character, is a root of
5 3
TF; ,) (TF3 1) o (TFs;
—| —10F —| +45F{ ;| —~| — F31=0.
( Fi; Fiy "\ i
Equivalently, after some algebra,
F? 5, F3 .\
T5 — 10( 31)T3 +45(#> T- (L) =o0.
F3; F3; F3;

Since fr =1 — (F3;)«/(1728F7 )., setting W' = 1/(1728(1 — fr)) gives the
resolvent of the rational tetrahedral invariant § = (ﬁ’l,oFﬁ )5/ (F3.1) %,

Rsc(zy/c(mn(T;W') =T° — 10W'T? + 45W"°T — W'.

The right side of this last equality is the very important Brioschi quintic.
Chapter 5 will discuss it and reduce solving the general quintic to the Brioschi
case.

Exercise 4.8.5 mimics the techniques of this section to compute another
quintic icosahedral resolvent, which also is in a form to be discussed in
Chapter 5, and Exercise 4.8.6 sketches how to compute an entire family of
such resolvents.

Exercises

4.8.1. Let T, = o/T’.(o/)"! as in the text. If F is a I'-invariant form
with character xr, show that the rotated form F = F o (o)~ is I~
invariant with essentially the same character, ¥z (aya™!) = xr (7).

4.8.2. Show that f; r/o(2) = (2 —1)/(z + 1) as claimed in the calculation of
Fll,O-

4.8.3. Confirm the expression for 13'1,0.

4.8.4. Confirm the formulas for the form resolvent Rf’“l,o and the resolvent
R;.

4.8.5. This exercise computes the resolvent for 13’2,0. Take the Hessian of
Fl,O and divide by a factor to obtain

Foo=-28+ 7775 17572 — 172273 + 172375 — 12275 — 7,7 - Z8.

Explain why the resolvent of this form is Ry, = T> + k3F127 T2 +
kyFy 1 Fo 1T + k5F22, ; for some constants k3, k4, k5. Equate coefficients
in the relation Ry (Fy,0) = 0 to obtain

Rﬁz,o =75 + 40F12,IT2 _ 5F1,[F2,1T + F22,I'
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Homogenize Fyo to & = (Fo0F11)s/(For)«, set W' = 1/(1728f7),
and show that £ is a root of
Ri c(zy/c(mn(TsW') = T° + 40W'T? — 5SW'T + W'

This resolvent, with no 7% or T2 term, is in principal form.

In fact, the icosahedral equation has an entire family of principal
quintic resolvents, one for each nonzero vector (ci,cy) € C2. To see
this, argue by degree that the resolvent

R iy oterFrofso = H (T — (c1F2,0 + coF1 0F50) o)
vy €T\,

is principal. That is, its 7 coefficient is a combination of I'}-invariant
forms of degrees 8 and 14, forcing it to be zero, and similarly for the
T3 coefficient.

The calculation may be skipped in the context of this book since we
are more interested in the Brioschi quintic than in principal ones, but
it works out to

=T° +5(8c}FY | + cleaFs g
+ 7201 G F} [ + ¢3Fy 1 Fs 1) T?
+ 5(—ci P11 Far + 18I 3 FY [ Fa
+ 13y  Fy + 216, Ff 1 Fy )T
+ (}Fy p — 1061 Fy 1 Fy

+45c1 o FY [ Fy p + &3 F5 1 Fyp).

c1Fy 0+caF1,0F2 0

Note that this degenerates to the previous problem when (c1,c2) =
(1,0). As usual, this can be modified to a rational resolvent, whose
coefficients will be functions of ¢;, ¢o and f;. Rationalize Clﬁg,o +
CQFLOFQ,O to

i =di(12F,0F1 1) «/ (Fo.1)s +d2(12F1,0F12,1)*/(F3,1)* -(12F2,0F1.1)+/(Fa.1)s

Ri.c(z)/c(i)(T; W) = T° +

where d1 =C (FQ’[)*/(]_ZFL[)* and dg = CQ(FQ’[F:;,I)*/(14:4FEI)*, and
set W' =1/(1 — fr); then 4 satisfies the resolvent
5W'
wW'—-1
15w’
+ w’'—-1
3w’

+ T (4843 — 4043 d3W' + (15dyds + 4d3)W'?).

(8d3 + 12d3dy + (6d1d3 + d3)W')T?

3

(—4d? + (6d2d3 + 4d d3)W' + Zd;*W'Q)T
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9. Inversion of the icosahedral invariant

Adjoining the root § = (ﬁ’l,oFf, 1)x/(F3.1)« of the Brioschi resolvent to
the ground field C(f7) gives the field of rotated tetrahedral functions, C(f7).
(See Exercise 4.9.1.) Thus C(fr) = C(3, 1), meaning that fr is a rational
function of § and fr, or equivalently, a rational function of § and the quantity
W' = 1/(1728(1 — f1)) from the preceding section. Finding this rational
function will complete the icosahedral inversion since we know to invert the
tetrahedral invariant.

A more conveniently expressed degree 12 tetrahedral invariant than fT
is

(F70)s _ (Ff,oFfl,I)* (F32,1)* g

) —

(FI,I)* a (F?,QI)* (F151)* W

=

with explicit formula

(F20)e (254225 — 524 — 522 — 27 + 1)2

", Z(Z10 41125 — 1)

The normalized invariant fr, which we want, is a fractional linear transfor-
mation of 7. Since 7 vanishes at the edges of the rotated tetrahedron, the
specific relation is

P _T) T—7(q)
Jr=—F="——
7lq) T —7(p)

where p is a tetrahedral vertex and g is a tetrahedral face. Exercise 4.9.2
shows that p and ¢ may be taken as (5 12 and (52 respectively where z =
(249 —+/9 F 39)/2. Exercise 4.9.4 gives 7(p) = (114 3iv/15)/2, 7#(q) = 7(p)-
Thus
> 11+43iv15 7— (11 — 3iv/15)/2
It = s o (11 + 3iv/15) /2

Now the icosahedral inversion procedure is

(4.9.1)

(4.9.2) ALGORITHM. To invert any specific icosahedral equation fr(z) =w
with w € C,

1. Set w' = 1/(1728(1 — w)) and find a root § of the Brioschi
resolvent Rs c(zy/c(f;)(Tiw'). Thus § = 3(z) for some value
z € f; H(w).

2. Set 7 = 32/w' and compute w" = fr(z) from 7 using (4.9.1).

3. Finally, since fT = froa !, find a root zy of the equation
fr(a=tz) = w" (cf. Section 4.6). The z-values over w are
thus T'r(2p).
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Step 1, which requires a root § of the Brioschi resolvent, is not in radicals.

Exercises
4.9.1. Explain how the tower of fields

C(fr)

C(gaff) 9

C(f1)

shows that either C(3, f;) = C(fr) or C(3, f1) = C(f7). Rule out the
second possibility by considering the degree of 3.

4.9.2. This exercise calculates the points p and ¢ in the text. Explain why
they may be taken as p = (5 12 and ¢ = (52 where z is the icosahedral
face-center of the leftmost inner triangle (with sides labeled 3, 4) in
Figure 2.7.3. (It may help to find the point corresponding to z in
Figure 4.9.1 and note that tetrahedral vertices sit at icosahedral face-
centers.) Explain why #7(s2z) = s, 22. Compute from this condition,
using the methods of Section 4.8, that z = (2+¢—+/9 + 3g)/2. Where

is (24+ 9+ +/9+39)/2 in Figure 4.9.17

Figure 4.9.1. Tetrahedron and countertetrahedron

4.9.3. Explain why C(5) # C(7) = C(fr). (See Theorem 3.6.2.) Divide
the Brioschi relation R c(z)/c(s,)(5) = 0 by W'?5 to obtain

(4.9.3) 72— 107 +45 =1/3
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4.9.4.

(4.9.4)

4.9.5.

4.9.6.
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and conclude that [C(7) : C(§)] = 2.
(a) Square both sides of (4.9.3) and multiply by 7 to obtain a quintic
equation satisfied by 7 over C(W'),

F(7% — 107 + 45)% = 1/W".

Use the relation 1/W' = 1728(1 — f;) and lots of high school algebra
to show that consequently another quintic satisfied by 7 is

(7 — 3)3(# — 117 + 64) = —1728f7.

(b) Show that the 20 icosahedral face-centers decompose into three
orbits under the rotated tetrahedral group I'r: the four tetrahedral
vertices in Figure 4.9.1 including p from Exercise 4.9.2, the four coun-
tertetrahedral vertices including ¢, and the remaining twelve icosahe-
dral face-centers including z. (Hint: examine the stabilizer in T'z of
each icosahedral face-center and use the Orbit-Stabilizer Theorem.)
Since fr vanishes at the icosahedral face-centers, (4.9.4) shows that
the tetrahedral invariant 7 takes the values {3, (11 £ 3iv/15)/ 2} there.
Since the twelve-orbit contains the real-valued point z, 7 = 3 there.
Verify the values 7(p) and 7(¢g) in the text by checking the sign of an
imaginary part.

(c) Recall the rotated octahedral invariant F o from Exercise 4.8.5.
Explain why the quotient F 1/ }7‘2,0 lies in C[Z1, Z]'" and vanishes
at the icosahedral face-centers where 7 = 3. (Compare the roots of
the numerator and the denominator.) Compute that

For)Foo =71+ 71 2y — 621022 — 202773 + 1525 Z;
— 247175 + 112828 + 2427 7] + 152 Z§
+202323 — 622 2)° — 711 7, — 732
Show that 7 — 3 = (FQ’I/FQ’O)*/(F]_,I)* since both are degree 12 T'p-
invariants with the same zeros and poles and the same value at, e.g.,

Z = 1. We will use this formula for 7 — 3 in Chapter 7.
Use Theorem 2.2.3 to show that the rotation @ = fr(0,-1,0),arctan g 18

Va+1vz=g/2 Ja-1v2=g)/2 |
—J1-1/v2=g)/2 JA+1/vZ=9)/2

Conversely to the procedure at the end of the section, how does one

find the roots of a specific Brioschi resolvent R3(T;w'), given the
icosahedral inverse?
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4.9.7. Describe how to invert the icosahedral equation, given the root £ of
the principal resolvent from Exercise 4.8.5. Conversely, how does one
solve a specific principal resolvent R;(T;w’), given the icosahedral
inverse?

10. Summary

For each rotation group I, inverting the the equation fr(z) = w can
be recast algebraically as the field-theoretic problem of constructing C(Z)
from C(W). Galois theory and resolvents show how to carry this out by
a succession of root adjunctions for nonicosahedral I'. In the icosahedral
case, the problem is not solvable by radicals alone, but also requires solving
the Brioschi quintic. Conversely, the icosahedral inverse suffices to solve the
Brioschi quintic, which can not be done by radicals.
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CHAPTER 5

Reduction of the quintic to Brioschi form

Chapter 4 showed that solving the icosahedral equation is equivalent (modulo
adjunction of radicals) to solving its Brioschi resolvent, the quintic

b="T—10W'T? + 45W"T — W'2.

This chapter reduces solving the general quintic equation to this same b and
therefore to the icosahedral equation. Thus, while radicals do not suffice
to solve the general quintic, radicals and an icosahedral inverse do. What
makes the reduction to Brioschi form so impressive is that the coefficients of
b depend only on the single complex parameter W', where the general monic
quintic has five independent parameters.

Recommended reading: The general material in this chapter can be
found in standard algebra texts. The material more specific to the quintic
follows Dickson [Di]. Chapter II.1 of Klein [KI] discusses the 19th-century
history of the quintic.

1. The general polynomial extension

This chapter studies polynomials over the field C of complex numbers.
Doing so requires working with purely symbolic variables. Let n be a positive

integer, and let 71, ... , ry be algebraically independent symbols over C,
meaning that there is no nonzero polynomial h € C[T1,...,T,] such that
h(ri,...,m) = 0. For instance, an algebraically independent one-element

set over C is simply a transcendental variable. The monic polynomial p
with roots 71, ..., 7, expands as

b= H(T - ri) = Z(_l)JUJTnij € C(Ula s ,O'n)[T]
i=1 JEZ
103
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whose coefficients are (up to sign) the elementary symmetric functions
of ri, ..., T,

j .
o _ 1 forj >0
05 = Uj(’rl,...,Tn) = {§1<11< <tj<n Hk—l k forj ; 0

Note the special cases o9 = 1 and 0; = 0 for j > n. (If the o; are new
to you, work Exercise 5.1.2 before reading any farther.) The product form
of p shows that the o; are invariant under all permutations of ry, ..., 7p.
The field extension C(ry,...,r,)/C(01,-..,0,) is Galois, being a splitting
field extension in characteristic zero. Let G denote the corresponding Galois
group. Certainly G may be viewed as a subgroup of the symmetric group .Sy,
since every automorphism of C(ry,...,r,) over C(o1,...,0,) must permute
the roots of p. On the other hand, every permutation of rq, ... , 7, defines
an automorphism of C(r,...,r,) fixing C(o1,...,04), so S, is a subgroup
of G. Therefore G = S,,.

By Exercise 5.1.3, o1, ... , g, are algebraically independent over C given
that 71, ..., r, are. Thus each o; may be assigned a complex value without
constraint, and the polynomial p, whose coeflicients are (essentially) the o,
may be viewed as the general polynomial of degree n over C. The field
C(o1,...,0p) is called the coefficient field of p, and C(ry,...,r,) is the
splitting field. The coefficients are expressed in terms of the roots; the goal
is to invert this situation and express the roots in terms of the coefficients.
In general, if k is a field, define the Galois group Galk(p) of a separable
polynomial p € k[T] to be the Galois group of its splitting field extension
spli (p)/k. Then we have shown

(5.1.1) THEOREM. The Galois group of the general polynomial p of degree
n over C is the full symmetric group Sy. That is, Galc(g,,...0,)(P) = Sn-

The discriminant of 71, ..., 7, (also called the discriminant of p) is
A=A(ry,...,rm) = Alp) = H (r; — rj)2.
1<i<j<n

Being visibly invariant under S,,, the discriminant lies in the coefficient field
of p. For example, if n = 2 then

A=(r— 1"2)2 =(r+ 7"2)2 —4riry = 0% — 405.

Trying similarly to analyze the case n = 3 quickly shows that expressing A in
terms of the o; is not easy. (Answer: 0703 —403 — 40303 —2703 +18010903.)
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C(rl,. .. ,’I‘n) 1
n!/2

C(o1y---,0n,VA) | Ap
2
C(Ula"'aan) S’n

Figure 5.1.1. The general polynomial extension

General expressions for the discriminant will be developed in the next two
sections as byproducts of machinery.
Exercise 5.1.5 shows that the square root of the discriminant,

\/Z: H (Ti_rj)a

1<i<j<n

changes its sign when any two of the r's are exchanged, i.e., VA *) = /A
for any transposition (k1) € S,. So VA is fixed by A, but not S,, and
the Galois Correspondence gives the tower shown in Figure 5.1.1. In field
theoretic terms, the problem of solving the equation p(T') = 0 is tantamount
to constructing the root field of p from the coefficient field. Adjoining the
square root of the discriminant is the obvious first step, reducing the problem
from an S, extension to an A, extension. Since A, is solvable for n <
4, the techniques of the previous chapter will give solutions by radicals of
the general cubic and quartic; see Exercises 5.1.6 and 5.1.7 for sketches
of resolvent-based methods. For degree m > 5 the situation changes: the
group A, is simple (this was Exercise 4.6.1(a)), so by the Radical Criterion
(Section 4.5) the general polynomial of degree n can not be solved by radicals.

Following some more generalities, this chapter discusses the case n = 5.
After adjunction of the square root of the discriminant, the splitting field ex-
tension of the general quintic is an A5 extension over C(o71, ..., 0n, VA) with
five parameters—oy, ... , 05 are algebraically independent, but along with
V/A they form an algebraically dependent set. On the other hand, inverting
the icosahedral equation (or, equivalently, solving the Brioschi quintic) con-
structs C(Z)/C(W), an As extension over a field with only one parameter
W. Reducing the general quintic to the Brioschi case will not decrease the
Galois group of the extension, but it will diminish a situation depending on
five parameters to a situation depending on only one, giving a considerable
simplification.
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Exercises
Let 71, ..., r, be algebraically independent over C. Prove that
there is no nonzero rational function f € C(Ty,...,T},) such that
flri,...,r) =0.
Write the elementary symmetric functions when n = 1,2, 3, 4.
Prove that if rq, ..., r, are algebraically independent over C then
so are their elementary symmetric functions o1, ..., o,.

Let r1, r2, r3 be algebraically related by r1 + r2 + r3 = 0. Express
the elementary symmetric functions o1, o9, o3 in terms of 1 and rs.
Express the discriminant A in terms of o1, 09, 03.

Prove that the discriminant A is invariant under permutations of
1, ..., Tn, but its square root satisfies VA *Y) = —\/A for any
transposition (k1) of r1, ..., .

The Fundamental Theorem of Symmetric Functions says that
any polynomial p € C[ry,...,r,] that is invariant under all permuta-
tions of {r1,...,m,} is expressible as a polynomial ¢ € Clo1,...,0,]-
The proof is constructive (see, for example, [Co-Li-O’S]) and in par-
ticular when n = 3 yields the identities

(r1+ Cara + (373) (11 + Cars + (3ra) = 0 — 302
(r1 4 Caro + (373)° + (11 + (373 + (3r2)® = 203 — 90109 + 2703,

Now we can solve the general cubic. Let r = (r; + (379 + (3r3). Show
that 73 is invariant under As but not Ss so that its resolvent over the
coefficient field C(o1, 09, 03) is the quadratic

R = (T —r)(T - (r*)®Y)
=T? — (20} — 90109 + 2703)T + (0} — 303)>.
Thus, taking a square root over the coefficient field gives 73 and

(r)(23), (We don’t know which is which because there is no canonical
labeling of 71, 2, 3, so just designate one as r3.) Now r is a root of

Rr:T?’—r3

(there are three roots, but again they are indistinguishable under
relabelling of the 7;), and 7(23) = (¢ — 30%)/r from the first identity
above. Now that we have r and r(3), find rq, r5, and r3 by solving
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the linear system

(&) + C3’I"2 + C§T3 =T

ri+ Gira + Gy = 1Y)

r+ r+ r3=o01.
Use these methods to solve the cubic polynomial 7% — 3T + 1 from
Exercise 4.6.3.

5.1.7. Let n = 4, let r = 7 —r9 + 3 — 4, and let s = r2. Show that

the subgroup of S4 leaving s invariant is the dihedral group D =
((1234),(13)), and that a set of coset representatives for D\S; is

{1,(12),(14)}. The Fundamental Theorem of Symmetric Functions
gives the identities

rop(2 . p(4) — 03 — 40109 + 803
s+ 512 4504 = 30% — 802
5502 45,504 4 5(12)04) — 301 — 160209 + 160103 + 1602 — 6404.
To solve the quartic, take the cubic resolvent of s,
Ry = (T — s)(T — s" D) (1T — s1Y)
=T3 — (30} — 809)T? + (301 — 160709 + 160103 + 1605 — 6404)T
— (03 — 40109 + 803)°.
The three roots are s, s(?)_ and s(14); taking square roots of the
first two gives r and r12) 50 by the first displayed identity, (1% =

(03 — 40109 +803)/(r-7(1?2)). Now to solve the original quartic, solve
the linear system

Ty —Tro+Tr3—r4=r

—r1+ro+713—"24 :7"(12)

—r1—Tre+r3+rs= r(14)

N +T2+T3+71T4=0]1.

2. Newton’s identities

Retaining the notation from the the preceding section, define the power
sums of r1, ..., r, to be

J forj >0

n_l’l"'
sjzsj(rl,...,rn): OZ* ! o i<0
I
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including sg = n. These are clearly invariant under all permutations of 71,
, Tn- We want to relate them to the elementary symmetric functions o;.
Start from the general polynomial,

n

p=[[(T—r)=> (-1)/o;7" 7.

i=1 jEZ

Certainly p’ = Zjez(—l)jaj(n — 7)T™ 1. But also, the logarithmic deriv-
ative and geometric series formulas,

1 Ok
——Z T T~ TR

and

give

@Iﬁ

D) DR e B L L

i=1 k=0 kEZ k,l€Z

3
Il
3

—Z Z alsj (| T3 (letting § = k +1).
JEZ |leZ

Equating the coefficients of the two expressions for p’ gives the formula
P ( 1)loys;— l—i—( 1)ojn = (—=1)oj(n—j). Newton’s identities follow,

Z(—1)lalsj,, +(=1)lg;5=0  forall j.
=0

Explicitly, Newton’s identities are

s1—o01=0

S9o — 8101 + 200 =0

83 — 8901 + s109 — 303 =0

84 — 8301 + 8209 — 8103 + 404 =0

and so on.
These show (Exercise 5.2.4) that for any j € {1,...,n}, the power sums sy,

., s; are polynomials (with no constant terms) in the elementary sym-

metric functions o1, ..., 0, and—since we are in characteristic zero—that

the elementary symmetric functions oy, ..., o; are polynomials (with no
constant terms) in the power sums si, ..., s;. Consequently,

(5.2.1) PROPOSITION. The first j coefficients a1, ... , aj of the polynomial
p=T"+aT" ' 4.+ a, are zero ezactly when the first j power sums of
its roots vanish.
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Exercises

5.2.1. Express s; in terms of 01, ..., o; for j = 1,2,3, and conversely.

5.2.2. Write some of Newton’s identities when j > n; what is the pattern?

5.2.3. True or false: the second coefficient as of the polynomial p = T™ +
a1T" ' + ... + a, is zero exactly when the second power sum of its
roots vanishes.

5.2.4. Show that for any j € {1,...,n}, the power sums s, ..., s; are
polynomials (with no constant terms) in the elementary symmetric
functions o1, ..., 0j, and conversely. (The converse fails in nonzero
characteristic, for example consider p = T2 + 1 in characteristic 2.)

5.2.5. Establish the formula for the Vandermonde determinant,

1 r ord oo
1 rg 75 oo 7ot
= H(Tj —Ti)
. 1<j
1 7 12 o ot

(Replace the last column by (p(r1),...,p(r,)) where p = [["1(T —
r;).) Left-multiply the Vandermonde matrix by its transpose and take
determinants to obtain

S0 S1 -t Sp-1
S1 S9 e S,
=A(r1,...,Tn)-
Sp—1 Sp " S2p-2

This expresses the discriminant in terms of the elementary symmetric
functions o1, ..., o, since Newton’s identities give expressions for
the power sums s; in terms of the o;. A formula for A that doesn’t
require Newton’s identities will be developed in the next section.

3. Resultants

Given polynomials p and ¢, we can determine whether they have a root
in common without actually finding their roots. Let m and n be nonnegative
integers, let ag, ..., am, bg, -.., by, be symbols (possibly elements of the
base field C) with ag # 0 and by # 0, and let k = C(ay, - .., am,bo, ..., bp)-
The polynomials p = 37, a;7™ " and ¢ = 37 o b; 7" in k[T] are utterly
general when the a;’s and the b;’s form an algebraically independent set, or
conversely they can be explicit polynomials when all the coefficients are in C.
By Exercise 5.3.1, the polynomials p and ¢ share a nonconstant factor in k|[T']
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if and only if there exist nonzero polynomials P = Y7~ ¢;T" '~ € k[T] of
degree less than n and Q@ = Y7, d;T™ 1% € k[T of degree less than m
such that pP = ¢@. Such P and @ exist if and only if the system

oM =0

of m + n linear equations over k in m + n unknowns has a nonzero solution
v, where v = [cp,¢1,...,¢n—1,—do, —d1, ..., —dm—1] lies in k™" and M is
the Sylvester matrix

-ao al ) PECEY am T
ao al Y Y am
M= |by b by,
b by - by
i bo bi -+ by

(n staggered rows of a;’s, m staggered rows of b;’s, all other entries 0), which
lies in My 4n,m+n(k). Such a nonzero solution exists in turn if and only if
det M = 0. This determinant, an element of Clag,...,am,bo,--.,by], is
called the resultant of p and ¢ and written R(p,q). The condition that
p and ¢ share a factor in k[T is equivalent to their sharing a root in the
splitting field over k of pg. Thus the result is

(5.3.1) THEOREM. The polynomials p and q in k[T'] share a nonconstant
factor in k[T], or equivalently, share a root in the splitting field over k of
their product, if and only if R(p,q) = 0.

When the coefficients of p and ¢ are algebraically independent, R(p,q)
is a master formula that applies to all polynomials of degrees m and n. At
the other extreme, when the coefficients are specific values in C, R(p,q) is a
complex number that is zero or nonzero depending on whether the particular
polynomials p and g share a factor.

Taking the resultant of p and ¢ to check whether they share a root
may also be viewed as eliminating the variable T from the pair of equations
p(T) = 0 and ¢(T') = 0, leaving one equation R(p,q) = 0 in the remaining
variables ag, ... , @m, by, --- , by

In principle, evaluating R(p,q) = det M may be carried out via row
and column operations. In practice, evaluating a large determinant is an
error-prone process by hand. The next theorem will supply as a corollary a
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more efficient method to compute R(p, ¢). In any case, since any worthwhile
computer symbolic algebra package is equipped with a resultant function,
nontrivial resultants can often be found by machine.

In their splitting field over k, the polynomials p and ¢ factor as

p=ao [[(T —r), q=bo [J(T - sy)-
=1 j=1

To express the resultant R(p,q) explicitly in terms of the roots of p and ¢
introduce the quantity R(p, q) = afby* [[™ 1 [17=1(ri — s;). This polynomial
vanishes if and only if p and ¢ share a root, so it divides R(p, q). Note that
R(p, q) is homogeneous of degree mn in the r; and s;. On the other hand,
each coefficient a; = ag(—1)%c;(r1,...,7m) of p has homogeneous degree i in
T1, -+, Tm, and similarly for each b; and si, ..., s,. Thus in the Sylvester
matrix the (7, 7)th entry has degree

j — 1 in the 7; fl<i<n,i<j<i+m,
j—i+ninthes; ifn+1<i<n+m,i—n<j<i

It quickly follows that any nonzero term in the determinant R(p,q) has de-
gree mn in the r; and the s, so R(p,q) and R(p, q) agree up to multiplicative
constant. Matching coefficients of (s1 - --s,)™ shows that the constant is 1.
This proves

(5.3.2) THEOREM. The resultant of the polynomials p = Y™ a;T™ ¢ =
ao [Tit (T — i) and ¢ = 377, b T = by [17=1(T — s;5) is given by the
formulas

m n
Rp.q) = gt T [[ (s - 5,) o 1ot = (175 TLotor)
i=17=1 =1 j=1

A special case of this theorem gives the efficient formula for the discrim-
inant promised earlier. See Exercise 5.3.4.

Computing resultants can now be carried out via a Euclidean algorithm
procedure: repeatedly do polynomial division with remainder and apply
formula (4) in

(5.3.3) COROLLARY. The following formulas hold:

1. R(g,p) = (-1)™R(p,q)-
2. R(pp,q) = R(p,q)R(p,q) and R(p,qq) = R(p,q)R(p,q).
3. R(ag,q) = af and R(aoT + a1,q) = afjq(—ai/ap).
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4. If g = Qp + q with deg(q) < deg(p) then
R(p,q) = ag™® ™" DR(p, g).

Exercise 5.3.5 asks for the proofs.

Exercises

5.3.1. Show that p and ¢ share a nonconstant factor in k[7T'] if and only
if there exist nonzero polynomials P of degree less than n and @ of
degree less than m in k[T'] such that pP = ¢Q.

5.3.2. Write out the matrix M for various small values of m and n, and
compute the corresponding resultants.

5.3.3. Fill in the details of the proof of Theorem 5.3.2.

5.3.4. (a) Use Theorem 5.3.2 to show that if p is monic, so that p’ =
S T (T — 1), then R(p,p') = (—1)"@-D/2A(p).

(b) Use part (a) to recompute the discriminants of p = T2 + bT + ¢
and of p = T3 +bT +c.

5.3.5. (a) Prove the formulas in Corollary 5.3.3.

(b) Let p = T™ + bT + ¢. Compute A(p) = (1) D/2R(p, p') using
the corollary. (Do a polynomial division and apply the second formula
in (3). Answer: (—1)(=D(=2)/2(p, _ 1)n=1pn 4 (—1)n(n—1)/2pnen—1))
Note that since n is a general symbol here, evaluating R(p,p’) as a
determinant is much more awkward than this method.

4. Tschirnhaus transformations and principal form

Let ai,...,a, be symbols (possibly elements of the base field C), and
let k = C(ay,...,a,). A Tschirnhaus transformation is a substitution
that reduces finding the roots of the polynomial

n

p=T"+aT" "+ +an=[[(T —r) € K[T]

i=1
to finding the roots of another—possibly more tractable—polynomial ¢, and
solving an auxiliary polynomial equation. Specifically, a Tschirnhaus trans-
formation is a polynomial ¢t € 1[T] with coefficients in a yet-unspecified ex-
tension field 1 of k, possibly 1 = k. (The nature of 1 will be clarified via
examples in this section and discussed further in Section 6.1.) Given p and
t, define a new polynomial ¢q by transforming the roots of p via t,

n

g=[[(58—t(r:)) =5"+c18" '+ +cn.

=1
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This monic polynomial has degree n in S, and since its coeflicients are
cj = (=1)oj({t(rs)}), it lies in 1[S], i.e., it is defined over the Tschirn-
haus coefficient field. The condition ¢(S) = 0 is equivalent to existence of
a T such that S = ¢(T") and p(T') = 0, so ¢ is explicitly calculable up to
constant multiple as the resultant obtained by eliminating 7,

g =cR(p,t — S) €1[9] for some c € 1.

(Exercise 5.4.1(a) asks you to confirm this, and Exercise 5.4.1(b) gives an-
other method for computing ¢.) Finding a root r of p now reduces to a
two—step process:

1. Find a root s of q.

2. Find all values of r satisfying the auxiliary equation ¢(r) = s
and substitute them into p; then p(r) = 0 for at least one
such r.

The idea of the Tschirnhaus transformation is to choose the substitution ¢
to move the roots so that each of these steps is more convenient than solving
p. The term “convenient” is context-dependent; it is further discussed under
one circumstance in Section 6.1. In any case, the transformed polynomial ¢
only depends on the values ¢(r;), so the division algorithm

t(ri) = Q(ri)p(ri)+R(ri) = R(r:) for some @, R € 1[T], deg(R) < deg(p)

shows that without loss of generality deg(t) < deg(p).

Two useful elementary Tschirnhaus transformations will illustrate mat-
ters. The easiest transformation is an affine map that reduces the general
polynomial of degree n to depressed form, meaning the coefficient of 77!
is zero. The procedure is clear: since the coefficient of 77 ! is (minus) the
sum of the roots, translating the roots by their average gives new roots that
sum to zero. In Tschirnhaus terms, we are given

n
p=T"+a1T" '+ +ay,=[[(T—r)
i=1
and want to choose the transformation ¢t; = T + b; so that the resulting
n
q= H(S —t1(r) =8 "+ 1S - e
i=1
has first coefficient ¢; = 0. A computation (Exercise 5.4.2) shows that
¢y = —o1 — nb; where 01 = 01(r1,...,7y,) is the first symmetric function of
the roots of p, so that the appropriate substitution is indeed t; = T + a1 /n.
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Note that this example reduces solving the quadratic equation to taking a
square root.

Exercise 5.4.3 similarly finds a quadratic Tschirnhaus transformation
to = T? + byT + by that reduces the depressed polynomial p of degree n
to principal form, meaning the coefficients of 77 ! and 7™ 2 are zero.
Computation shows that this requires the Tschirnhaus coefficient b; to satisfy
the quadratic condition

59b? 4 2s3by 4 54 — 55/n = 0,

where the s; are the power sums of the roots of p. Thus, constructing
b1 requires a square root over the coeflicient field of p. This typifies why
Tschirnhaus coeflicients are allowed to lie in an extension field 1 of k rather
than being constrained to k. The Tschirnhaus coefficient b, works out to
—sg/n. In particular, since a principal cubic is solved by taking a cube root,
the transformations #; and ¢35 combine to solve the cubic equation.

Field-theoretically, a Tschirnhaus transformation ¢ gives rise to the fol-
lowing situation: as before, let k be the coefficient field of a polynomial
p. Let K = spl(p) = k(r1,...,m,) where the r; are the roots of p. Since
we are working over the field C of characteristic zero, K/k is Galois; let
G = Gal(K/k). Let 1 be the extension of k generated by the coefficients
of t, let L = I(rq,...,r,) = Kl (the field generated by K and 1), and let
I' = Gal(LL/1). Figure 5.4.1 depicts the situation.

L
K 3
r
1 » G
INK
k
J

Figure 5.4.1.

This raises some obvious questions:

Is the new coefficient field 1 a proper extension of k? For the affine
transformation ¢; above, 1 is just k. On the other hand, the coefficients
of the quadratic transformation ¢ above require a square root that could
make 1 a degree 2 extension of k.
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When 1 is a proper extension of k, is it external to K, the splitting
field we are trying to construct? Exercise 5.4.4 shows that in the case of to,
when n = 3 (i.e., the original polynomial p is the general cubic), the new
coefficient field 1 is generated over k by the square root of the discriminant
of p, so in fact 1 C K. But for general n this is not the case: the coefficient
field 1 = k(b1) for ¢y is generated by a square root external to the original
splitting field K—an auxiliary irrationality. (Exercise 5.5.1 will show
this.) In contrast, the square root of the discriminant, which lies within K, is
a natural irrationality. Using an auxiliary irrationality to simplify p, i.e.,
leaving its splitting field, feels inelegant and clumsy, and raises the question
of whether p can be comparably simplified without auxiliary quantities.

How are spl;(¢) and Galj(q) related to L = splj(p) and T' = Galj(p); that
is, how is solving ¢ over 1 related to solving p over 17 And how is I' related
to G = Galk(p); that is, how is solving p over 1 related to solving p over k?
The next section will show that generally spl;(¢) = L so that Galj(q) =T,
i.e., solving ¢ solves p once the coefficient field 1 is constructed. This is
as we would hope. Less happily, usually I' = G, meaning a Tschirnhaus
transformation typically does not diminish the Galois group of a polynomial
p even by introducing auxiliary quantities.

While the auxiliary Tschirnhaus coefficients and persistent Galois group
are discouraging, the Tschirnhaus transformation works wonders at dimin-
ishing parameter-count. The transformations ¢; and ¢, combine to knock out
two coefficients of the general polynomial p, and further Tschirnhaus trans-
formation will reduce the three-parameter principal quintic to one-parameter
Brioschi form without any more auxiliary irrationalities. Chapter 6 will
prove that any reduction of the quintic by radicals to one-parameter form
requires at least one auxiliary irrationality, so the Brioschi reduction, with
its single quadratic auxiliary by, is optimal.

Exercises

5.4.1. (a) Verify that ¢ = cR(p,t — S) for some constant ¢ € 1 by arguing
that the resultant is indeed a polynomial of degree deg(p) in S, and
it vanishes at the same values of S as q.
(b) The resultant in (a) is a determinant of order n-7 where n = deg(p)
and 7 = deg(t). Here is a smaller determinant (of order n) that also
gives g. Show that if p(T)) = 0 and S = ¢(T") (where p € k[T has
degree n and ¢ € 1[T] has smaller degree) then there exist polynomials



116

S

5.4.2.

5.4.3.

5.4.4.
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t1,t2,...,tn—1 € 1[T], each of degree less than n, such that

=t(T), ST =t(T), ST*=1t(T), ..., ST"'=t, (7).
Equivalently,
1 1
T T
S =M, -
Tn.fl T7;71

where M, is an n-by-n matrix over 1. This shows that det(M; —SI) =
0, i.e., g is the characteristic polynomial of M;.
Confirm the computation of the affine Tschirnhaus transformation ;
that reduces the general polynomial to depressed form.
This exercise computes the quadratic Tschirnhaus transformation
that reduces the depressed polynomial of degree n to principal form.
Given
n
p=T"+aT" >+ +an=[[(T—m)

i=1
with ay # 0, the idea is to choose the transformation to = T?+b;T+by
so that the resulting polynomial

n

1= H(T —to(r)) =T+ T 4+ 4 cp

i=1
has first two coefficients ¢; = ¢ = 0. Show that ¢ = —s9 — nbs
where sy = s9(r1,...,7y) is the second power sum of the roots of p,
so necessarily b, = —so/n. By Newton’s identities, it now suffices

(Proposition 5.2.1) to make s2(t2(r1),...,t2(r,)) = 0. Show that this
is equivalent to b; satisfying the quadratic polynomial

Q = s9T?% + 253T + 54 — s3/n € k[T,

where the s; are the power sums of r1,...,r,. Solving this quadratic
for by gives the desired transformation.

Specializing the previous exercise to the case n = 3, show that the
quotient of discriminants A(p)/A(Q) is a square in C(o1,09,03), so
adjoining the square root of either discriminant generates the same
field. (A symbolic algebra computer package may speed this up.)
Thus 9 solves the general depressed cubic by reducing its Galois group
to As, and it does so without introducing an auxiliary irrationality.
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5.4.5. Use a computer algebra system to implement the transformations ¢,
t2 of this section and work examples. (Recall that the transformed
polynomial is a resultant, which the algebra system will know how to
calculate. For %9, use Newton’s identities to compute the power sums
S9, 83, s4 from the coefficients of p.)

5. Galois theory of the Tschirnhaus transformation

Suppose that k is the coefficient field of a polynomial p with splitting field
K = sply(p) = k(r1,...,m,) where the r; are the roots of p. Let G = Galk(p).
Let 1 be any extension of k. Let L = splj(p) = ry,...,7,) = Kl and
I = Galj(p). See Figure 5.4.1 again for the diagram.

Any automorphism o € I" fixes k and therefore permutes the roots r; of
the polynomial p € k[T, so it restricts to an automorphism of K over k, i.e.,
an element of G. The next result shows that distinct elements of T' restrict
to distinct elements of G, i.e., I' naturally embeds in G.

(5.5.1) PROPOSITION. In the situation above, the restriction map from T
to G is injective. Its image is Gal(K/1NK).

PROOF. If the restriction of some o € I' fixes K along with 1 then it fixes
Kl =L and is trivial. This proves the first statement.

For the second assertion, now identifying I" with its natural image in G,
it suffices to show that KI' = IN K. Clearly INK c K!. And if z € KV
then z € L' =1, so z € INK, giving the other containment. O

For notational convenience, identify I" with its natural image Gal(K/IN
K) C G from here on.

Now take a Tschirnhaus transformation ¢ = byT* + b1 + .-+ + by,
specialize the discussion to 1 = k(by,...,bx), and set ¢ = [[;_,(S — t(r;)) €
1[S]. Assume that if roots r;, r; of p are distinct then so are t(r;) and t(r;),
i.e., t doesn’t collapse the roots. Call such a Tschirnhaus transformation
nondegenerate. For such ¢, splj(¢) = L and Galj(¢q) = I'. To see this,
inspect the fields and groups in Figure 5.5.1, where all extensions are Galois.
Since any permutation of {ry, ..., r,} induces the corresponding permutation
of {t(r1),...,t(rn)}, H is trivial, giving the result.

This discussion proves
(5.5.2) THEOREM. Let p, t and q be as above. Let k be the coefficient field
of p, 1 the coefficient field of q, K = splg(p) and L = K1 = splj(p). Let
G = Galk(p) and T' = Gali(p). ThenT C G and [G:T)=[1NK:k|. Ift is
nondegenerate then L = sply(q) and T' = Gali(q).
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L=1ry,...,m)

Galj(q)

Figure 5.5.1.

In particular, nondegenerate Tschirnhaus transformations with 1 = k are
Galois-theoretically trivial over k: the splitting field and Galois group are
left unaltered by such a transformation from p to ¢. We saw this for the
affine ¢t that depressed the general polynomial in the preceding section.

For the quadratic transformation ¢5 that reduced the depressed polyno-
mial to principal form, we have 1 = k(b;) where b; satisfies the quadratic @
in Exercise 5.4.3. There are three possibilities:

1. If A(Q) is a square in k then 1=k and " = G.

2. If A(Q) is a square in K but not in k then k C 1 ¢ K and
[G : T = 2, so tg reduces the Galois group of p without leaving
the splitting field. Exercise 5.4.4 showed that this happens for
the general depressed p when n = 3.

3. If A(Q) is not a square in K then 1 is external to K and I" = G.
Exercise 5.5.1 shows that this happens for the general depressed
p when n > 3; Exercise 5.5.2 shows that for such p and n, to
is nondegenerate. Thus for n > 3, reducing the general poly-
nomial to principal form introduces an auxiliary irrationality;
since splj(q) = spl(p), solving ¢ over 1 solves p, but is Galois-
theoretically no easier than the original problem of solving p
over k.

Exercises

5.5.1. Let p be the general depressed polynomial p of degree n, whose roots
sum to zero. Its coefficient field is thus k = C(o9,...,0,) and its
Galois group is S,,. This exercise shows that when n > 3, applying ¢
to reduce p to principal form introduces an auxiliary irrationality, in
contrast to the cubic case.

(a) Let @ be the quadratic polynomial from Exercise 5.4.3. Calculate
A(Q) and show that it has homogeneous degree 6 in the roots of p.
Show that A(Q) is not a square in k, so that the root by of @) is external
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to k. (Hint: prove the lemma that for any unique factorization domain
R with field of quotients F', if s € R is a square in F' then s is a square
in R. Now let R be the polynomial ring Clog,...,0,] (you may cite
that this is a unique factorization domain) with field of quotients k.
By the lemma, a proof by contradiction begins by assuming A(Q) =
g? for some g € R.) Note that this argument works for all n > 3.

(b) Show that A(p) is irreducible in R = Clog,...,0,]. (Recall how
A(p) factors in C|ry, ..., r,] and show that no proper factor of A(p) is
invariant under S,,.) Show that A(p) has homogeneous degree n(n—1)
in the roots of p. Since 6 < n(n — 1) for all n > 3, A(Q) and A(p)
therefore are relatively prime in R. Show that A(p)/A(Q) is not a
square in k. (Hint: prove the lemma that for a,b,c,d in a unique
factorization domain R with field of quotients F, if a/b = ¢/d with
ged(a,b) = ged(e,d) = 1 then ¢ = ua and d = ub for some unit
u € R*. Now do a proof by contradiction.) It follows that for n > 3,
the quadratic extension k(b;) is distinct from k(y/A(p)), the unique
quadratic extension of k in K.

(c) Strictly speaking, what we really want to know is whether applying
tg o t1 to the original general polynomial of degree n > 3 introduces
an auxiliary irrationality over the original coefficient field. Show that
in fact it does. (Hint: rewrite ) in terms of the power sums of the
original polynomial and proceed as in parts (a) and (b).)

Show that the quadratic transformation ¢y is nondegenerate unless
by = —r; — rj for some distinct r;, r;. Since —r; — r; lies in K, this
shows that t9 is nondegenerate for the general depressed polynomial
when n > 3. Thus, solving the general principal polynomial over 1
solves the general polynomial over k.

6. Projective space and algebraic sets

While one more Tschirnhaus transformation reduces the quintic from

principal to one-parameter Brioschi form, and this transformation can be

described purely algebraically, we first develop some geometry in the next

two sections indicating how the principal quintic is related to the rotations

of the icosahedron, which in turn (see Exercise 4.8.6) are related to a family

of principal quintics. While the geometry is appealing, it still takes consid-

erable work to solve the general principal quintic by icosahedral methods,

and since the methods involve three parameters rather than one, we omit

them.

The relevant calculations are in Klein and Dickson, and Klein moti-
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vates them geometrically. Reduction of the quintic to Brioschi form resumes
in Section 5.8, also guided by this geometry.

For any positive integer n, n-dimensional complex projective space
is defined analogously to the complex projective line,

P"(C) = (C""'\ {0})/ ~,

where z ~ y in C™*! if y = Az for some A € C*. The image of a point
z = (z1,...,%n41) under the natural map C"*!\ {0} — P*(C) is written
p=[z1:--+: 2p+1]- (Throughout this section the symbol p denotes a point
in P"(C) rather than a polynomial.) The coordinates of p are determined
only up to a common scalar multiple. The vector space structure of (n + 1)-
dimensional affine space C"*! does not transfer to P*(C)—try to define
addition and scalar multiplication to see this. Projective space does inherit
the quotient topology from C"*!\ {0}. Tt is compact, being the continuous
image of the sphere {(z1,...,2n41) € C"*1: 04|22 = 1}, which is closed
and bounded in R?"+2,

Since P"(C) = [C" : 1JU[P™ }(C) : 0], projective space P"(C) contains
a copy of n-dimensional affine space C" along with some lower-dimensional
projective material. A similar decomposition can be carried out by setting
any coordinate, not necessarily the last one, to 1 and 0. In fact projective co-
ordinates are also called homogeneous coordinates to emphasize that they
all enjoy equal status, unlike, for example, the numerator and denominator
of a fraction. This was the motivation for identifying the Riemann sphere C
with the complex projective line P(C) in Chapter 1 to avoid divide-by-zero
problems. Define for i = 1,...,n + 1 the set U; = {p € P"(C) : z; # 0}.
Each local coordinate map

¢ U; — C" givenby ci[---:zi_l:1:zi+1:---]:(...,zi_l,ziﬂ,...)

is a homeomorphism, cf. the discussion of the projective line in Section 1.4.
Since P"(C) = UU;, projective space is covered by n + 1 copies of affine
space.

An algebraic set in P"(C) is the set of common zeros of a finite set F
of forms in C[Zy : -+ - : Zp11],

Z(F)={peP™(C): f(p)=0forall f € F}.

For example, the zero set of F = {X?+Y?— Z?} in P?(C) is the affine “unit
circle” [Z(X? +Y?2 — 1) : 1] and the points [1 : 4 : 0], while the zero set of
G={X?2+Y?2-22Y}in P%C) is {[+1:0:1]}. A hypersurface is the
zero-set of one form; its degree is the degree of the form. A hyperplane
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is a hypersurface of degree 1, i.e., the zero-set of one linear form Z" 1 a;iZ;.
The tangent hyperplane to a hypersurface S = Z(f) at the point p € S,
denoted T, (S), is the hyperplane Z(37"! D;f(p)Z:), provided at least one
partial derivative D; f (p) is nonzero. This is well-defined, and Euler’s identity
shows that indeed the point p lies in T},(S). (See Exercise 5.6. 2 ) A line in
P"(C) is the intersection of n — 1 hyperplanes, L = Z({E" 1aijZ; 11 <
i < n — 1}), where the coefficient matrix [a;;] € Mn_l,nH(C) has full rank.
Exercise 5.6.4 shows that the line through points p, g € P"(C) also takes the
parametrized (and well-defined) form L, , = {A\1p+Xaq : [A1 : Xo] € PY(C)}.
A quadric is a hypersurface of degree 2. One can check that when the
underlying field C is replaced by R on each U;, the surfaces, hyperplanes,
etc. described here are indeed the appropriate affine objects. See Exercises
5.6.3 and 5.6.5.

Each automorphism (invertible linear self-map) L of C"*! induces a
corresponding projective transformation P of P"(C), defined to make
the following diagram commute.

C™1\ {0} —— C"*1\ {0}

| |
pr(Cc) —2» Pr(C)

The natural identification of the automorphisms of C™*! with the matrix
group GLy1(C) identifies the projective transformations of P™(C) with the
projective matrix group PGL,11(C) = GL,4+1(C)/C*I. Every permutation
o € 8,41 induces an automorphism of C"*! and therefore a projective trans-
formation of P™(C). Every projective transformation takes hypersurfaces to
hypersurfaces of the same degree and is a collineation, meaning it takes
lines to lines. Exercise 5.6.6 asks for proofs of these statements.

Exercises

5.6.1. Prove that the local coordinate maps ¢; : U; — C™ are homeomor-
phisms.

5.6.2. Let S = Z(f) € P™(C) be a hypersurface and let p be a point in
S. Assume that some partial derivative D; f(p) is nonzero. Show that
the tangent hyperplane T,,(S) = Z(X™! D;f(p)Z:) is independent of
the choice of coordinates for p. Prove Euler’s identity: for any form
f€CZy: v Zyia], X0 Dif Z; = deg(f) - f. How does this show
that p € T,(S)?
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5.6.3. Let S = Z(f) C P"(C) be a hypersurface and let p be a point in S.
Suppose that p € Upt1, i.e., p = [p1 : --+ : py : 1], and that some
D, f(p) is nonzero. Show that S NUpi1 = [Z(fs) : 1] where f, is the
dehomogenized polynomial f.(Z1,...,2Z,) = f(Z1,...,2p,1). Show
that T,(S) N Up41 is defined by the condition

ZDZf*(pla apn)(Zz' _pi) =0
=1

which describes the affine tangent hyperplane to SN U, 1 at p. (You
may need Euler’s identity.)

5.6.4. (a) For any distinct points p,q € P"(C) show that the set L,, =

{A1p + A2q : [A1: Xo] € PY(C)} is well-defined, i.e., is independent of
the choice of coordinates for p and gq.
(b) Let L C P™(C) be a line, i.e., the projective image of the nonzero
solutions in C™*! to the system AZ = 0 where A € M;,—1,,+1C has
full rank. Show that there exist distinct points p,q € P"(C) such that
L = L,,. (Hint: rank nullity theorem.) Conversely, given distinct
p,q € P"(C), show that Ly, is indeed a line.

5.6.5. Let L be a line in P"(C). Show that L N U4 is empty or takes the
form [L' : 1] where L’ is a line in affine space.

5.6.6. Verify that projective transformations of P"(C) are well-defined and
naturally identified with PGL,11(C). Explain how any permutation
0 € S,41 induces an automorphism of C"*! and therefore a projec-
tive transformation of P"(C). Show that every projective transfor-
mation takes hypersurfaces to hypersurfaces of the same degree and
is a collineation.

7. Geometry of the Tschirnhaus transformation

Returning to the polynomial p = [, (7" — r;) of degree n, think now of
the roots r; as complex variables rather than algebraic symbols. Once the
roots have been indexed, any Tschirnhaus transformation ¢ can be viewed ge-
ometrically as moving the root vector (r1,...,7r,) € C™ to (t(r1),...,t(rn))-
Affine Tschirnhaus transformations ¢ = byT" + by (with by # 0) are in-
vertible: if such ¢ transforms the polynomial p to ¢ = [[(S — ¢(r;)) then
t=! = by (S — by) transforms ¢ back to p. Thus from the viewpoint of
Tschirnhaus transformations, translating root vectors (specifically, by the
transformation #; in Section 5.4 to make their entries sum to zero) and scal-
ing root vectors are trivial operations, and it is consequently natural to study
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Figure 5.7.1. Lines on the quadric surface XY = ZW

Tschirnhaus transformations as acting on the hyperplane H = Z(}7" ; Z;)
of P*~1(C). This effectively reduces the root space dimension by 2. Indeed,
we may as well identify H with P"~2(C) via the collineation [z : --- : 2,1 :
Y Al e a2

Newton’s identities show (Proposition 5.2.1) that reducing a polyno-
mial to principal form (by the transformations ¢; and ¢2) is equivalent
to transforming its root vector (ri,...,r,) onto the canonical surface
C =232, Z?%. The identification of H with P"2(C) maps the
canonical surface to the quadric Q = Z(X7~' Z? + (X7 Z:)?) c P*2(C).
Exercises 5.7.1 and 5.7.2 combine to show that when n = 5, i.e., p is quintic,
the Tschirnhaus transformation that reduces p to principal form moves its
roots onto a quadric surface collinear to Z(XY — ZW) C P3(C).

Exercise 5.7.3 shows that Z(XY — ZW) counsists of two one-parameter
families of lines: {L, : A € C} and {L, +p € C}. (See Figure 5.7.1.)
These lines give the connection between the principal quintic and icosahedral
geometry; here is the idea, without proof. Every permutation o € Sy de-
fines a corresponding collineation of projective space P*(C) (Exercise 5.6.6).
These preserve the canonical surface and hence correspond to collineations
of Z(XY — ZW). It turns out that the odd permutations o € S5 exchange
the two families of lines—i.e., an odd ¢ induces a collineation taking each

L) to some L! ) and each LL to some L, —while the even permutations

o (k)
o preserve the families, taking each Ly to some L,()) and similarly for the
{L'}. Thus, given the general principal quintic, adjoin the square root of its

discriminant to its coefficient field; the resulting Galois group As acts twice
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on the Riemann sphere by each o € A5 taking A — o()) as just described,
and similarly for y. The action is faithful. Now, by Theorem 2.3.1, each As-
induced automorphism group of Cis conjugate to a rotation group, and by
Theorem 2.6.1, the rotation group must be icosahedral. Thus the coefficients
of a principal quintic are icosahedral invariants of the line coordinates (A, u)
of its root vector, and plausibly the general principal quintic, with its three
independent coefficients, is equivalent to the principal quintic icosahedral
resolvent Ry from Exercise 4.8.6, with its three parameters d;, ds, and W"'.

Exercises

5.7.1. This exercise describes quadric hypersurfaces in P"(C) modulo pro-
jective transformations.
(a) Show that any quadric hypersurface takes the form

Q={lz1: 2041 : 'A2 =0}

where A € M,,;1(C) is symmetric and defined only up to scalar mul-
tiple.

(b) Show that any projective transformation P~ € PGL,,,1(C) trans-
forms @ to the surface defined by P!AP. Thus, classifying quadrics
modulo change of variable is equivalent to classifying matrix con-
gruence classes {P'AP : P € PGL,;1(C)}. (Recall an analogous
situation from linear algebra: classifying linear transformations of C"
up to change of coordinates amounts to classifying matrix equivalence
classes {P~1AP: P € GL,(C)}.)

(c) Prove that any symmetric square matrix A € M,,1(C) is con-

0 where 7 is the rank of A, as follows.

There exist vectors v,w € C"! such that v!Aw # 0 unless A is
the already-diagonal zero matrix. At least one of the following must
hold: v'Av # 0, w'Aw # 0, or (v + w)!A(v + w) # 0. Thus
there exists a vector u such that u’Au = 1. Define the linear map
C"tl — C by z — u’Az. This surjects, so its kernel has dimension

.|
gruent to the matrix [ "

n. Let {u1,...,un} be a basis for the kernel and form the matrix
P=[u w; --- up). Then P is invertible, and
piap=| 1 O
071><1 A;zxn

where A’ is also symmetric. The proof is completed by induction.
This shows that any quadric surface in P"(C) is equivalent under
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projective transformation to a surface Z(3F_; Z2).
(d) Prove that the 2-by-2 identity matrix is congruent over C to either

1

(1) O]' With part (c) this shows that any full-rank quadric
surface in P3(C) is equivalent under projective transformation to the
surface Z(XY — ZW), which is often called the quadric surface in
P3(C).

5.7.2. Show that the matrix defining the quadric @ in the section is

1
of j:§

A=

Show that A’s rows are linearly independent.

5.7.3. This exercise shows that the quadric surface Q@ = Z(XY — ZW)
in P3(C) is doubly ruled, i.e., there exist two P!(C)-parametrized
families of lines each of which forms ). The previous exercise then
implies that all full-rank quadric surfaces in P3(C) are doubly ruled.
(a) Informally, the lines are Ly = {[z 1y : z : w] : /z = w/y = A}
and L, ={[z:y:z:w]: x/w=z/y = p} for \,u € C. To make this
precise, show that the map P'(C) x P}(C) — Q where

([A1 2 Agl, [ = p2]) = [Aapr = Aopao = Agpur = Aqps]

is a bijection by exhibiting its inverse. Show that each {\} x P!(C)
maps to a line Ly in Q and similarly for each P'(C) x {u}. Thus
Q = UxL) = U,Lj,, and both unions are disjoint.

(b) Prove that part (a) exhibits all lines in () by showing that for any
p=la:b:c:d €Q, QNTy(Q) consists of two lines. Take d =1
without loss of generality, so ab = ¢; then points [z : y : z : w]| €
Q NT,(Q) satisfy

zy —zw = 0, bz + ay — z — abw = 0.
Substituting the second condition z = br + ay — abw into the first
gives (z —aw)(y —bw) = 0, indeed defining the two lines L and Ly-1.
8. Brioschi form

Having reduced the general quintic to principal form, we may apply the
general notation to the principal case. Thus the general principal quintic is
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now
5

p=T>—03T? + 04T — 05 = H(T—Ti)-

i=1
The field generated by the coefficients of p and the square root of its discrim-
inant is k = C(03,04,05,/A(p)). This field includes the linear coefficient
b1 of the Tschirnhaus transformation ¢, that reduced the depressed quintic
to principal form, and this b; is an auxiliary square root over the coefficient
field of the original general quintic, but that is irrelevant to this section,
which starts from the principal case. The square root \/A(p), by contrast,
is a natural irrationality over the coefficient field of the principal quintic p
since it lies in the splitting field. The principal quintic has three parameters
03, 04, 05; the goal is to transform it to a one-parameter form. The hard
work is reducing to two parameters, after which an easy scaling finishes the
job.

Chapter II.1 of Klein gives the history of this reduction. The original
insight came from Jacobi in 1829, arising from so-called elliptic modular
functions. Kronecker and Brioschi expanded the idea, computing from the
general quintic a sextic resolvent that in turn has a quintic resolvent of
the desired form. This two-step calculation was then refined into a purely
algebraic one-step procedure, given here with some geometrical motivation.
Since the algebra is fairly involved, a numerical example will follow at the
end of the section.

Recall that the root vector (r1,...,75) of p satisfies

Z Ty = Z TZ-Q =0.
(All sums in this section are for i = 1 to 5.) As explained in the previous

section, this means that each principal quintic in C[T] with numerical root
vector (r1,...,75) € C° describes a point on the canonical surface C.

(5.8.1) PROPOSITION. There ezists a polynomial ¢ € k[T, monic of de-
gree 3 or 4, such that

ZWW) = ZWH)Q = Zmp(m) = 0.

PRrOOF. Exercise 5.8.1. Constructing 9 is straightforward but uses a square
root; the surprising fact is that this square root already lies in k, so the
construction requires no irrationalities. ]

(5.8.2) COROLLARY. Let (r1,...,r5) € C° lie on the canonical surface C.
For any a,b € C, the (aT + bp)-transformed vector

(ar1 + b(r1),...,ars + bip(rs))
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also lies on C. Equivalently, the (aT + p)-transform of the principal quintic

b,
5

g = [[(T = (ari + bp(r4))),

=1
is also principal.

PRrROOF. Exercise 5.8.2. O

The plane’s worth of transformed vectors in Corollary 5.8.2 corresponds
to a projective line through [rq : --- : r5] in the canonical surface; for each
principal quintic in C[T], a choice of square root in Exercise 5.8.1 determines
which of the two possible lines is obtained. Thus, the general process of
finding the lines through a point in C' takes place in k.

Next recall that any Tschirnhaus transformation taking roots r; of p to
new roots t(r;), where ¢ is a polynomial, only depends on ¢t mod p. The next
result provides a congruence mod p and therefore exhibits two polynomials
that transform p in the same way.

(5.8.3) PROPOSITION. There ezist a linear form and a quadratic form in
k[X,Y],

LX,Y)=aX+bY  and Q(X,Y)=aX?+28XY +1Y?,
such that, if 1 is as in Proposition 5.8.1,
L(T,¢) = Q(T,¢) (mod p).
(Note that the congruence is in k[T since 9 € k[T.)
PROOF. Exercise 5.8.3. O

Thus, as remarked before the proposition, L(T,) and Q(T,) act as
the same Tschirnhaus transformation on the roots of the principal quin-
tic. Transforming by L(T,%) = aT + by gives another principal quintic,
whose coefficients equal those of the Q(T,)-transform. Since the three
nonzero transformed coefficients are constrained—that is, each is given by
two expressions—they lie on a surface. If this surface were globally para-
metrized by rational functions of two variables then the L(T, 4)-transformed
principal quintic would depend on two parameters, but unfortunately it does
not. To proceed, we next establish a general fact about forms, proved by
pure linear algebra, leading to a computation that does give a two-parameter
quintic.
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(5.8.4) PROPOSITION. Letk be any field not of characteristic 2. Ink[X,Y],
let L =aX +bY be a nonzero linear form and Q = aX? +28XY +~Y? be
a quadratic form. Assume Lf Q in k[X,Y]. Let m = ab? — 2Bab + ya? and
8 = ay — B2. Then for some linear form L = aX + bY € k[X,Y],

mQ(X,Y) = L(X,Y)? 4+ 6L(X,Y)%
ProOOF. Exercise 5.8.5. O

This result applies to our computations with the principal quintic p.
Since Galk(p) = As acts transitively on 74, ... , r5, p is irreducible over k by
Proposition 4.3.2. The quotient ring k[T']/pk([T] is a field (cf. Section 4.2)
and polynomials that are nonzero mod p have polynomial inverses mod p.
We are working in full generality, so the form L in Proposition 5.8.3 is
nonzero since it is nonzero in specific numerical cases. Thus L(T,) has a
polynomial inverse mod p (Exercise 5.8.4), so Proposition 5.8.3 shows that
Q(T,) is also invertible mod p and that L) @ in k[X,Y] (Exercise 5.8.4
again), and the hypothesis of Proposition 5.8.4 is met. Similarly m and ¢ in
Proposition 5.8.3 are nonzero for our L and Q).

To obtain the Brioschi quintic, take L and @ from Proposition 5.8.3 and
substitute X =T, Y = 4 in Proposition 5.8.4 to get

mQ = (L —vV—-6L)(L++V—-4L)

where now Q = Q(T,v), L = L(T,%), and L = L(T,1) are polynomials in
T, so the equality is in k(y/—0)[T]. Proposition 5.8.3 shows that

(5.8.5) mL=(L—v—-6L)(L++v—6L) (mod p),

again in k(v/—0)[T]. This is the key congruence for constructing a Tschirn-
haus transformation %, given by two different expressions, that is easy to
compute with: define

t=L-L7' (mod p).

Although ¢ lies in the quotient ring k[T']/pk[T|, we may think of ¢ as any
of its representatives in k[T'] since all such representatives act as the same
Tschirnhaus transformation of p. To analyze ¢ as a transformation, we con-
tinue working mod p. Multiply (5.8.5) by (mL) ! (mod p) to obtain the

two congruences

(t —v/=38)L1 (mod p) where Ly = (L + V-6 L)/m,

1
1=(t++vV—-8)Ly (mod p) where Ly = (L — vV—6 L) /m.
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Thus, solving for ¢ gives
t=(1+vV-0L)L7' (modp) and t=(1-+v—-0Ls)Ly' (mod p).

Since L; and Ly are factors of Q(T,1)) they are invertible mod p and these
expressions for ¢ are defined.
The two expressions for ¢ constrain the ¢-transformed quintic,

5
g=J](S—t(r:)) = S° + diS" + dsS® + d3S° + dsS + ds.
i=1
To see this, first note that ¢(S) = 0 for S = t(r;) = (1++/—0 L1(r;))/L1(r3),
so substituting S = (1 ++v/—0 R)/R expresses q as a rational function of R,
(14++vV-0R)’>+diR(1++v-0R)* +daR*(1 +vV-0R)3+ -+ + dsR®
RS ’
which vanishes for R = L1 (r;) = (L(rs,9(r;:)) +v/—0 L(rs,1(r;)) /m. In other
words, the numerator is a quintic in R whose roots are a linear combination

of r; and (r;); so it is principal by Corollary 5.8.2, and its R* and R3
coefficients vanish,

562 + 4dy (—0)%/? — 3dyd + 2d3(—6)"/% + dy = 0,

10(—0)3/2 — 6dy8 + 3da(—6)Y/? + d3 = 0.
Similarly using the second expression for ¢, the substitution § = (1 —
v/ —0 R)/R expresses g as a rational function of R, again with a principal

quintic numerator. But this is the same expression as before except that
v/ —4¢ is replaced by —v/—4, so this time the vanishing coefficients are

562 — 4dy (—0)%/? — 3dyd — 2d3(—6)"% 4+ dy = 0,
—10(—6)*/? — 6dy 6 — 3dy(—6)/? + ds = 0.
Combining the vanishing conditions gives 56% — 3dod + dy = —2d16 + ds =

—6d10 + d3 = —100 + 3do = 0. Linear algebra shows di = ds =0, dy = %(5,
dy = 562, Letting C = —§/3,

g=58°—10C5% +45C?S + ds.

This depends on two parameters rather than the three of the original p. To
reduce to one parameter, proceed as in Section 4.8: set § = —SC? /ds and
W = C%/d2; then ¢(S) = 0 if and only if b(S) = 0 where b is the Brioschi
quintic

b=8°—10WS*+45W25 — W2
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Since the Tschirnhaus transformation ¢ in this section lies in k[T, it is
field-theoretically trivial, i.e., it introduces no irrationalities. Inverting ¢ to
convert Brioschi roots to principal roots requires solving a quadratic, cubic,
or quartic equation over k.

Though the calculations in this section work in the general quintic en-
vironment, they do not specialize to every numerical quintic. For example,
Exercise 5.8.1 assumes that o3 # 0. Here is a specific example that can be
confirmed with the help of a computer algebra system (Exercise 5.8.7). Set
o1 =09=0,03 =-2, 04 =2, 05 = —1 to start from the principal quintic

p=T°+2T? + 2T + 1.

Newton’s identities show that s; = s9 = 0, s3 = —6, s4 = —8, s5 = —5,
sg = 12, s7 = 28, sg = 32. Thus in Exercise 5.8.1(a), g = T3—(4/3)T%+(6/5)
and h = T*—(5/6)T?+(8/5). Finding v in Exercise 5.8.1(b) requires solving
the equation

176¢2 — 209¢; ¢y — 286¢3 = 0,
which, nicely, has solution (c¢1,c2) = (2,1). Thus the result of Proposi-
tion 5.8.1 is

Y =T+ 273 — (7/2)T? + 4.
Next, working Exercise 5.8.3 establishes that the result of Proposition 5.8.3
is
L(X,Y) =3960X +990Y and Q(X,Y)= —4425X2 — 120XY + 120Y2.
The values m and d in Proposition 5.8.4 follow, and mQ — 6L? = L? with

L(X,Y) = 133650(31X + 4Y).

With some more arithmetic modulo the quintic p, the Tschirnhaus transfor-
mation t = L(T,y(T)) - L(T,%(T))~! (mod p) works out to

t = 510T* + 12073 + 24072 + 6007 + 960.
The t-transformation of p is the resultant ¢(S) = R(p(T'), S — t(T')), which

is
g = S° — 17820005° + 1428985800000 — 636613173900000;
this is the predicted form of ¢ with C' = 178200 and ds = —636613173900000.
Finally, taking the resultant R(q(S), S 4+ SC?/ds) gives the Brioschi form
b= 55— (320/72171)S% + (5120/578739249)S — (1024/5208653241)

with parameter W = 32/72171.
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Exercises

Prove Proposition 5.8.1 as follows.

(a) Let g = T3 — (s4/53)T? — (s3/5) and h = T* — (s5/83)T? — (54/5),
elements of k[T']. (The s; are the power sums of the r; as usual.)
Show that

Zg(n) = Zﬁg(ﬁ') = Zh(m) = th(m) =0.

(b) Show that for any c1, ca € k the polynomial ¢ = ¢1g+ coh satisfies

> p(ri) = rip(ri) = 0.
Show that choosing ¢; and ¢z to make Y 1(r;)? = 0 and thus complete
the proof requires a square root of

Yg(ri)? X glrih(r) '
S g(ri)h(r:) X h(r;)?
(c) Since p is principal, Exercise 5.2.5 shows that
5 0 0 s3 s4
0 0 s3 s4 s5
A(p)=1|0 s3 s4 S5 Sg|-
83 S84 S5 S¢ S7

S4 S5 S¢ ST S8

Perform row and column operations to reduce this determinant to

5 0 0 0 0
0 0 S3 0 0

0 s3 84 S rig(r:) S rih(r) |.
0 0 Xrig(ri) Yglr)* X g(ri)h(r:)

0 0 Xrih(ri) Xg(roh(ri) X h(ri)?
This is 5s3 times the quantity whose square root is required in (b).
Thus the square root in (b) lies in k since /5, s3 and /A(p) do.
Prove Corollary 5.8.2. (Recall that the defining equations of the
canonical surface are 3. Z; = 3" Z2? = 0.)

Proving Proposition 5.8.3 requires exhibiting «, 8,,a,b,c € k such
that

oI? 4 28Ty +yp? —aT —bip +¢c=0 (mod p) and ¢ = 0.

(a) Show that the condition ¢ = 0 follows from the congruence. (Hint:
evaluate the left side of the congruence at r; and sum over i.) So we
only need to establish the congruence.



132

5.8.4.

5.8.5.

PMP:[

CHAPTER 5. REDUCTION OF THE QUINTIC TO BRIOSCHI FORM

(b) In Exercise 5.8.1(b), (c¢1,c¢2) may be taken as (1,0) or (x,1). If
c2 = 0, set v = 1. Then y4? is quartic mod p, 28T + y1)? is cubic
mod p for appropriate 3, 28T + v — by is quadratic mod p for
appropriate b, etc. If co = 1, write ¢ = T* 4 by T3 4 byT? + bs. Then
T — b1 is cubic mod p with leading coefficient by — b?. If by —b? = 0,
set 28 = 1, v = 0, b = by, and the congruence holds for suitable «,
a, c. If by — b2 # 0 then 92 — b'4p is cubic mod p for suitable ¥, so
? — b'1p minus a suitable multiple of T4 — by 1 is quadratic mod p, etc.
In both cases, specifying «, 3,7, a, b, ¢, only requires field operations
in k.

Assuming L # 0 in Proposition 5.8.3, show that L(T', ) is nonzero
(and therefore invertible) mod p, and use the proposition to show that
LyQ in k[X,Y].

Prove Proposition 5.8.4 as follows. Let M = [ g p ] and v =
Y

l Z ] these describe Q and L respectively since for any w € k?

tw. In

(viewed as a column vector), Q(w) = w'!Mw and L(w) = v
matrix terms the goal of this problem is to show that up to constant
multiple, M is congruent to a certain diagonal matrix, by a matrix

with bottom row v

Let § = ay — 2 and D = [1 0

0 s ] Introduce the matrix S =

[ (1) (1)] Then S! = -8, §? = —1I, and S!MSM = 41 so that

MS'MSM = 6M. Set w = Sv = b andP:[w SMw],a,

2-by-2 matrix. In the change of variable calculation
wt w'Mw w' M S Mw
w!MS? wMS'Mw wMS*MSMuw

the off-diagonal entries are equal (since (P!MP)! = P'MP, ie.,
P'MP is symmetric) and opposite (since S* = -8, i.e., S is skew),

PM“USMw]zl

so they are zero. Thus
P'MP = Q(w) - D.
From the general formula det [ Ty ] = 'Sy for vectors x and y, we

have det P = —Q(w), which is nonzero because L(w) = 0 and L} Q;
so P is invertible. Let m = Q(w). (This is the m in the proposition.)



9. SUMMARY 133

By the formula for the 2-by-2 matrix inverse, P! = —%U where U
has bottom row [a@ b] = v’, and a little more matrix algebra gives

mM = U'DU.

This matrix identity proves the proposition.

5.8.6. Confirm the calculation of dy, ... , dy, ¢, and b.

5.8.7. Confirm the numerical example of the Brioschi reduction at the end
of the section.

9. Summary

Figure 5.9.1 displays the field theory of this chapter.

K(b1)
K=C(r,...,75) Kprin = C(r1,...,7%)
KBrioschi = C(Z)
S5 As
Ss As
kprin( A(pprin))
k(bl) KBrioschi = C(W)
k = C(o1,...,05) kprin = C(0%, 0, 0%)

Figure 5.9.1. The Brioschi reduction

The idea is to construct the general quintic extension K/k, the left-
most extension in the figure. Putting the quintic into depressed form by
the Tschirnhaus transformation #; in Section 5.4 is field-theoretically trivial
over k, so without loss of generality p is depressed. The first step is to ad-
join the auxiliary irrationality b; from Section 5.4 to the coefficient field k;
this immediately takes us out of the splitting field K. Working over k(b;),
the Tschirnhaus transformation ¢o from Section 5.4 reduces the depressed
quintic to principal form pprin with coefficient field kprin = C(0%, 0%, 0%).
Adjoining |/ A(pprin) reduces the Galois group to As. Next, the Tschirnhaus
transformation ¢ from Section 5.8 reduces the principal quintic to Brioschi
form with coefficient field kgyioschi = C(W).

Once the quintic is reduced all the way down to Brioschi form it is
straightforward to solve, assuming an inverse to the icosahedral equation.
From Chapter 4, the Brioschi extension is icosahedral, so its splitting field
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is Kgrioschi = C(Z) where fi(Z) = W. Recovering the roots of p from
the Brioschi roots amounts to undoing the various Tschirnhaus transforma-
tions in reverse order. Discarding the auxiliary quantity finally produces the
original splitting field K.



CHAPTER 6

Kronecker’s Theorem

The curious feature of reducing the general quintic to one-parameter Brioschi
form is the auxiliary b;. The obvious question is whether the quintic can
be reduced to a one-parameter form without using an auxiliary irrationality.
Kronecker’s Theorem, proved by Klein at the end of [KI], says this is impos-
sible. The main ideas of the proof (Section 6.2) are clear, but a technical
point leads to necessary results from algebra.

Recommended reading: The basics on transcendence degree are in Zariski
and Samuel [Za-Sa I]. The proof of Liiroth’s Theorem in Section 6.3 follows
Jacobson [Ja II]. More general versions of the Embedding Lemma in Sec-
tion 6.4 appear in papers by Ohm [Oh], Reichstein and Vonessen [Re-Vo|,
and Roquette [Ro].

1. Transcendence degree

Consider the line V = {(z1,22) € C? : 21 + 20 = 0}. Although V
sits inside the 2-dimensional vector space C? it is itself a 1-dimensional
vector space over C in the mathematically precise sense of having basis
B ={(1,—-1)} of cardinality 1. Recall that a basis for a vector space V over a
field k is a maximal linearly independent subset of V, i.e., no proper superset
is linearly independent; or equivalently (Exercise 6.1.1), a basis is a linearly
independent subset that spans V. (For infinite sets, linear independence
means that no finite subset satisfies a nonzero polynomial.) In general, the
dimension of a vector space V', while defined abstractly as the cardinality of
a basis, captures the intuitive notion of how many nonredundant directions
V contains.

Blurring definite and indefinite articles by defining “the dimension” of
V to be the cardinality of “a basis” is nonsense until we know that all bases
have the same cardinality. One way to show this when some basis is finite
is the

(6.1.1) DIMENSION LEMMA. Let {z1,...,Zn} be a basis of the vector space
135
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V' over the field k. Let 8 = {y1,.--,Yn,-.-} C V be linearly independent
over k with |8| > n (B may be infinite). Then {yi,...,yn} is again a basis
for V, so in fact |B| = n.

The proof (Exercise 6.1.2) is done by carrying out an exchange process
similar to the forthcoming proof of Lemma 6.1.2.

Granting that V has a basis, it is now easy to show that finite dimension
is well-defined: if V' has a finite basis then the lemma shows that all other
bases are finite and that any two finite bases have the same cardinality. (Ex-
ercise 6.1.7 asks for the details of this argument in an analogous situation.)
Incidentally, existence of a basis for an arbitrary vector space V actually
requires a fundamental result called Zorn’s Lemma, which is equivalent to
the Axiom of Choice from set theory—this is an instance where the founda-
tional issues in mathematics meet the undergraduate curriculum.

These counting ideas are general enough to transfer smoothly to field
theory. Consider for example the field K = C(z)[y]/{y?> — 23 — 1), where
z and y are transcendental over C. (This is a field since y? — 2% — 1 is
irreducible in C(z)[y].) While K is generated over C by the two elements z
and y, these generators are algebraically related, so in some sense K contains
one free variable over C, akin to how the vector space V contained one free
direction. Note that K is algebraic over C(z) and C(y), each of which is
generated by one transcendental element over C. On the other hand, K
itself does not take the form C(z) for any z (we will not prove this). In
general the appropriate definitions are that a transcendence base for an
extension K/k is a subset of K that is maximal with respect to algebraic
independence over k, or equivalently (Exercise 6.1.3), a transcendence base
is an algebraically independent subset § such that K/k(3) is algebraic; and
the transcendence degree of K/k is the cardinality of a transcendence
base.

Analogously to the linear algebra case, Zorn’s Lemma guarantees a tran-
scendence base, and finite transcendence degree is well-defined thanks to the

(6.1.2) TRANSCENDENCE DEGREE LEMMA. Let {zi,...,z,} be a tran-
scendence base for the field extension K/k. Let 8 = {y1,...,Yn,-.-} CK
be algebraically independent over k with |3| > n (B may be infinite). Then
{y1,---,yn} s again a transcendence base for K/k, so in fact |5| = n.

PROOF. Since y; € K and the extension K/k(z1,...,z,) is algebraic, y;
occurs in a relation pi(y1,Z1,...,Z,) = 0 for some nonzero polynomial
p1 € k[U1,T4,...,T,]. This relation also must include some z;, which may
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be taken to be z; after reindexing (Exercise 6.1.4). Thus the extension
k(y1,z1,--.,2n)/k(y1,22,-..,2,) is algebraic; also, K/k(y1,%1,...,%y) is
algebraic, so since the composite of algebraic extensions is algebraic (show-
ing this is Exercise 6.1.5), exchanging z; for y; leaves an algebraic extension,
K/k(y1,z2,...,Tp)-

Now suppose inductively that for some k£ € {1,...,n — 1}, exchang-
ing the variables z1, ..., zy for y1, ..., yx leaves an algebraic extension,
K/k(y1,--- Yk, Th+1,---,%n). As in the preceding paragraph, yx,1 occurs
in a relation pg+1(y1s.-+,Yk+1s Tht1,---,Tn) = 0 which also includes zj11
after reindexing (Exercise 6.1.4). So the extension generated by one more
exchange, K/k(y1,. .-, Yk+1, Th+2,---,Zn), is algebraic (Exercise 6.1.4).

By induction, K/k(y1,...y,) is algebraic. Since 8= {y1,...,Yn,...} is
algebraically independent, the results follow by citing the two definitions of
transcendence base. O

It follows (Exercise 6.1.6) that finite transcendence degree is well-defined.
(For infinite transcendence degree, which we don’t need here, see [Za-Sa I].)
The transcendence degree of an extension K/k is written trdegy (K). For
example from Chapter 5, trdegc(C(o1,...,05,/A(p))) = 5. Note that
by Exercise 6.1.5, if k C K C L and L/K is algebraic then trdegy (L) =
tr degy (K) (Exercise 6.1.7). More generally, transcendence degree is addi-
tive: if k C K C L then (Exercise 6.1.8)

tr degy (L) = trdegg (L) + tr degy (K).

Exercises

6.1.1. Prove that the text’s two definitions of basis for a vector space V
over a field k are equivalent.

6.1.2. Prove the Dimension Lemma.

6.1.3. Prove that the text’s two definitions of transcendence base for a field
extension K /k are equivalent.

6.1.4. Explain why in the proof of the Transcendence Degree Lemma, the
relation p1(y1,21,...,%,) = 0 must involve some z;. Similarly for
the relation pgy1(y1,- -+, Yk+1,Tht1s--->Tn) = 0. Fill in the details as
necessary for the induction step of the proof.

6.1.5. Verify that if L/K and K/k are algebraic extensions then so is L/k.
(Hint: it suffices to show that for every [ € L, the extension k(l)/k
is finite. But [ satisfies some polynomial p = 3" ;a; 7" € K[T] and
each a; satisfies a polynomial p; € k[T| C k(ag,...,a;—1)[T], so the
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chain of finite extensions
k C k(ap) C -+ C k(ao,...,a,) C k(ag,...,an,!)

combines with Exercise 4.2.1 to do the trick.)

6.1.6. Prove that finite transcendence degree is well-defined.

6.1.7. Show that if k ¢ K C L and L/K is algebraic then trdegy, (L) =
tr degy (K).

6.1.8. Prove that transcendence degree is additive. Hint: if {z;} is a tran-
scendence base for K over k and {y;} is a transcendence base for L
over K, then {z;} N {y;} = 0, {zi,y;} is algebraically independent
over k, and the relations

L cK({y;}) C k({z:i})({y;}) = k({zs y;})

(the overbars denote algebraic closure) show that L/k({z;,y;}) is al-

gebraic.

2. Kronecker’s Theorem

Consider the general set-up of a T'schirnhaus transformation of the quin-
tic. Start as usual with
5 5

p=11T—r) = (=10,
i=1 =0
Let k = C(04,...,05,v/A(p)) be the coefficient field of p with the square
root of the discriminant adjoined, and let K = C(r1,...,75) = spl(p) be the
splitting field. Then Gal(K/k) = As. Take a Tschirnhaus transformation
t € 1[T] where 1 is some extension field of k. The corresponding transformed

polynomial is
5

q= H(S — t(r;))-
i=1
Formulating Kronecker’s Theorem precisely requires some care, as the
following examples show. First, try the Tschirnhaus transformation ¢ =

T — r1. This moves r; to zero, so the transformed polynomial is
5
g=5-T[(S - t(r:)E'S - 4.
i=2

We can solve the quartic ¢ and the affine ¢ is trivial to invert, so this seems
to solve the quintic. Unfortunately, the problem is that the coefficient field
of t is 1 = k(r1), whose construction requires a root of p, so that using this
t presupposes a solution to the problem we are trying to solve.
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The emerging question is what sort of Tschirnhaus transformations ¢ to
consider. Klein and Kronecker, as 19th-century mathematicians, naturally
worked over the complex numbers and granted the adjunction of radicals. In
the language of field theory, start from any field f, let r be algebraic over f,
and suppose f(r)/f is constructible by radicals (see Section 4.5). Call such
a value r radical over f. The radical closure of f, written f™4, is the field
generated over f by all radical values r, a subfield of the algebraic closure of
f. With this terminology it is easy to characterize the allowable Tschirnhaus
transformations ¢ if we view radical adjunction as trivial: the coefficients of
t should be radical over the coefficient field of p, or equivalently, over k. In
other words,

t € k™4[T).
Call such ¢ a radical reduction of p.

Now try the radical Tschirnhaus transformation ¢ = k for some k € k.
Since each t(r;) = k, the resulting transformed polynomial is ¢ = (S — k)5.
This certainly simplifies the original p, but the catch is that solving p requires
inverting the substitution ¢ along with solving ¢; finding 7" such that ¢(T") = k
and p(T) = 0 is no easier than solving the original equation p(7") = 0 and we
have accomplished nothing. Note that ¢ is highly degenerate (in the sense
of Section 5.5) since it collapses the five roots of p to a common value.

Kronecker’s Theorem will consider a radical reduction that introduces
only natural irrationalities, meaning ¢ € (k'*NK)[T]. Since the intersection
k™ N K is just k (Exercise 6.2.1), in fact the only relevant Tschirnhaus
transformations are field-theoretically trivial,

t € k[T.

Now, if such ¢ collapses the roots of p at all, e.g., t(r1) = t(r2), then it
quickly follows (Exercise 6.2.2) that all ¢(r;) are equal, so ¢ is constant and
therefore useless. Thus, to reduce p, we must take ¢ to be nondegenerate.
Now we can state

(6.2.1) KRONECKER’S THEOREM. Let K/k be the general quintic extension
with Galois group As and let t € k[T'] be a nondegenerate (i.e., nonconstant)
Tschirnhaus transformation taking the gemeral quintic p to
5 5
qa=[[(S-7)=> (-1)75;8°7.
i=1 j=0

Then tr deg(C(61,...,05)) > 1. In particular, the coefficients of q can not
be rational expressions in a single parameter w € k.
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Certainly tr degc(C(81, . ..,d5)) > 0since ¢ is nonconstant. To prove the
theorem, let F = C(71,...,75) C K and f = C(61,...,55,/A(q)) = F4 C
K4 = k. (Recall from the Galois Correspondence that the superscript
denotes fixed field.) See Figure 6.2.1.

K

As

Figure 6.2.1. Fields for the transformed quintic

Since F/C(61,...,05) is algebraic, it suffices to obtain a contradiction
by assuming tr degc(F) = 1. Some algebra, to be developed in the next two
sections, shows the crucial fact that this assumption implies F = C(Z) for
some Z € K transcendental over C. Take this as given for now. So F is
generated over C by a rational expression Z = ¢1(r1,...,75)/d2(r1,---,75)
with ¢1, (/)2 € k[Tl, C ,T5] and ng(¢1, (/)2) =1.

Since F = C(Z) and the automorphisms of C(Z) over C are PGLy(C)
(Exercise 4.4.3), the lower Galois group Gal(F/f) = As in Figure 6.2.1 gives
an injection

p:As — PGLy(C),

ay by ayZ + b,
€ PGLy(C) wh Z)="—"-"1,
v 2(0) where 7(2) = 217

(The overbar denotes projective class—the individual matrix entries are only

i.e., for each v € 45, p(y) = [

defined up to constant multiple.) Since the automorphisms of F over f are
restrictions of the automorphisms of K over k, the map p must be compatible
with how Aj acts on K = C(rq,...,75) by evenly permuting the r;. Thus

for v € As, the quantity v(Z) = y(¢1/¢p2) takes the two forms
(6.2.2)
$1(y(r1,...,75))  aydi(ri,...,r5) + bydo(ri,...,75)

b2(Y(r1,---515))  eydi(ri,---,75) Fdydalriy...,75)
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By Exercise 6.2.3, this is equivalent to the vector equation (with r1,...,75

now suppressed)

(6.2.3)

[zll oy=k, [:7 27] lj;l] for some k, € C*.
2 y 2

The resulting lift

lav bv] > k, lav bv]
Cy dy Cy dy

from p(As) to GL2(C) is well-defined and a homomorphism (Exercise 6.2.4).
By Theorems 2.3.1 and 2.6.1, p(As) is conjugate in PGLy(C) to the icosa-
hedral group I'7, so conjugating gives a corresponding lift I'y — GLy(C).

But no such homomorphism exists (Exercise 6.2.5), giving a contradiction

and proving Kronecker’s Theorem.

In 1995, Joe Buhler and Zinovy Reichstein proved a much broader the-

orem ([Bu-Re]) saying, roughly, that the smallest d such that the general

polynomial extension K/k of degree n can be reduced over k to transcen-
dence degree d satisfies |[n/2| <d <n—3.

6.2.1.

6.2.2.

6.2.3.

Exercises

Show that k™4 N K = k as follows. Each of k™/k and K/k is
a normal extension. As cited from [La] in Section 4.3, an algebraic
extension L /k is normal exactly when any irreducible polynomial m €
k[T'] with a root in L has all of its roots in L. This criterion shows that
the extension (k' N K)/k is normal. Since we are in characteristic
zero the extension is therefore Galois. By the Galois Correspondence,
Gal(K/(k™ N K)) is a normal subgroup of Gal(K/k) = As, which is
simple (Exercise 4.6.1). Complete the proof.

Taking p, k, K and ¢ € k[T as in the text, show that if ¢(r1) = t(r2)
then all ¢(r;), i = 1,...,5, are equal. (Hint: apply suitable o € Aj
to the quantity ¢(r1) — ¢(r2) = 0x.) Show that therefore ¢ is constant.
(As discussed in Section 5.4, we only care about ¢ (mod p).)

Prove that (6.2.3) implies (6.2.2). Prove that (6.2.2) implies (6.2.3)
as follows.

(a) Given that ¢1 and ¢o from the text satisfy ged(¢q, ¢2) = 1, show
that also ged(¢1 0, g2 0y) = 1 and ged(ayd1 + by, cyd1 +dy2) =1
for any v € As and [‘Z Zj/] € GL2(C).

(b) Complete the proof by applying the lemma from Exercise 5.5.1(b).
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6.2.4. Show that the hypothesized map p(As) — GL2(C) in the section is
well-defined and must be a homomorphism.

6.2.5. This exercise shows that the representation of I'; as a subgroup of
PGL(C) does not lift homomorphically to GLo(C). Suppose we have
such a lifting. Consider the Klein four-group V = {1, sp,tp, srtp} C
PGL2(C), where as in Section 2.7

i 0 0 9
ST—lO —i] and tp—li 0].

If sy and tp lift respectively to k; [ é 0 ] and k; [ 0 é ], show
—1 )

-1
that sptp lifts to ksk; l (1) 0 ] Since s, tp and srtp all have
order 2, show that necessarily k2 = k? = (kskt)? = —1, which is

impossible.

Since each Platonic rotation group and each dihedral group D, for
n even contains V or a conjugate copy of V, none of them lifts to
GL2(C). The cyclic groups and the dihedral groups D,, for n odd do
lift.

3. Luroth’s Theorem

To complete the proof of Kronecker’s Theorem, we need to show that
indeed F takes the form C(Z) for some Z € K, as asserted. Here is the
crucial algebraic tool.

(6.3.1) LUROTH’S THEOREM. Let F be a field. If C C F C C(r) where r
is transcendental over C and F # C, then F takes the form C(Z) for some
Z transcendental over C.

(In fact this theorem and proof hold with C replaced by an arbitrary
field.)

PROOF. There exists some w € F \ C. It follows (Exercise 6.3.1) that r is
algebraic over C(w) and therefore over F. Let p, = > k; 7"~ € F[T] be
the minimal polynomial of r over F. (Thus ky = 1.)

Each coefficient k; of p, lies in C(r), so (Exercise 6.3.2) there exists a
least common denominator cy(r) € C[r] such that ¢ (r)kicéuci (r) is in CJr
for i = 1,...,n and ged(cp(r),...,cn(r)) = 1. In other words, co(r)p, =
Yito ci(T)T"_iC%Hﬁ is primitive in CIr|[T].
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Some coeflicient k; of p, lies outside of C since r is transcendental
over C. So k; = g(r)/h(r) for polynomials g,h € C[T] with ged(g,h) =1
and max{deg(g),deg(h)}cium > 1. It follows (Exercise 6.3.3) that [C(r) :
C(k;)] = m; also (Exercise 6.3.3) C(k;) C F and [C(r) : F] = n, so to com-
plete the proof with Z = k;, it suffices to show m = n. Note (Exercise 6.3.4)
that the r-degree of p € C[r][T] is at least m.

Since kj = g(r)/h(r), r satisfies the polynomial ¢, = g — kjh € F[T], so
pr | ¢ in F[T], and thus p | ¢r in the ring C(r)[T], where co(r) is a unit.
Substituting k; = g(r)/h(r) into this divisibility relation and multiplying by
h(r) gives

g(T)h(r) — g(r)h(T) = h(r)a(r,T)p(r,T) for some a € C(r)[T].
Since the left side is in C[r][T] and p € C[r][T] is primitive, this rewrites as
g(T)h(r) — g(r)h(T) = b(r,T)p(r,T) for some b € C[r]|[T].

The left side has r-degree at most m and p(r,T') has r-degree at least m, so
both r-degrees are exactly m and b € C[T]. The right side is now primitive
in C[r|[T] by Gauss’ Lemma (Exercise 4.4.2), hence so is the left side; hence
the left side is primitive in C[T’][r] by symmetry, meaning so is the right
side. Thus b € C. Since the left side has equal r-degree and T-degree by
symmetry, so does the right side, i.e., m = n. O

The hypotheses of Liiroth’s Theorem imply that tr dego(F) = 1 (Exer-
cise 6.3.5). Not all fields of transcendence degree 1 over C take the form
C(Z), for example K = C(z)[y]/(y? — z® — 1) from Section 6.1.

Exercises

6.3.1. In the proof of Liiroth’s Theorem, show that r is algebraic over C(w)
and therefore over F.

6.3.2. Show that there exists ¢y(r) as claimed in the proof.

6.3.3. Justify the assertion [C(r) : C(k;)] = m in the proof. (See the
ideas in Exercise 6.2.3(b) if necessary.) Show that C(k;) C F and
[C(r) : F] =n.

6.3.4. Show that the r-degree of p is at least m. (Hint: the degree is at
least max{deg(co),deg(c;)}.)

6.3.5. Show that the hypotheses of Liiroth’s Theorem imply tr deg(F) = 1.
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4. The Embedding Lemma

Finally, the following result combines with Liiroth’s Theorem to complete
the proof of Kronecker’s Theorem (Exercise 6.4.1).

(6.4.1) EMBEDDING LEMMA. Suppose F/C is a field extension such that
trdegc(F) = 1, and there exists a C-embedding (meaning an embedding
that fizes C pointwise) F — C(r1,...,rqq1) withn > 1 and r1, ..., Tpy1
algebraically independent over C. Then there exists a C-embedding F —
C(T‘l).

To prove this, first make some reductions. Identify F with its embedded
image in C(ry,...,r,+1). Take a subset {s1,...,8,-1} of C(ry,...,rn11)
algebraically independent over F (Exercise 6.4.2 asks why such a set ex-
ists). Since transcendence degree is additive, tr degc(F(s1,...,8p-1)) =n =
trdegc(C(r1,...,mq)). It suffices to give a C-embedding F(s1,...,8,-1) —
C(ri,...,7y), as restricting then gives a C-embedding F — C(ry,...,7y)
and we are done by induction. After reindexing if necessary, r,+1 is transcen-
dental over F(s1,...,s,—1) (Exercise 6.4.3). Thus, the Embedding Lemma
follows from the next result with L = F(sy,...,sp-1):

(6.4.2) PROPOSITION. Suppose L/C is a field extension with tr deg(L) =
n >1, and L C C(ry,...,rm41) with ry41 transcendental over L. Then
there exists a C-embedding L — C(r1,...,7y).

PROOF. For any positive integer [ the subsets of L
R={p/geL:p,q€Clry,...,rns1],8¢d(p,q) = 1,rnt1 — 71 f ¢}

and

I=(rp41—r)R={p/g€ R:rp1 — 71t | p}

are respectively a ring and a maximal ideal of the ring (Exercise 6.4.4). The
substitution r,,1 + r} defines a homomorphism ¢ : R — C(ry,...,r,)
whose kernel is I (Exercise 6.4.5). The proof will proceed by showing that
I = {0} and R = L, so ¢ is the desired C-embedding. Since z € L\ R
implies 1/z € I (Exercise 6.4.6), showing I = {0} also shows that R = L
and therefore suffices for the argument. Thus all we really need to show is
that ¢ is injective.

The image ¢(R) is a subfield of C(r1,...,,) (Exercise 6.4.5 again). Call
this field L*. The main step in the proof is to show that tr degc(L*) = n.
Indeed, note that the extension C(ri, ..., +1)/L(r,+1) is algebraic since
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both fields have transcendence degree n+1 over C. So for i = 1,...,n there
are polynomial relations

ajor;" + aﬂrg'”_l o+ Qi =0 with each a;; € Lry41] and a4 # 0.

(A priori we only know a;; € L(r,41), so clear denominators.) Thus each
a;; takes the form
ij ij—1 :

Qi = bij0T7T+J1 + bz-jlr;n+71 +---4 bijmij with each b,’jk € L and bijO #0.
Consider the coefficient set C' = {a;j,b;5} C C(r1,...,741). For large
enough [ (in particular, we may assume [ > m1), the polynomial 7,1 — rt
divides no numerator or denominator of any nonzero element of C'. Applying
¢ to C (ie., substituting rny1 > i) gives a new set C' = {aj;,b};;} C
C(r1,...,rs) and new polynomial relations for i = 1,...,n,

ajr!™ +ajr - +aj,, =0  with each aj; € L*[r}] and ajy # 0.
Thus C(ry,...,rs)/L*(r1) is algebraic. Also, the relation

0 =ajri™ + - +aly,
= (hoor ™™ + -+ + Biomug )" + -+ (Blmyory™ ™ )
is nontrivial (Exercise 6.4.7), so L*(r;)/L* is algebraic too. Concatenating
extensions shows that C(ry,...,r,)/L* is algebraic, so that tr degc(L*) = n
as claimed.

Now we can prove that ¢ is injective. Let {y1,...,yn} be a transcen-
dence base for L*/C and let {z1,...,z,} C R satisfy ¢(z;) = y; for each
i. Then {x1,...,z,} is algebraically independent over C (Exercise 6.4.8)
and therefore a transcendence base for L /C. Each nonzero = € R satisfies a
polynomial relation

(6.4.3)

d
Zpi(xl, ce )zt =0 with each p; € C[T1,...,T,] and py nonzero
i=0

(Exercise 6.4.9). Applying ¢ to both sides gives Zg:o Pi(Y1,s- -5 yn)(p2)" =
0. Since po(y1,..-,yn) # 0 (Exercise 6.4.10), ¢z # 0. Thus ¢ is injective
and the proof is complete. O

Exercises

6.4.1. Use the Embedding Lemma and Liiroth’s Theorem to complete the
proof of Kronecker’s Theorem.



146 CHAPTER 6. KRONECKER’S THEOREM

6.4.2. Under the hypotheses of the Embedding Lemma, explain why there

is a set {s1,...,sp—1} as described.
6.4.3. Under the hypotheses of the Embedding Lemma, show that some r;
(which may as well be r,41) is transcendental over F(s1,...,8,-1).

6.4.4. Show that the sets R and I in Proposition 6.4.2 are a ring and a
maximal ideal of the ring. (For the second part, show every element
of R\ I is a unit in R.)

6.4.5. Show that the substitution 7,1 ++ r} defines a homomorphism ¢ :
R — C(ry,...,ry) whose kernel is I. (In fancy language, R and I
are the valuation ring and maximal ideal of the (r,,; — r})-adic
valuation on L. This valuation, v : R — N U oo, returns the
exponent of 7,.1 — r} in each element of R.) Show that ¢(R) is a
subfield of C(r1,...,7y).

6.4.6. Show that if z € L'\ R then 1/z € I, so in particular showing that
I = {0} also shows that R = L.

6.4.7. Show that the relation 0 = (Boori™® + -+ + blg, )ri + -+ is
nontrivial by considering the coefficient of r™0T™  (Recall that
> ml.)

6.4.8. Show that {z1,...,z,} is algebraically independent over C.

6.4.9. Show that each nonzero z € R satisfies a polynomial relation (6.4.3).

6.4.10. Show that po(y1,...,yn) # 0.

5. Summary

The proof of Kronecker’s Theorem has two components: the easy part is
that the subgroup I'y of PGLy(C) isn’t the projective image of an isomorphic
subgroup of GLy(C); the hard part is the algebra in Liiroth’s Theorem and
its extension to the Embedding Lemma. The next chapter will present a
broad view of the connections between algebraic equations and geometry,
which will illuminate the geometric ideas underlying the harder algebra here.
See in particular Exercise 7.2.10.



CHAPTER 7

Computable extensions

Granting the adjunction of radicals, Chapter 5 showed that solving the gen-
eral quintic is equivalent to solving the Brioschi quintic

by = T° — 10W'T? + 45W"*T — W',

a process that Section 4.8 carried out with the solution to the icosahedral
equation f7(Z) = W, where W' and W are related by the fractional linear
transformation W’ = 1/(1728(1 — W)). This chapter solves the Brioschi
quintic by a different method: repeatedly iterating a rational function. Not
surprisingly, finding the rational function to iterate relies on icosahedral
geometry.

Recall that the Radical Criterion from Chapter 4 gives a group-theoretic
characterization of field extensions that can be constructed by successively
adjoining radicals. Analogously, this chapter describes extensions that can
be constructed by successively iterating rational functions. Finding the it-
eration for the Brioschi quintic will do the hard work of establishing the
characterization.

Recommended reading: To keep the book manageable in scope, this
chapter quotes results and skips technicalities from algebraic geometry and
complex dynamics. The material is drawn closely from the paper of Doyle
and McMullen [Do-Mc]; see the paper and its references for the theorems
from dynamics cited here without proof. The compressed development of
algebraic geometry in Section 7.2 is meant to make the material accessible
without going into full detail, so supplementing with a text such as Reid
[Reid], Cox, Little, and O’Shea [Co-Li-O’S]|, Mumford [Mu], or the first few
sections of Hartshorne [Ha] may be helpful.

1. Newton’s method for nth roots

For any polynomial p € C[T'], Newton’s method for finding roots of p

is: Make an initial guess tg, and then generate a sequence of t-values by the
147
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iteration

p(tk)
toa1 =t — for k=0,1,2,...
A p'(tk)

(See Exercise 7.1.1 for the geometric idea behind this formula.) That is,
apply the function T'— p/p’ € C(T') repeatedly, starting at to. The hope is
that the resulting sequence {t;} will converge to a root of p. If the initial
guess to is close enough to a simple (nonrepeating) root, this will indeed
happen. Newton’s method is decision-free, meaning that the iteration can
be coded as a computer algorithm without any if-then statements. Of course,
making Newton’s method a true algorithm by stopping the iteration after
finitely many steps requires a decision, but that is a separate issue. Think
of generating the sequence {t;} as a single decision-free process.

In particular, to find nth roots of unity by iteration, apply Newton’s
method to the polynomial p = T™ — 1. For this special case, the function
being iterated to produce the sequence {tx} is (Exercise 7.1.2)

o (n—1)T"+1
N nTm—1

A fact from dynamics, to be shown later in Exercise 7.8.8, is that Newton’s

e C(T).

method for nth roots of unity is generally convergent. This means that for
any %o from a dense open set of initial guesses D C C (meaning D = é, where
the overbar denotes smallest closed superset), iterating f on t#; produces
a sequence {t;} that converges to a root of p. For most polynomials p,
Newton’s method is not generally convergent.

Tterating f to find the nth roots of unity is one of a family of algorithms
for finding the nth roots of nonzero complex numbers w, i.e., finding the
roots of the polynomials p,, = T™ — w. For each w, Newton’s method is to
iterate the function
(n=1)T"+w

nTn—1

(Exercise 7.1.2 again). Viewing all the nth root problems collectively as a

F, = € C(T)

w-parametrized family leads to the all-encompassing two-variable rational
function

(n=1)T"+W
nTn—l
where as usual the upper-case W is a formal symbol. The idea is to think of

F = Fy =

e C(W)(T)

F as a one-parameter family {F},} of rational functions in the iteration vari-
able T'. Equivalently, rather than considering F' as an element of C(W)(T),
one may view it as a function F : C\ {0, 00} — C(T) taking each w to the
appropriate rational function F,.
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The configuration of nth roots of any nonzero w is conformally equivalent
to the configuration of nth roots of unity from the special case w = 1, when
pw = p1 is the p from above; specifically, for any z such that 2" = w, a
fractional linear transformation taking the nth roots of w to the nth roots
of unity is simply the scaling

| 1/z 0| t
¢z_lo 1]'tHE

(Exercise 7.1.3). This suggests that Newton’s method for any p,, (i.e., iterat-
ing F,) is conformally equivalent to Newton’s method for p (i.e., iterating f).
And indeed, if the symbols Z and W are related by Z™ = W, define

1/Z 0

b=to=| 7 ) | erorae,

representing the Z-dependent rational function T/Z € C(Z)(T), with in-
verse ¢~ = [£ 0] = ZT; then

(n—1)(T/Z)"+1 _ (n—1)T"+W

(¢21 ofo ¢Z)(T) =7 f(T/Z) =7 ’n,(T/Z)n_l - nTn—1

= Fy (T).

Thus F = ¢~ f$. (The composition symbol “o” will generally be omitted

from now on for brevity.) This equation says that Newton’s method for the
polynomials p,, is a rigid family of iterations: the model f € C(T') and the
conjugating conformal map ¢ € PGLy(C(Z)) give the general iteration
F € C(W)(T). Since the model f is generally convergent, so is any iteration
F,, (Exercise 7.1.4).

(A small point: the conjugating transformation ¢ does not lie in the
group PSLy(C(Z)); unlike PGL2(C) and PSLy(C), the groups PGL2(C(Z))
and PSLy(C(Z)) are not isomorphic since the field C(Z) is not closed under
square roots—cf. Exercise 2.1.4. For uniform notation we will also write
PGL9(C) rather than PSLy(C) for the next few sections.)

An output value of Newton’s method F is a point (w,z) € C x C with

Zﬂ

= w. One may picture the set of such outputs as the graph of the n-
valued function /" on the w-sphere, sitting inside C x C. Newton’s method
F receives a point (w,t) € C x C, where we want an nth root of w and ¢t is
an initial guess; iterating F, will reliably move the point (w,t) vertically to
a point (w, z) on the graph. See Figure 7.1.1.

Computationally, the field C(W) is the set of algorithms that take input

from the w-sphere and perform finitely many rational operations. That
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Figure 7.1.1. Newton’s method for nth roots of various w

is, evaluating any particular rational function requires finitely many adds,
subtracts, multiplies, and divides; and only a rational function can be so
evaluated. Similarly, the extension field C(Z) is the set of algorithms that
perform finitely many rational operations on input from the z-sphere, which
maps to the w-sphere by z — 2". But—and this leads to a central idea
of this chapter—the field C(Z) can also be described another way as a set
of algorithms: it consists of the algorithms that first take input from the
w-sphere, then call Newton’s method for nth roots to get a value z such
that 2" = w, and then perform finitely many rational operations on z.
That is, “adjoining” Newton’s method for nth roots to the operations of
C(W) gives the operations of C(Z) and thus constructs the field extension
C(Z)/C(W) computationally. This new idea is crucial in the sequel: rather
than constructing field extensions algebraically by adjoining roots, we will
now construct them computationally by adjoining algorithms (in this case,
Newton’s method for nth roots) to the rational operations of the base field.

The rigidity of F—i.e., the equality F = ¢~ f $—imposes conditions on
the conjugating transformation ¢. To wit, ¢ = T'/Z is a rational function of
T with coefficient 1/Z, hence the composition F = ¢~! f¢ lies in C(Z)(T);
but from before we know the stronger fact that F' actually lies in the subfield
C(W)(T). Thus, F remains invariant when its coefficients are transformed
under the Galois group I' = Gal(C(Z)/C(W)), which is the cyclic group of
order n with generator Z + (,Z. In other words, (¢~ 1 f¢)? = ¢~Lf¢ for all
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v €T, or, since « is a homomorphism and the coefficients of f are constant,

(7.1.1) (™) fp" = ¢ Lf¢p forall y €T.
To study this condition further, define

p(y) = ¢7¢~ € PGLy(C(2))

for each v € I'. We now investigate p(vy), using fairly general methods. Of
course, it is simple to compute directly that for any v : Z — (} Z,

p(v)=¢}¢21=ll/(ff’z) (1)H§ 2]=[ng (1)]:T+—>T/Cr];;

but the general methods will carry over nicely to a broader context in
Section 7.3, so they are being demonstrated here specifically for Newton’s
method to make the later reading easier.

First, by Exercise 7.1.5, the I'-invariance (7.1.1) of F is equivalent to the
condition

(7.1.2) p() ' fply) = f forall y €Ty

that is, each p(y) commutes with f. This is easy to confirm explicitly from
the computation of p(y) above (Exercise 7.1.6).

Next we rederive that p(vy) in fact lies in PGLy(C) rather than in the
larger PGLy(C(Z)). For any nonzero z,w € C with 2" = w, we know that
the transformation ¢, € PGLy(C) maps the nth roots of w to the set of nth
roots of unity,

A = {17 C’IMC??L’ e aC’rTzl_l}'

Similarly, for any v : Z + ¢} Z in T, the transformation

41— l 1/(¢h2) 0] e b
0 1 Iz
maps the nth roots of w to A. It follows that the transformation p(y), =
$1¢; " permutes A. This also follows directly from (7.1.2) since A consists of
the fixed points of f in C (Exercise 7.1.7). In any case, since A is a discrete
subset of 6, the transformation p(7y), permutes A in the same way as z
varies continuously. Any two z-values in C \ {0,000} are joined by a path, so
the general fractional linear transformation p(y) permutes A independently
of Z. Since fractional linear transformations act triply transitively on the
sphere (see for example Section 2.5 of [Jo-Si]), p(7) is determined by its
action on A and therefore lies in PGLy(C) as claimed. Note that this proof
tacitly assumes n > 3 and omits the square root case.
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Now compute for any 1,y € T,

pne) = ¢ H = ¢ () Mg

= ¢"72(¢ 1) 12 () by the hint to Exercise 7.1.5
= (¢" ¢ ) p(12) because 7, is a homomorphism
= p(m)"?p(2) = p(71)p(12) because p(71) is Z-independent.

This shows that p : ' — PGL9(C) is a homomorphism. Finally, p is
injective because for any v € ' taking Z ~ ¢} Z and any nonzero z € C,

1/z 0 1/(¢hz) 0

‘Mz):l 0 1 0o 1

] (=1 and $1(s) = [ ] (=) = G
thus p(y) = ¢J¢;! takes 1 — z ~— (7, showing that p(y) permutes A
nontrivially unless v is the identity mapping. Of course, this is all clear from
the explicit value of p (Exercise 7.1.6 again).

To summarize, Newton’s method F' € C(W)(T) for the family of poly-
nomials p,, = T™ — w is generally convergent and therefore constructs the
field extension C(Z)/C(W) computationally, where Z" = W. It is rigid,
meaning it has the form F = ¢! f¢ with f € C(T) and ¢ € PGLy(C(2)).
Consequently the map vy — ¢7¢ ! for each v € I' = Gal(C(Z)/C(W)) is an
embedding p : T' — Aut(f), where

Aut(f) = {m € PGLy(C) : m ' fm = f}.

Exercises

7.1.1. Show that the formula for Newton’s method comes from intersecting
the tangent to the graph of p at (¢, p(tx)) with the ¢-axis for the next
approximation tx11. (See Figure 7.1.2.)

7.1.2. Verify that Newton’s method for p = 7™ — 1 is to iterate the function
f = (n—-1)T" +1)/(nT""!), and more generally that Newton’s
method for p,, = T™ — w is to iterate the function F,, = ((n — 1)T™ +
w)/ (T L),

7.1.3. Confirm that the fractional linear transformation ¢, takes the nth
roots of w to the nth roots of unity.

7.1.4. Use the fact that f is generally convergent and the relation F =
¢ 1f¢ to show that any iteration F, for w € C \ {0,000} is also
generally convergent. (The iteration {t, f(t), f(f(t)),...} = {f*(t)}
converges for all initial guesses ¢ in a dense open set D C C. Show that
the iteration {F%(¢)} converges for all t € ¢;1(D) for any z such that
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p(1)

Lvr Tk

-

Figure 7.1.2. Geometry of Newton’s method

2" = w. Note that ¢(¢—1(D)) is a closed superset of ¢(¢p~ (D)) = D
and therefore a superset of D = C. Apply ¢ L)

7.1.5. Show that the I'-invariance of F' is equivalent to the conjugacy-
invariance condition p(y)~!fp(y) = f for all v € T. (Observe first
that since 7 is a homomorphism, (¢ 1)7¢” = (¢ 1¢)? = 17 = 1,
showing that (¢?) ! = (¢ 1)7.)

7.1.6. Use the computed value of p(y) to verify explicitly that it commutes
with f and that p: T' — PGLy(C) is an embedding.

7.1.7. (a) Show that the relation p(y)~!fp(y) = f implies that p(7y) per-
mutes the fixed points of f.
(b) If p € C[T] has only simple roots, show that the fixed points of the
Newton iteration f =T — p/p’ in C are the roots of p. In particular,
the fixed points of f from the text are the nth roots of unity.

2. Varieties and function fields

Analogously to Newton’s method for nth roots, we seek a purely iter-
ative algorithm F € C(W')(T) such that iterating each F,, € C(T) will
generate a root of the Brioschi quintic b,s. To investigate whether such an
algorithm exists, we need to characterize the field extensions that are con-
structible by decision-free iteration, just as Galois theory characterizes the
field extensions that are constructible by radical adjunction. The first step
toward discussing this problem in its proper environment is to expand our
vocabulary to generalize the connection between the z-sphere, the w-sphere,
and their fields of rational functions C(Z) and C(W).
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As the preceding section mentioned, the function z — 2" maps the z-
sphere to the w-sphere, and this map corresponds to the field extension
C(Z)/C(W) where Z™ = W. The cyclic group C,, describes both the w-
invariant automorphisms of the z-sphere and the Galois group of the cor-
responding field extension. Similarly for any finite rotation group I' from
Chapter 2, the I'-invariant function fr from Chapter 3 maps the z-sphere to
the w-sphere, and as shown in Chapter 4, T' is also the Galois group of the
field extension C(Z)/C(W), where now fr(Z) = W. In all of these cases,
the group I' acts geometrically (from the left) as the motions of the z-sphere
that fix the fp-image w-sphere, and it acts algebraically (from the right) as
the automorphisms of C(Z) that fix the subfield C(W).

Unfortunately, these examples aren’t broad enough to serve as the basis
for a good theory. We need to discuss mappings between sets other than
spheres and extensions of fields other than the rational functions of one
variable. Here are two more scenarios where a group describes both the
geometry of a set-mapping and the algebra of an associated field extension.

Let p € C[T'] be cubic with distinct roots and consider the elliptic curve

E ={(w,z) € C?: 2* = p(w)}.
The corresponding rational functions taking input from £ are
K(&) = C(W)[Z]/(Z* - p(W))

where (Z? — p(W)) is the ideal of the polynomial ring C(W)[Z] generated
by all multiples of Z? — p(W). This ideal is maximal since Z2 — p(W) is
irreducible over C(W), so the quotient is indeed a field. The elliptic curve
maps to the w-sphere by (w,z) — w, and the corresponding field extension
is K(£)/C(W). The cyclic group Cy describes the w-invariant motions of
the elliptic curve (they are the identity and (w, z) — (w, —z)) and the Galois
group of the field extension. Thus once again we have a map between sets
and a corresponding extension of fields, both described by the same group
C5; but this example differs from the preceding ones in that the elliptic curve
£ is not a sphere—in fact, it turns out to be a topological torus with one
point missing—and (as alluded in Chapter 6) its field of rational functions
K (&) does not take the form C(Z) for any symbol Z.

The function field of the elliptic curve is still fairly specialized since it
stays in the realm of transcendence degree 1. For an example of higher
transcendence degree, the map C" — C" from general polynomial roots to
coefficients, (ri,...,r,) — (01,...,05), corresponds to the general polyno-
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mial extension field from Chapter 5; and the group S,, describes all motions
of the root space that fix the coefficient space as well as being the Galois
group of the field extension.

This section introduces some terminology from algebraic geometry
to describe a broad class of sets, fields, and groups that interrelate in the
fashion of these examples.

Let n be a positive integer.

Each ideal I in the polynomial ring C[Zi,...,Z,] has an associated
algebraic set in C”,

V(I)={(z1,...,2n) € C": g(21,...,2n) =0 for all g € T}.

In words, the algebraic set of an ideal is the points where every polynomial in
the ideal vanishes. The empty set ) and all of C™ are algebraic. If V(I;) and
V(I3) are algebraic sets then their union is V' (I112) (where I1I5 is the ideal
generated by products g1go with g1 € I; and g2 € I), another algebraic
set. If {V(I;) : j € J} is an arbitrary collection of algebraic sets, their
intersection is V((I; : j € J)) (where (I; : j € J) is the ideal generated by
all the I;), again an algebraic set. (See Exercise 7.2.1 for all this.) Thus the
algebraic sets may be viewed as the closed sets in the Zariski topology
on C", and each algebraic set becomes a topological space in its own right
under the induced topology.
Each set S in C™ has in turn an associated ideal in C[Z1, ..., Z,],

I(S)={9g€C[Z1,...,Zn) : g(z1,...,2p) = 0 for all (21,...,2,) € S}.

In words, the ideal of a set is the polynomials that vanish at every point in
the set. For any set S, V(I(S)) is the smallest algebraic superset of S (i.e.,
its Zariski closure), denoted S, and I(V (I(S))) = I(9), i.e., I(S) = I(S). If
S1 C S9 is a proper containment of algebraic sets then I(S7) D I(S2) is a
proper containment of ideals; if I D I(S) is a proper containment of ideals
and S is closed then V(I) C S is a proper containment of algebraic sets.
(These are Exercise 7.2.2.)
The coordinate ring of an algebraic set V' is the quotient ring

K[V]=ClZ,..., ZJ/I(V).

Thus an element of K[V], called a polynomial on V, is formally a coset
g+ I(V) for some g € C[Z1,...,Zy], but in practice one just writes g. Poly-
nomials on V' describe well-defined functions from V to C. An algebraic set
V is a variety if its coordinate ring K[V] is an integral domain, or equiva-
lently its ideal I(V) is prime. (Warning: some algebraic geometry texts use
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“variety” and “irreducible variety” in the respective senses of “algebraic set”
and “variety” here.)

A subset S of a topological space X is dense in X if its X-closure (i.e.,
its smallest closed superset in X) is all of X. Equivalently (Exercise 7.2.3(a)),
S has nonempty intersection with every nonempty open subset of X.

(7.2.1) LEMMA. LetV be a variety and let S be a proper closed (algebraic)
subset of V. Suppose a polynomial g on V wvanishes on all of V\ S. Then g
vanishes on all of V. It follows that V—\S =1V, i.e., every nonempty open
set is dense in V.

PROOF. The containment I(S) D I(V) is proper. Any polynomial § €
I(S)\ I(V') vanishes on S but not on all of V. The product gg thus vanishes
on V, i.e., lies in the prime ideal I(V'). But g ¢ I(V) so the first statement
follows and gives I(V \ S) C I(V). The reverse containment is clear, and
taking algebraic sets completes the proof. O

Since a finite intersection of dense open subsets is dense in any topological
space (Exercise 7.2.3(b)), a finite union of proper closed subsets of V' also
has dense open complement. If V' is not a variety the lemma fails, e.g., let V'
be the “axes” V({XY)) in C? and let S be the axis V({(X)). In developing
intuition for the Zariski topology, one should think of proper closed subsets
as very small, such as curves on a surface, and of proper open subsets as
correspondingly large, such as the full surface with some curves removed.
See Exercise 7.2.4 for an example.

The function field K(V) of a variety is the field of quotients of its
coordinate ring. An element of K(V'), called a rational function on V| is
formally

f=(g,h) for some g,h € K[V] with h # 0,

where the overbar denotes the quotient field equivalence (g,h) = (g, h)
if gh — gh = 0 in K[V]. Of course, one abbreviates to f = g/h where
g,h € C[Zy,...,Zy,] and forgets about cosets and equivalences, but rational

functions on V are actually a bit subtle when viewed as mappings. First, the
value g(v)/h(v) € C is undefined at points v € V where h(v) = 0. This isn’t
too terrible though: A can only vanish on a proper closed subset of V', which
is small in the sense of Lemma 7.2.1. Second, a different representation
f=g/ h might be defined at different points of V. So, consider f defined at
v € V if any of its representatives is defined there; this makes sense because
all representatives defined at v take the same value (Exercise 7.2.5(a)). See
Exercise 7.2.5(b) for an example of all this.
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Let V7 C C™ and V5 C C™ be varieties. A vector
¢:(f1a"'7fm) WltheachfZEK(Vl)

defines a function from a dense open subset of V; to C™, cf. the first remark
after Lemma 7.2.1. If ¢(v) = (f1(v),..., fm(v)) € Vo for each v where all f;
are defined, then ¢ is called a rational map from V; to V5. Since ¢ may
not be defined on all of V}, the terminology is misleading, as is the notation
¢ : Vi — Vh; some authors use a broken arrow instead. At any rate, a
rational map is continuous on its domain (Exercise 7.2.6). In general, the
composition of two rational maps may not be defined, e.g., 0 : C — C?
followed by X/Y : C? — C, but when the composition is defined, it is
again rational.

The rational map ¢ : V) — V3 is dominant if the Zariski closure ¢(V7)
of its image is all of V5; for example, at the beginning of the section, the map
from the elliptic curve to the w-sphere and the map from polynomial roots
to coefficients are dominant, being surjections. For such a map and any ra-
tional 9 : Vo — V3, the composition 1 o ¢ is defined. Indeed, letting “dom”
and “im” denote domain and image, ¢ !(dom(t))) is open in dom(¢) by
continuity; it is nonempty—and therefore dense by Lemma, 7.2.1—because
the nonempty open set dom(t) and the dense set im(¢) intersect. The
composition of dominant maps is dominant by three topological facts (Exer-
cise 7.2.7): (1) if S is a dense subset of the topological space X then for any
openY C X, SNY isdensein Y; (2) if f: X — Y is a continuous map of
topological spaces and S is dense in X then f(S) is dense in f(X); and (3) if
S is dense in X and S is dense in S then S is dense in X. Granting these,
let ¢ : Vi — V5 and 9 : Vo — V3 be dominant. Then im(¢) is dense in Vs,
so (1) says im(¢) Ndom(t)) is dense in dom(%)), (2) says ¥ (im(¢p) N dom()))
is dense in im(v)), which is dense in V3, and (3) says 9 (im(¢) N dom(v))) is
dense in V3. This gives the result.

If ¢ : Vi — V4 is rational and there exists another rational map 1) :
Vo — Vi such that ¢ o ¢ = idy, and ¢ o9 = idy, (i-e., both compositions
are defined and the equalities are restricted to suitable dense open sets) then
¢ is a birational equivalence from V; to V5. A birational equivalence is
necessarily dominant.

Each rational map ¢ : Vi — V5 naturally induces a pullback homo-
morphism ¢* : K[V5] — K (V1) given by

¢*(9) =go¢.
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The pullback of a dominant map is injective, for if go ¢ = 0 in K(V7)
then g € I(¢(V1)) = I(¢(V1)) = I(Va), ie., g = 0 in K[V5]. Thus the
pullback of a dominant map extends to an injection of function fields ¢* :
K (Vo) — K (Vi) by ¢*(g/h) = (go¢)/(ho ¢), also called the pullback. If ¢
is a birational equivalence of varieties then ¢* is an isomorphism of function
fields (Exercise 7.2.8).

The alert reader has noticed that the algebraic sets defined here differ
from those defined in Section 5.6, and in particular that our main motivating
example, the Riemann sphere, is not an algebraic set in the present sense.
This is easily remedied. Analogously to associating subsets of C" to ideals in
C[Z1, ..., Zy], one can associate subsets of P"(C) to homogeneous ideals
in C[Z1,...,Zp+1]—these are the ideals that are generated by forms g €
C[Zy : --- : Zp41]. The algebraic set associated to such an ideal I generated
by forms g; is

V(I)=A{lz1:---: zp41] € P"(C) : gi(21,...,2n4+1) = 0 for all i}.

This is a well-defined subset of projective space. Similarly, the homogeneous
ideal associated to a subset S of P"(C) is

I(S)=(geC[Z1: - :Zpt1]: g(z) =0 for all [z1: -+ : zp41] € S),

again well-defined. Now the developments of this section can be repeated
in the projective environment with minor changes (these aren’t completely
trivial; see for example [Ha]). In particular, complex projective varieties
have associated function fields. We omit the details.

The right idea of how varieties and their function fields correspond is
motivated by the fact that rational functions are generally defined only on
dense open subsets of varieties. As far as birational equivalence and function
fields are concerned, removing proper subvarieties from a variety is irrelevant.
For example, removing the one-point subvariety V(Z;) from the projective
variety P!(C) leaves the plane C, which still has field of rational functions
C(Z). Similarly the elliptic curve £ from the beginning of this section is
obtained by removing the point [0 : 1 : 0] from its projective counterpart

V((Y?Z - p*(X, Z)))

where as in Section 1.4, p* is the homogenization of p to a cubic form.
This projective variety is topologically a complete torus rather than the
punctured one from before. To take these sorts of examples into account,
introduce the term quasi-projective variety to mean an open subset of a
variety in P"(C).
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Now define two sets of equivalence classes. The set of variety classes
is
V = {quasi-projective varieties V}/ ~
where Vi ~ V5 if V; and V, are birationally equivalent, so all birationally
equivalent quasi-projective varieties are the same object in V. The mappings
associated with this set are

My = {dominant rational maps ¢ : Vi — V5 of varieties}/ ~

where ¢1 ~ ¢o if po = 1P 0 ¢1 0 0 with ¢ and 6 birational equivalences, so
the elements of My, are naturally viewed as mappings between the elements
of V. Thus all dominant rational maps that differ by composition with a
birational equivalence at either end are one mapping in My. Meanwhile, the
set of function field classes is

K = {fields K of finite transcendence degree over C}/ ~

where K; ~ Koy if K; and K5 are C-isomorphic. Its associated mappings
are
My = {C-injections ¢ : K; — K3 of such fields}/ ~

where 11 ~ 19 if 19 = 0011 o7 with o and 7 C-isomorphisms, so the elements
of My are naturally viewed as mappings between the elements of K. Thus
all C-injections ¢ : K; — Ky that differ by a C-isomorphism at either end
are one mapping in Mx. This mapping is therefore naturally viewed as the
inclusion ¢(K;) C Ko, or even as the field extension Ko /:(K;).

The relation between these two sets encompasses all of our examples so
far. See [Ha] for a proof of the following theorem.

(7.2.2) VARIETY-FIELD CORRESPONDENCE. Taking each quasi-projective
variety to its function field,

Vi K(V),

gives a bijection between the sets V and K of variety classes and function
field classes. That is, each field K of finite transcendence degree over C
s the function field of some variety, and birationally inequivalent varieties
have C-nonisomorphic function fields. Taking each dominant rational map
of varieties to its pullback,

(¢: V1 — Vo) = (¢7: K (Vo) — K(V1)),

give a naturally corresponding bijection between the sets My and My of
mapping classes between varieties and between function fields. That is, each
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C-injection of function fields is the pullback of some dominant rational map
between the appropriate varieties, and distinct classes of dominant rational
maps pull back to distinct classes of C-injections.

If ¢ : X — V is a dominant rational map and the corresponding ex-
tension K/k = K(X)/u(K(V)) is Galois, then the pullback gives an anti-
isomorphism

*: Cover(X/V) — Gal(K/k),
where Cover(X/V') is the covering group of X over V,
Cover(X/V) ={y: X — X : v is a birational equivalence and ¢ oy = ¢}.

The theorem simply says that at the level of classes, varieties and func-
tion fields correspond perfectly, as do dominant maps of varieties and C-
injections of function fields. The identification of the groups Cover(X/V)
and Gal(K/k) is precisely the process that was carried out at length in Sec-
tion 4.4: ¢ : X — V was the rotation group invariant fr : C — C and
Cover(X/V) was the rotation group I' itself; the covering group condition
was fr oy = fr, which holds for all v € I by nature of the invariant.

We need one more result for future reference. A topological space is
connected if it is not the union of disjoint nonempty open subsets, and
discrete if each point is an open set. (Note how this is consistent with
our informal use of the word “discrete” in Sections 3.2 and 7.1.) A contin-
uous function from a connected space to a discrete space must be constant
(Exercise 7.2.9).

(7.2.3) THEOREM. Let V be a quasi-projective variety. Then V is a con-
nected subset of P™(C) under the usual topology that P™(C) inherits from
C"tL. In particular, any continuous function from V to a discrete space is
constant.

This is Corollary 4.16 in [Mu].

Exercises

7.2.1. Show that () and C" are algebraic sets. If V(I;) and V(I5) are al-
gebraic sets, show that their union is V(I113). If {V(I;) : j € J} is
an arbitrary collection of algebraic sets, show that their intersection
isV(({Ij:j€J)).

7.2.2. Show that the operators V and I reverse containments, i.e., if I1 C I,
are ideals then V(I1) D V(I2), and similarly for I. If S C C" is a set,
show that V(I(S)) D S. If I C C[Zy,...,Zy,] is an ideal, show that



7.2.3.

7.2.4.

7.2.5.

7.2.6.

7.2.7.

7.2.8.

7.2.9.
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I(V(I)) D I. Combine these results to show that I(V(I(S))) = I(S)
and V(I(V (I))) = V(I) for sets S and ideals I. Show that V(I(S)) is
the Zariski closure of §. Show that if §7 C S5 is a proper containment
of algebraic sets then I(S1) D I(S2) is a proper containment of ideals.
Show that if I D I(.S) is a proper containment of ideals and S is closed
then V(I) C S is a proper containment of algebraic sets.

(a) Show that a subset S of a topological space X is dense if and only
if S has nonempty intersection with every nonempty open subset of
X.

(b) If X is a topological space and Sy, ..., S are dense open subsets
of X, show that ﬂle S; is again a dense open subset of X.

Show that the proper Zariski-closed subsets of C are the finite sets.
(Recall that C[Z] is a principal ideal domain.)

(a) If V is a variety, f € K(V) is a rational functionon V,and v € V
is a point, show that all representatives of f that are defined at v take
the same value there.

(b) Let I = (X?+Y2-1) C C[X,Y]andlet V = V(I) C C?, a variety.
Let f = (X+1)/Y € K(V). This representation of f is indeterminate
at (—1,0) and has a pole at (1,0). Show that also f = -Y/(X — 1),
so in fact f(—1,0) = 0. Can some other representation of f take a
finite value at (1,0)?

Let ¢ : Vi — V4 be a rational map of varieties, and let V(I;) be a
closed subset of V5. Define

I = (g € K[Vi] : ¢*(f) = g/h for some f € I, and h € K[V1]).

Show that ¢~1(V(I3)) = dom(¢) NV (I1), so ¢ is continuous on its
domain.

Prove the three topological facts cited in the section: if S is a dense
subset of X then for any open Y C X, SNY is dense in Y; if f :
X — Y is a continuous map of topological spaces and S is dense in
X then f(S) is dense in f(X); and if S is dense in X and S is dense
in S then S; is dense in X.

If ¢: Vi — Vo and ¥ : Vo — V; are rational maps of varieties,
show that () o ¢)* = ¢* o 9. Show that idj, = idg(y;). Conclude
that if ¢ is a birational equivalence then ¢* : K(V2) — K (V1) is an
isomorphism.

Let X be a connected topological space and Y a discrete topological
space. Prove that every continuous function f : X — Y is constant.
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7.2.10. Use the Variety—Field Correspondence to reinterpret Liiroth’s The-
orem and the Embedding Lemma from Chapter 6 as results about
varieties.

3. Purely iterative algorithms

Varieties and function fields are the natural environment for a general
theory of algorithms like Newton’s method for nth roots. Throughout this
section, let V' be a quasi-projective variety with function field K(V) = k.
From now on we will just say “variety” and not distinguish among bira-
tionally equivalent varieties, i.e., we will really work with variety classes and
their corresponding function field classes. This will lead to occasional casual
phrasing.

(7.3.1) DEFINITION. An iterative algorithm over a variety V with
function field k (or over a function field k with variety V) is an ele-
ment of the field k(T') of degree d > 1. Equivalently, an iterative algorithm
over V is a rational map from V to the set of complex rational functions in
T of degree d,

F:V — C(T), v+ F,.

The algorithm associated to each v € V 1is to pick some initial guess t € C
and iterate F,, on t, obtaining the sequence

{t, Fy(t), Fy(Fy(t)),...} = {FE(t) : k=0,1,2,... }.

For example, Newton’s method for nth roots from Section 7.1, F =
((n—1)T"+W)/(nT™ 1) (or equivalently F : w +— ((n—1)T"+w)/(nT™"1)),
is an iterative algorithm over the variety C with function field C(W).

The iteration associated to F' is decision-free. To emphasize this prop-
erty, the algorithms in Definition 7.3.1 are also called purely iterative al-
gorithms. Since F,, is undefined on a proper closed subset of V', the “each
v € V7 in the definition is an instance of phrasing to be parsed at the level
of variety classes—it makes sense once we remove the proper closed subset
of bad points from V. In the case of Newton’s method for nth roots, for
example, the point w = 0 must be removed from C since Fy = ((n — 1)/n)T
does not have requisite degree d > 1.

In Section 7.1, an output point for Newton’s method was a point (w, z) €
C x C such that 2" = w, or equivalently Fi,(z) = z. Analogously, it is
tempting to define an output point of any iterative algorithm F' to be a
point (v,2) € V x C such that F,(z) = z. This idea is a little too simple,
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though. A key feature of Newton’s method is that any iteration starting
close to an nth root z of w will in fact converge to z. Thus the appropriate
definition is

(7.3.2) DEFINITION. For any f € C(T), the attractor of f is the set
Att(f) ={z€C:z= kli)rgo fE(t) for all t in some neighborhood U, of z}.
The output of an iterative algorithm F is

Out(F) = {(v,z) € V x C: z € Att(F,)}.

The attractor of any f = g/h € C(T) is a subset of the fixed points
of f, which in turn are the finite algebraic set V((g — hT)) (Exercise 7.3.1).
Similarly, the output of an iterative algorithm F' = G/H € k(T') is a subset
of the algebraic set V((G — HT)). An iterative algorithm whose output is a
variety (again, at the level of classes) is called simple. We will only discuss
simple algorithms since they are all we need and the general case is slightly
more technical.

(7.3.3) DEFINITION. An iterative algorithm F € k(T') over V is generally
convergent if for each v in a dense open subset of V, and for each t in a
dense open subset D, of initial guesses in C, the sequence

{FE(t): k=0,1,2,...}

obtained by iterating F, on t converges to some z € Att(F,). For a given v,
different initial guesses t € D,, may iterate under F, to different attracting
points z.

One may picture the output of an iterative algorithm F' as the graph
of a multiple-valued function from V to é, with the points of the attractor
Att(F,) forming the cross-section over each point v € V. Iterating a gener-
ally convergent algorithm moves initial points (v, t) vertically to points (v, z)
on the graph. This was all depicted in Figure 7.1.1 for Newton’s method;
the only difference now is that the horizontal axis more generally consists of
points v from the variety V rather than points w from the sphere. Of course,
not all algorithms are generally convergent. We will have many counterex-
amples after the next theorem.

Let F be a simple algorithm over the variety V' with function field k.
Computationally, k is the set of algorithms that take input from V and
perform finitely many rational operations. The larger function field K =
K(Out(F)) is similarly the algorithms that perform finitely many rational
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operations on the output variety Out(F); this is the output field of F. If
F is generally convergent then it reliably computes Out(F'), so the elements
of K are the algorithms that take input from V, iterate F', and then perform
finitely many rational operations. That is, the generally convergent simple
algorithm F' constructs the function field extension K/k in a computational
sense.

We have seen all this when F' is Newton’s method for nth roots. It is
iterative over the w-sphere V = C with function field k = C(W). For each
w € C\ {0, 00}, the attractor Att(F,) is {z € C: 2" = w}, so the output is

Out(F) = {(w,z) € Cx C: 2" = w}.

This is the z-sphere as a variety class (Exercise 7.3.2). Thus F' is simple
with output variety Out(F) = C and corresponding output field as before,

K=C(W,2)/(Z" — W) =C(Z) where Z" =W.

Since F' is generally convergent, it constructs the extension C(Z)/C(W).

The next theorem ([Do-Mc|, Theorem 3.1) describes all generally con-
vergent algorithms. It follows from a general theorem on dynamics in [Mc]
whose proof lies beyond the scope of this book.

(7.3.4) THEOREM. Let F € k(T) be a simple generally convergent algo-
rithm over V. with output variety Out(F) and output field K. Let K' be the
Galois closure of K over k. Then F is a composition of functions

F=9¢""'f¢.

a

Here f € C(T), and ¢ = l . € PGLy(K') is viewed as the fractional

b
d
linear transformation (aT +b)/(cT + d) € K/'(T).

We have seen that Newton’s method for nth roots conforms to Theo-
rem 7.3.4 with K' = K = C(Z).

The Variety—Field Correspondence gives a geometric interpretation of
the theorem. Let X be the variety corresponding to K’ and let 7 : X — V
be the dominant rational map corresponding to the function field exten-
sion K'/k. Then ¢ is an X-parametrized family of fractional linear trans-
formations of T" and f is a rational function of 7', while the composite
F = ¢~ f¢ is by hypothesis a V-parametrized family of rational functions
of T. For each v € V, the relation in the theorem specializes to F, = ¢! f ¢,
in C(T), where z is any point in X lying over v (i.e., z € 7~ 1(v)) and
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b = | @) P@) | pGLL(C); this shows that each function Fy to it-
c(z) d(z)

erate is conjugate to the single v-independent function f. As before, the
family {F, : v € V'} is a rigid family of rational maps, the v-independent
f is the model for F', and ¢ is the conjugating conformal map. In this
language, Theorem 7.3.4 asserts that

a generally convergent algorithm is a rigid family of rational maps.

The values that can be computed by a generally convergent algorithm
F are severely constrained by rigidity. As Exercise 7.3.4 shows, all cross-
sections of Out(F') for rigid F' must be conformally equivalent. For example,
no algorithm can be generally convergent to the roots of the general poly-
nomial p of degree n > 4 since most n-tuples of complex numbers are not
conformally equivalent. (Recall, as mentioned in Section 7.1, that the group
PGLy(C) acts triply transitively on the sphere 6) In particular, applying
Newton’s method to p does not give a generally convergent algorithm. A
generic cubic polynomial, on the other hand, has three complex roots, and
all triples in C are conformally equivalent. So a simple algorithm might
compute the roots of the general cubic, and in fact, [Do-Mc] gives such an
algorithm: to find the roots of the depressed cubic p = T2 + bT + ¢, apply
Newton’s method to the rational function

T3 +bT + ¢
36T? + 9¢T — b

Applying Newton’s method to the depressed cubic p itself turns out not to

be generally convergent.

Next we derive some consequences of rigidity. These consequences will
show (in the first part of the pending Theorem 7.3.5) that along with con-
straining the values that can be computed by a generally convergent al-
gorithm, rigidity also constrains the function field extensions that can be
constructed by such an algorithm.

The consequences of rigidity that we need in the general case are the
same as those we derived for Newton’s method for nth roots in Section 7.1.
The conjugating map ¢ lies in K'(T), but the composition F = ¢ ' f¢
lies in k(7T'), making it invariant under the Galois group I' = Gal(K'/k);
therefore (Exercise 7.3.3) for each y € T, the fractional linear transformation

-1
p() = ¢'¢™" = l ((’; ZZ ] l Z Z] € PGLy(K')

commutes with f.
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To show that p(v) actually lies in PGL9(C), again let 7 : X — V be
the dominant rational map corresponding to the extension K'/k, and let
x € X. It suffices to show that the transformation

-1
Pz = )y = [ Z:g)) Z:EZ; ] [ Z((:f)) ZE‘B ] € PGLy(C)

is independent of z. By Exercise 7.3.4, p(y), permutes the attractor A =
Att(f). But A is finite, so the set Aut(A) of fractional linear transformations
that permute it is also finite (Exercise 7.3.5); since finite sets are discrete,
the continuous map X — Aut(A) taking = — p(7), is constant by Theo-
rem 7.2.3.

It follows that p : I' — PGLy(C) is a homomorphism precisely as in
Section 7.1 (Exercise 7.3.6). Also, p is injective by the following argument.
Assume that the output field extension is Galois, i.e., K = K and X =
Out(F'); the non-Galois case is more technical, so we skip it for clarity.
Under this assumption, each z € X takes the form z = (v,z) € V x C with
z € Att(F,), and 7 is vertical projection from the multiple-valued graph X
to V. (Drawing a picture of this configuration and a separate vertical C
containing A may help with the rest of this paragraph.) Define a function
a: X —C by

a(z) = ¢z (2)-

Exercise 7.3.4 shows that for each z = (v, z), the transformation ¢, maps
the set of output values Att(F},) bijectively to A, so @ maps X to the finite
set A and is therefore constant by Theorem 7.2.3. Recall from the Variety—
Field Correspondence that I' may be viewed as the covering group of X/V.
With this identification, for any v € T" and z € X,

a'(2) WM]ZVWQMW)

“:lamtmm cm»an:%”

Now let v be a nonidentity element of I'. For some v € V, v permutes the
cross-section 771 (v) = v x Att(F,) nontrivially; that is, for some z € Att(F,),
vz = y(v,2) = (v,2') with 2’ # 2. So vz has the same v-coordinate as z,
and ¢, also maps Att(F,) bijectively to A. Since « is constant,

¢’y$(z) # ¢’ym(zl) = a(7$) = a(m) = ¢z(z)

Therefore

p(1)($2(2)) = (8767")(bs(2)) = bra(2) # ¢a(2),



3. PURELY ITERATIVE ALGORITHMS 167

showing that p(7) is a nontrivial permutation of A. Incidentally, the identity
p(7) = ¢2¢5! now shows that in fact v permutes all cross-sections of X as
p(7y) permutes A.

This analysis gives a refinement of Theorem 7.3.4 and—up to some more
omitted technicalities—a converse.

(7.3.5) THEOREM. Let V be a variety with function field k. Let F be a
simple generally convergent algorithm over k with output field K. Let K’ be
the Galois closure of K over k with Gal(K'/k) =T'. Then F takes the form

F=¢""f¢
with f € C(T) and ¢ € PGLo(K'). For such F, the model f produces a
convergent iteration to its attractor A on a dense open subset D of C. The
map
prym ¢¢T
is an embedding T' — Aut(f), where

Aut(f) = {m € PGLy(C) : m L fm = f}.

Conversely, let V again be a variety with function field k. Suppose K'/k
1s a Galois extension with Galois group I', and we have

1. a model f € C(T) and a finite attractor A C C such that for
each t in a dense open subset D of 6, the iteration {f*(t) : k =
0,1,2,...} converges to a point a € A,

2. a transformation ¢ € PGLo(K') such that the map v +—
#'¢ 1 is an embedding p : T — Aut(f) and p(T') acts transi-
tively on A. (p(T') is a subgroup of PGLo(C).)

Then the composition F = ¢~ f¢ is a simple generally convergent algorithm
over k. Its output field is k(¢~1(a)) for any a € A, which is the fized field
in K’ of p~!(stab(a)). (p~'(stab(a)) is a subgroup of T.)

As mentioned above, the function field extensions that can be con-
structed by a simple algorithm F' are constrained by the first half of Theo-
rem 7.3.5. Specifically, the embedding I' — Aut(f) C PGL2(C) in Theo-
rem 7.3.5 shows that I is isomorphic to a rotation group of the sphere, so by
Theorem 2.6.1, I" must be cyclic, dihedral or Platonic. Thus we now know
for the general polynomial p of any degree n > 5 that no generally conver-
gent algorithm F' over the coefficient field can construct a superfield of the
root field inside the splitting field: the Galois group S, is prohibitive. This
result is stronger than our earlier observation that F' can not converge to
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the roots of p, since the roots might still be rational functions of the output
of F. For n = 4, the general quartic has Platonic group S4, so an algorithm
could conceivably construct a superfield of the quartic root field, but in fact,
[Do-Mc] shows that no such algorithm exists either.

Most importantly for us, since the Brioschi quintic has Platonic group
As, an algorithm might construct a superfield of its root field inside its
splitting field. This will turn out to be the case.

The second half of Theorem 7.3.5 complements Theorem 7.3.4 by assert-
ing that

a rigid family of rational maps satisfying certain conditions

is a generally convergent algorithm.

In other words, finding a suitable model and conjugating map now guarantees
a generally convergent algorithm.

Finally, a technical remark on the second half of the theorem: the re-
quirement that p(I') act transitively on A is what makes Out(F) a vari-
ety so that F is simple. The transitivity also makes all fixed fields of
p~!(stab(a)) C-isomorphic as a varies through A, so the output field de-
scribed makes sense as a function field class (Exercise 7.3.7). The identity
(¢ 1)7(a) = ¢ (p(y 1)a), which follows from the definition p(y) = ¢7¢ !
(Exercise 7.3.8(a)), shows that k(¢~!(a)) is indeed the fixed field in K’ of
p~!(stab(a)) (Exercise 7.3.8(b)). As explained in Exercise 7.3.4, ¢! bijects
A to the various sections of Qut(F'), so it really does compute the outputs
of F' as claimed.

Exercises

7.3.1. Show that the attractor of any f = g/h € C(T) is a subset of the
fixed points of f, which in turn are the finite algebraic set V ((g—hT)).

7.3.2. Show that the set {(w,z) € C x C : 2" = w} is equivalent to the
projective line P!(C) as a variety class.

7.3.3. Show that the fractional linear transformation p(y) = ¢”¢~! com-
mutes with f.

7.3.4. In the notation of the section, let v = w(x). Use the relation f =
$F$~! to show that for any z € 6, the following two conditions are
equivalent:

z = lim F¥(t) for all  in some neighborhood U, of z,
k

¢z(2) = lién f¥(t) for all ¢ in some neighborhood Up,(2) Of ¢z (2)-
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Thus ¢, bijects Att(F,) to A = Att(f). This shows that all cross-
sections of Out(F') are conformally equivalent for any rigid F. Now
let v € T and use the relation f = ¢7F(¢7)~! (see the hint to Ex-
ercise 7.1.5) to show similarly that ¢) also bijects Att(F,) to A. It
follows that p(y), permutes A. This can also be proved directly from
the relation p(y)f = fp(y).

7.3.5. Let A be a finite subset of C with [A| > 3. Show that Aut(A), the
fractional linear transformations that permute A, are a finite—and
therefore discrete—set. (Recall again that fractional linear transfor-
mations act triply transitively on C.) Thus the text’s proof that p(7)
lies in PGLy(C) tacitly assumes |Att(f)| > 3. This will hold in our
application.

7.3.6. Show that p : I' — PGL2(C) is a homomorphism.

7.3.7. Show that the function field described by the converse in Theo-
rem 7.3.5 is well-defined at the level of function field classes.

7.3.8. (a) Prove the identity (¢71)7(a) = ¢~!(p(y~1)a) as follows. Start
from the definition p(y) = ¢7¢ !, take inverses, recall that p is a ho-
momorphism and see the hint to Exercise 7.1.5, left-multiply by ¢ !,
and apply both sides to a.

(b) Use the identity to show that k(¢~!(a)) is indeed the fixed field
in K’ of p~!(stab(a)).

4. Tteratively constructible extensions

Just as the Radical Criterion describes extensions that can be con-
structed by successively adjoining radicals, we are now interested in ex-
tensions that can be constructed by successively applying simple generally
convergent algorithms. Investigating such extensions requires some obvious
parallels to the classical terminology from Section 4.5.

(7.4.1) DEFINITION. Let k be a function field. An iteration tower over
k is a sequence of fields k C k; C ko C -+ C kg such that

ki is the output field of a simple generally convergent algorithm Fy over Kk,

ko is the output field such an algorithm Fy over ki,

kg is the output field of such an algorithm Fy over kq_1.

An extension K/k of function fields is constructible by iteration if
there ezists an iteration tower k C --- C kg with K C ky; or equivalently,
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if there exists a succession F1, ..., Fy of simple generally convergent algo-
rithms, starting over k and each defined over the output field of its predeces-
sor, whose final output field contains K.

While the classical algebraic adjunction of an nth root constructs a cyclic
extension, a simple iterative algorithm constructs an extension whose group
is isomorphic to a rotation group of the sphere. So define a M6bius group
to be any group isomorphic to one of C,, D,, A4, S4, or As. Again in
parallel to the classical language,

(7.4.2) DEFINITION. A finite group I' is nearly solvable if there exists a
chain of subgroups

{1}:I‘d<1I‘d,1<1---<1F1<11"0:I‘

each normal in the nezxt and with each quotient I';/T;11 a Mobius group. As
in the case of solvable groups, this chain is called a subnormal series for
T.

This definition is unaffected if each quotient is stipulated to be either
cyclic or the alternating group As (Exercise 7.4.1). Any subgroup or quotient
group of a nearly solvable group is again nearly solvable (Exercise 7.4.2).

The analog to the Radical Criterion is the

(7.4.3) ITERATION CRITERION (OVER C). Let k be a function field, let
K/k be a finite extension, and let K' be the Galois closure of K over k.
Then

K/k is constructible by iteration <=  Gal(K'/k) is nearly solvable.

Granting this, the classical argument that the general polynomial ex-
tension of degree n is constructible by radicals only for n < 4 now carries
over to show that the extension is constructible by iteration for n < 5. In
other words, iteration is one degree stronger than radicals. Specializing to
n = 4 does not contradict the earlier claim (from the preceding section) that
no simple algorithm constructs the quartic root extension: constructing the
extension requires a succession of several algorithms rather than merely one.

PROOF. ( =) Suppose K/k is constructible by iteration. Take an iteration
tower k = kg C k; C --- C kg with K C k4. Define kjj = ko, and for
i=1,....d

1, = the Galois closure of k; over k;_1,

k! = the Galois closure of k; over k.
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Exercise 7.4.3(a) shows that we have a tower kj C k| C --- C k/; in which
each extension k;/k;_; is Galois, as is the net extension k/,/kj = k/;/k by
definition of k). If T'; denotes the group corresponding to the intermediate
field k/ in the tower then the group for each step up the tower is the quotient
Gal(k}/k,_,) =T;_1/T;, denoted Q;. See Figure 7.4.1.

.
kg
Qa
ki
Qa—1
» Gal(k},/k)
k)
Q1
k =k, )

Figure 7.4.1. Galois extensions and corresponding quotient groups

For i = 1,...,d, the containments k; C 1; C k] (Exercise 7.4.3(b)) give
the situation shown in Figure 7.4.2. As in Proposition 5.5.1, ); injects into
Gal(l;/k;—1). Since this last group is Mobius by the first part of Theo-
rem 7.3.5, so is ();. Thus the subnormal series

{1} =Dg<alq_; <---aly aTy = Gal(k!y/k)

shows that Gal(k/,/k) is nearly solvable. Since K’ lies in ki, Gal(K'/k)
is a quotient of Gal(k),/k) and is therefore nearly solvable as well. This
completes the proof in one direction.

k;
L;
Qi
ki 1
ki 1

Figure 7.4.2. (); injects into a Mdbius group

( < ) Now suppose Gal(K'/k) is nearly solvable. The Galois Corre-
spondence gives Figure 7.4.3.
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ke =K' | Tyq= {1}

kg 1| Ta1

k1 Iy

k | Ty = Gal(K'/k)

Figure 7.4.3. Subnormal series and corresponding tower of fields

Thus I'y « Ty and by the first remark after Definition 7.4.2, T'y/T"; is
without loss of generality either a cyclic group C,, or the alternating group
As. In the cyclic case, the Lagrange Lemma shows that k; = k(Z) with Z" €
k. Let W = Z™. Newton’s method for nth roots constructs the extension
C(Z)/C(W), so since k; = k(Z), Newton’s method also constructs the
extension k;/k in the tower of fields. The proof can now proceed up the
tower for ky/k;, whose group is a subgroup of Gal(K'/k).

In the alternating case, let 1 be the fixed field of the subgroup A4 of
the Galois group As. (See Figure 7.4.4 for a diagram of the objects in
this paragraph.) Since A4 is not normal in A5 the extension 1/k is not
Galois, but in any case, [l : k] = 60/12 = 5, so any Z € 1\ k satisfies a
quintic polynomial p over k. Adjoining an auxiliary quadratic irrationality
if necessary gives a field k' over which the quintic p transforms to Brioschi
form b. The remainder of this chapter will produce an iterative algorithm
that finds a root of b. Granting such an algorithm, the corresponding root
Z of p can then be found reliably by radicals, i.e., by further iteration. Let
! = kX'l = k'(Z); thus the extension 1'/k is constructible by a succession of
algorithms. Finally, let ki = ki1'. By Proposition 5.5.1, the Galois group
of the extension kj /1’ embeds in A4, so the extension can be constructed
by iteration as argued above. Putting all this together shows that iteration
constructs the extension kj/k. Since the Galois group Gal(Kk]/k}) is a
subgoup of Gal(K/k;), the proof can continue up a new tower with top field
k!, = k4k]. O

Thus the remaining order of business is to solve the Brioschi quintic by
iteration. We will do so after developing some general results in the next
two sections.
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Y K )
12 Ay
LA
Y | °
5
K/ y

7/

Figure 7.4.4. Constructing an A; extension

Exercises

7.4.1. Show that Definition 7.4.2 is unaltered if each quotient is stipulated
to be either cyclic or the alternating group As.

7.4.2. Show that any subgroup or quotient group of a nearly solvable group
is again nearly solvable. (See Exercise 4.5.2 if necessary.)

7.4.3. (a) In the proof of Theorem 7.4.3 ( = ), explain why k,_, C k! for
1 =1,...,d giving a tower as claimed. Explain why each extension
k!/k._, is Galois. Letting I'; denote the group corresponding to the
intermediate field k| in the tower, explain why the group for each step
up the tower is the quotient I';_; /T;.

(b) In the same proof, explain the containments k; C 1; C k| for
i=1,...,d.

5. Differential forms

An iterative algorithm needs as its model a rational function f that com-
mutes with a finite subgroup of PGLy(C). The next section will construct
such functions with the help of differential forms on P!(C), the subject
of this section. Differential forms are defined as follows: a 0-form is simply
any element of F' € C[Z; : Zy], i.e., a form in the usual sense. A 1-form is
any element

FidZy + FydZy with ] and F» 0-forms of the same degree.

Here dZ; and dZs are differentials, new symbols whose manipulation rules
will be given in a moment. Finally, a 2-form is any element FdZ;dZy where
F is a O0-form. Forms are multiplied subject to all the algebraic rules one
would expect, and the additional skew symmetry rule for differentials:
dedZi = —dZide for all i,j € {1,2}. Thus lele = dZQdZQ = 0 and
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dZydZy = —dZ1dZy (Exercise 7.5.1). For some more general examples,

(7.5.1)
F(Fldzl + FQdZQ) = (FFl)dZ1 + (FFQ)dZQ,

(Fle1 + ngZQ)(Glel + GQdZQ) = (F1G2 — FQGl)ledZQ,
(FidZ, + FodZs)FdZ,dZs = .

The differentiation operator d takes O-forms to 1-forms, 1-forms to
2-forms, and 2-forms to 0. Letting D; and Ds denote partial differentiation
with respect to Z; and Z», the differentiation rules are

dF = (D1F)dZ1 + (DQF)dZQ,
d(FdZ; + FydZy) = (D1 Fy — DyF1)dZ1dZs,
d(FdZ1dZs) = 0.

Note that as a special case, d(Z;) = dZ; for i = 1,2, so all of this notation
is consistent. Applying d twice in succession to a 0-form gives the 2-form
0, i.e., d> = 0. Equivalently, if a 1-form p takes the form yu = dF for some
0-form F', then dy = 0. The converse statement is also true: if duy = 0 for a
1-form p, then p = dF for some 0-form F'. (Exercise 7.5.2 asks for proofs of
these statements.)

Each 7' € GL2(C) defines a pullback 7'* on homogeneous polynomials
(i.e., on 0-forms) by composition: y'*(F) = Fo', cf. Section 4.4. Extend this
pullback operator from 0-forms to general forms by having it commute with
the differentiation operator d. In particular, for any v’ € GLy(C), letting

VA Z
dZ = 4z, denote componentwise differentiation of the vector Z = !
dZs Zs
gives
(7.5.2) Y*(dZ) =d(y"*Z) =d(Z o) = d(v' Z) = 4dZ,

with the last equality holding because differentiation is a linear operator on
O-forms. (Exercise 7.5.3 asks for this string of equalities with the matrices
and vectors written out, which may clarify what is going on.) More generally,
any 1-form is an inner product

p=F.dZ

F: VA
where F' = [Fj and again dZ = BZ;

for brevity, rather than (,) as in Chapter 2.) Using this notation and citing—

. (The inner product is denoted “-”

or defining—that the pullback of a product is the product of the pullbacks,
the pullback of any 4" € GLy(C) on a 1-form is v"*u = (F o v') - ¥'dZ, or,
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thanks to the relation between transpose and inner product explained in
Section 2.2,

(7.5.3) N *u =" Foy)-dz.

For example, this formula shows that the 1-form A\ = —ZydZ; + Z1dZ,
pulls back under v € PGLy(C) to det(y')\ (Exercise 7.5.4). In particular,
74X = X for all 4/ € SLy(C). This 1-form A will play an important role in

a

b
the next section. As for 2-forms, if 4/ = l ] € SLy(C) then by various
c

)

results,
7’*(d21dZ2) = d(aZ1 + bZQ)d(CZl + 6Z2) = (aé - bC)dZ]_dZQ = ledZQ,

and in general v'*(FdZ1dZy) = (F o')dZ1dZ5. Since the 1-form )\ and the
basic 2-form dZidZs are so nicely invariant under pullback by matrices of
determinant 1, we will renormalize and work in PSLy(C) and SLy(C) in the
next section to exploit the invariance.

These few results are all that we need about forms, but of course there
is much more to be said on the subject. Forms are ubiquitous in areas
of mathematics such as differential geometry and differential topology, for
example. To get started on the general theory, see Spivak [Sp| or Chapter 10
of Rudin [Ru].

Exercises

7.5.1. Use the skew symmetry rule to show that dZ1dZ; = dZsdZs = 0 and
dZsdZ1 = —dZ1dZs. Use these identities and other algebraic rules for
multiplication as necessary to verify equations (7.5.1).

7.5.2. Show that d’F = 0 for any O-form F. Thus if 4 = dF then dy = 0.
Conversely, show that if dy = 0 for a 1-form y then y = dF for some
0-form F'.

b dz
7.5.3. Letting v/ = “ and dZ = '|, write out equations (7.5.2)
c 0 dZ2

in coordinates, justifying each step. (For the third equality, remember

that Z; and Z5 are component functions and ' represents a vector of

linear maps.)

—Zs
1

for any v € GL3(C), v*X = det(y')\. (By (7.5.3), it suffices to show

7.5.4. Let A = —ZydZ) + Z1dZy = F - dZ where F = l ] Show that

that v"*(F o4') = det(y')F. Let v = l ¢ g ] and compute. See the
c
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hint for the preceding exercise if necessary.)

6. Normal rational functions

Given any 7 € PSLy(C), this section shows how to compute all rational
functions f that commute with . Call such functions y-normal. If T is a
subgroup of PSLy(C) and f is y-normal for each v € T" then f is '-normal.

To use differential forms to find all I'-normal rational functions, identify
each rational function f = fi/fs with its dual 1-form as follows: let F;
be the homogenization of f; to degree max{deg(f1),deg(f2)} for i = 1,2;

let F = Fl and dZ = z as usual, and let § = 0 -1 be the
Fy dZs 1 0

skew matrix, with the property that Sm=' = m!S for all m € SLy(C)
(Exercise 7.6.1). Then the dual 1-form to f is

uw=—FydZy + F1dZy, = SF - dZ.

Note that since f; and fo are only defined up to a nonzero scalar multiple,
1 is also defined only up to scalar, and conversely, all scalar multiples of
p represent the same rational function f. For any v € PSLy(C) with lift
7' € SLy(C), the composition ! fv is identified with the form

S(yY 'Foq)-dZ =8y (Foy) -dZ
=" (SFo+)-dZ since S/~ =4S
=7"u by (7.5.3).
In other words, conjugating f by 7 corresponds to pulling back its dual 1-
form g by 4. This handy fact reduces finding y-normal rational functions f

to finding 1-forms p such that v"*u = x(7')p for some nonzero x(y') € C.
The next proposition does so.

(7.6.1) PROPOSITION. Let p be a 1-form of degree n and let v' € SLy(C).
Then

Y =x(®)p  for some x(y') € C*
if and only if

uw=G\+dH,

where G € Cy,_1[Z1 : Zs] and H € C,1[Z1 : Zo] satisfy ¥"*G = x(v')G and
v*H = x(v')H, and \ = —Z3dZ, + Z1dZy is the SLy(C)-invariant 1-form
from Section 7.5.
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PRrROOF. If u has the described form then indeed p is a 1-form of degree n,
and

Y= ("GN + 9" (dH) = (x(v)G)A + d(y" H)
= x(")(GN) +d(x(v)H) = x(7)(GX + dH) = x (7).
Conversely, suppose v'“u = x(7)p. The derivative dy takes the form

KdZydZy for some O-form K; let k = deg(K), and let G = K/(k + 2).
Compute that

d(G)\) = d(—Z2GdZ1 + ZlGdZQ) = (Z1D1G + Z9 DG + 2G)ledZ2
— (k +2)GdZ,dZ, = dp,

with the third equality due to Euler’s identity from Exercise 1.4.5. (Warning;:
the “d” in the exercise is the degree k here, not the differentiation operator.)
It follows that d(u — G)\) = 0, showing that 4 = GA + dH for some 0-form
H. The relations among deg(G), deg(H) and deg(u) follow from the nature
of differentiation. Finally, since differentiation commutes with the pullback
and dZ,dZ, is +'-invariant,

(v K)dZ1dZy = v (KdZ1dZs) =+ dp = dy"p = d(x(¥')w) = x(7')dp
= X(’y')Klede;

So G = K/(k + 2) transforms by x(vy') under v'*. Since dH = p — G\, a
similar argument (Exercise 7.6.2) shows that H also transforms by x(7'). O

Let I" be a subgroup of PSLy(C) with lift I C SLo(C). The procedure for
producing ['-normal rational functions is now clear from Proposition 7.6.1:
find TV-invariant forms G and H that transform by the same character x :
I — C* and with deg(H) = deg(G) + 2; write the form G\ + dH as
—FydZ, + F1dZs; then the dehomogenized quotient f = (F)./(F2). is I'-
normal. Since the proposition is bidirectional, this process yields all I'-
normal rational functions. When dH = 0, the resulting rational function is
the identity, f = Z (Exercise 7.6.3).

See [Do-Mc] for an elegant geometric construction of functions that com-
mute with the icosahedral group. Another construction from [Do-Mc], using
a variant of Newton’s method, will be discussed below.

Exercises

7.6.1. Show that Sm ™! = m!S for all m € SLy(C).
7.6.2. Confirm the details of the proof of Proposition 7.6.1 as necessary. In
particular, show that H transforms under v'* by x(v)-
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7.6.3. Show that the process described after Proposition 7.6.1 yields the
identity function when dH = 0.

7. Ingredients of the algorithm

Recall the problem we are working on: our given is the symbol W', which
parametrizes the Brioschi quintic

b= by =T° — 10W'T? + 45W"T — W',

a polynomial over the coefficient field C(W’). We want a generally conver-
gent W'-parametrized iteration F = Fy» over C(W') from whose output
we can compute a Brioschi root. The Brioschi splitting field extension is
C(Z)/C(W'), where the splitting field generator Z and the Brioschi pa-
rameter W' are related by the icosahedral invariant function and a frac-
tional linear transformation. Specifically, the icosahedral invariant is the
degree-60 rational function f;(Z) constructed in Section 3.6, also denoted W
and the fractional linear relation between W and W', from Section 4.8, is
W' =1/(1728(1 — W)). The icosahedral invariant W and the Brioschi pa-
rameter W' are essentially the same: transforming between them merely
renormalizes the invariant, which was noncanonical in the first place, and
since the transformation is field-theoretically trivial, the Brioschi splitting
field extension is also C(Z)/C(W). This is the icosahedral extension; that
is, Theorem 3.6.2 says that C(W) is the subfield of C(Z) invariant under the
icosahedral group I'7, and Section 4.4 shows further that Gal(C(Z)/C(W))
is precisely I';.

To find an iteration F € C(W')(T) that gives a Brioschi root, the follow-
ing data are necessary according to the second half of Theorem 7.3.5: simply
taking the embedding p : I'y — PGL2(C) to be the identity map, we need
(1) a generally convergent I';-normal model f € C(T'), and (2) a conjugating
transformation ¢ € PGLy(C(Z)) such that ¢"¢~! = v for all v € I';. This
conjugating transformation ¢ is a rationally Z-parametrized fractional linear
transformation of the iteration variable T'. In more expanded notation, ¢ is

_ | al2) b(2)
¢=¢z= [ (2) 52) ] € PGLy(C(2))
as a transformation, that is,
p2(1) = “2TENTD) ¢ o(z)()
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The required relation ¢7¢ ! = 7 rewrites as

Yody =) =¢yz forallyely.

In other words, ¢ is a Z-parametrized family of fractional linear transforma-
tions whose dependence on their parameter Z is I';-normal. We will notate
¢z with a subscript when we care how it depends on its parameter Z; when
we care primarily how ¢ acts on the iteration variable 7', the subscript will
be omitted.

This section computes a rational function f and a Z-parametrized conju-
gating transformation ¢ with the right transformation properties. The next
section shows that in fact the second iterate fo f, rather than f itself, has the
requisite convergence properties to serve as a model, so that our algorithm
is to iterate the composite F = ¢! f¢ an even number of times. Section 7.9
carries out one last calculation to parametrize the composite F' = ¢21 foz by
the Brioschi parameter W' rather than by the parameter Z of the conjugat-
ing transformation. This is crucial because W' is our given datum while Z,
the Brioschi splitting field generator, is certainly not given—if it were, we
would have all the Brioschi roots, rendering the entire problem null; thus,
we have not found F' in any useful sense until it is expressed in terms of W'.
Finally, Section 7.10 computes a Brioschi root (in fact, two Brioschi roots)
from the output of the iteration F'.

Since the model f and the conjugating transformation ¢ must both be
I';-normal, the methods of the preceding section construct them. The I'f-
invariant forms were computed in Chapter 3; they are generated by the
vertex form Fy ; of degree 12, the face-center form F,; of degree 20, and
the mid-edge form F3 ; of degree 30. No two of these have degrees differing
by 2, so the only way to produce nonidentity I';-normal rational functions
from the generators is to set G = 0, which may be viewed as having any
desired degree and transforming by any desired character, and H = Fi
or H = Fy; or H= F3;. (Setting H = 0 produces the identity function
[ = Z, by Exercise 7.6.3.) The case H = Fy; is the simplest, giving a
rational function of degree 11 (Exercise 7.7.1),

(D2Fyp)s (Z1' 4+ 662825 — 112, 2Z10), TH 4+ 667T% — 11T

M= DR, © T (UZP+ 662z - 23, | UTO+ 66T -1

Here [Z; : Z5] is dehomogenized to T rather than to Z because this fi;—or

rather, its second iterate fi10 fi1, as to be discussed in the next section—will
serve as the model for the iterative solution of the Brioschi quintic, and T is
the iteration variable.
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The procedure that produced fi; also produces ¢ with a bit more work.
Note that the icosahedral forms F3 ; and Fy 1 F» ; have respective degrees 30
and 32. Therefore a one-parameter family of forms,

T1F3,[A + TQd(Fl’[FQ’[) as [Tl : TQ] varies through PI(C),

is ['-invariant, giving rise to a corresponding family of rational functions.
These work out to

TVZ\F31 +ToDy(Fy 1 Fo g

fT(Z):( 141103, 2 Do (F11Fo 1))«

(T1 ZoFs1 — ToD1(Fi 1 Far))s

where the dehomogenization takes the variable [Z; : Z3] to Z and the param-

eter [T} : Tb] to T (Exercise 7.7.3). Each T-parametrized rational function
fr is I';-normal as a function of its variable Z, by construction. Now comes
the cunning idea: we reverse our notions of what is a variable and what is a
parameter, viewing f as a Z-parametrized fractional linear transformation
acting on the iteration variable 7',
(7.7.1)
fr(Z) = (Z1F31T1 + Do(Fy 1 Fo.1)Ts)
(ZoF3 11, — D1(F1,1F5,1)T)«
| Z1F3;  Do(Fy Fy)
| ZoFs; —Dy(F11Fo )

(T) Eepz(T).

In this new notation, the fact that fr is I';-normal rewrites as v o 9z =
tyz = 1), for all v € T'y, which is precisely how we need the conjugating
transformation to behave. More generally, the same relation holds for 1 o m
where m € PGLy(C) is any fixed fractional linear transformation; that is
(Exercise 7.7.4),

vo (pzom) = (pzom)? forallye ;.

So any 1 om is a candidate for the conjugating transformation of an iterative
algorithm to solve the Brioschi quintic.

Next we normalize m to obtain a particularly convenient conjugating
transformation ¢ = 1) o m. Applying the product rule to the second column
of 9 in (7.7.1) shows that

VA DyFy 1 DyFyp
= | F I ’ F ’
v [ . l Zy ] . [ _DlFlJ ] T [ _DlFQvI *

~[a aral,

where ¢, g, ¢}, are column vectors. It turns out that ¢, is a linear combi-
nation of ¢; and cs:
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(7.7.2) LEMMA. ¢, = 3(c1 + ).

1 —-5/8
0 3/8
cation by m carries out the column operations to make ¢ = 1 o m simply
o= [ c1 ¢ ]* (Exercise 7.7.6), i.e.,

The proof is Exercise 7.7.5. Now let m = [ ] . Right-multipli-

| Z1F5r FypDoFy g
bz =

ZoFs 1 —Fy 1D Fy

Again, the subscript , means to dehomogenize [Z; : Z5] to Z.

The ingredients for a generally convergent algorithm are all in place:
the model will be f1; o fi1 and the conjugating transformation will be ¢.
Both commute appropriately with the icosahedral group I';. To apply Theo-
rem 7.3.5, the next section will establish convergence properties of the model.

Exercises

7.7.1. Confirm the computation of the I';-normal rational function fi1, and
compute the corresponding fi19 and fag.

7.7.2. Confirm directly that fi; commutes with the icosahedral generators
sr and tr from Section 2.7.

7.7.3. Confirm the formula for fr(Z).

7.7.4. Let 1 and m be as in the section. Explain why yo(¢zom) = (¢zom)?
for all v € I'y.

7.7.5. To prove Lemma 7.7.2, start from the syzygy 1728F15J — F23J — F?,QJ =
0. Take the gradient (vector of partial derivatives), multiply through
by F1,1/F3;, substitute 1728F7; = F3; + F3, and rearrange to get
(where V denotes gradient):

5Fy [VF 1 —3F [VFy| = F3,1[2(F1,I/F22,1)VF3,I - 5(F3,I/F22,1)VF1]-

Since the left side is a vector of degree-31 forms, the quantity in
brackets on the right must be a vector of degree-1 forms. Compute
the highest Zi-order and Zs-order terms in the left side to find the
bracketed quantity and complete the proof.

7.7.6. Confirm that 1 o m = ¢ as claimed in the section.

7.7.7. Confirm directly that ¢z(T) commutes with the icosahedral genera-
tors sy and ¢; from Section 2.7 as a function of Z.
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8. General convergence of the model

The task at hand now is to discuss convergence properites of fi11. Recall
that f1; is the dehomogenization of the quotient —DyH/D1H where H =
F 1 is the icosahedral vertex form. Thanks to Euler’s identity, this is

5 (lelﬂ — Z,DH — Z2D2H> <Z1 deg(H)H) h
11 = = > 17

=T-12—
ZoD H h'

Zo ZoD1H

where h = H,. (Exercise 7.8.1 asks for a direct verification of this.) Thus
f11 is computed by a variant of Newton’s method on the dehomogenization
h. In particular, the fixed points of fi; are the roots of h, i.e., the icosa-
hedral vertices. At those fixed points, |f{;| works out to deg(H) — 1 = 11
(Exercise 7.8.2); since this is greater than 1, iteration theory unfortunately
says that the fixed points of fi; are repelling, i.e., nearby points iterate
away from them. Since the attractor of fi; must consist of fixed points, we
have just shown it is empty, and fi1; is highly nonconvergent.

To address this, broaden the notion of fixed point by defining a cycle of
a rational function f € C(T') to be a set {a1,a2,...,a,} C C such that

flar) = a2, flaz)=a3, ..., flan_1)=an, [fla,)=a1.

In the case of f11, each opposing pair of icosahedral face-centers forms a
cycle. To see this, let a be a face-center and let I'; C I'; be its stabilizer, of
order 3. Then I'y(f11(a)) = f11(Ta(a)) = fi1(a), so 'y also stabilizes f11(a).
Therefore f11(a), being distinct from a, must be its antipode, the only other
I',-stable point.

The same argument shows that the fifteen opposing pairs of icosahedral
mid-edge points form fi1-cycles (Exercise 7.8.3). Consequently the function
f11 0 f11 fixes all the icosahedral vertices, face-centers and mid-edges. These
three families of fixed points have significantly different properties, however;
to investigate the difference, define a critical point of any rational function
f € C(T) to be a point a € C such that f'(a) = 0.

(7.8.1) LEMMA. Suppose the rational function f takes the form f =[G : H]
as an algebraic mapping, cf. Section 1.4. Then

DiG  DsG ] 0

r_
=0 — detlDlH Dy H

The proof is Exercise 7.8.4. In particular, this shows that the critical
points of f11 = [—DQFL[ : DlFM] are precisely the roots of the Hessian
of Fy ; from Section 3.3 (Exercise 7.8.5). This Hessian is the icosahedral
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face-center form F5 1, so the critical points of fi; are the twenty icosahedral
face-centers. (Exercise 7.8.6 shows this in another way.) The vertices and
mid-edges, on the other hand, are not critical points.

Thus the twenty critical points of f1; form ten 2-cycles of fi1. This sets
up the result that fi; o fi1 is generally convergent. Define a cycle of any
rational function f to be superattracting if it contains a critical point of f,
and define f itself to be critically finite if each critical point ¢ is taken to
a cycle by finitely many iterations of f. In particular, fi; is critically finite
since every critical point is already in a cycle. The result from dynamics
that we need is

(7.8.2) THEOREM. Let f be critically finite and let A be the union of its
superattracting cycles. If A is nonempty then for all initial guesses t in some
dense open subset of C, the iteration {f*(t)} converges to a cycle in A.

See Theorem 3.3 of [Do-Mc] for a stronger statement and the relevant
references.

Since f11 is critically finite and all of its superattracting cycles have
length 2, Theorem 7.8.2 shows that fi1 o f11 is generally convergent to the
icosahedral face-centers. The theorem also shows that Newton’s method for
roots of unity is generally convergent (Exercise 7.8.8).

The icosahedral group I'; acts transitively on the set A = Att(f11 o f11),
as this set comprises the icosahedral face-centers; so all hypotheses for the
second half of Theorem 7.3.5 are now satisfied. The theorem says that for
general values of the Brioschi parameter w', iterating the algorithm

Fu(T) = (¢, ' f119,)(T) € C(T) (where w' = 1/(1728(1 — f1(2))))
an even number of times—or, for that matter, an odd number of times—
converges for general values of the starting guess t. According to the end of
the theorem, the resulting output field constructed over C(W') is C(¢,"(a))
for any icosahedral face-center a, the fixed field in C(Z) of the corresponding
face-center stabilizing subgroup I'y; C I';. As we will see in Section 7.10, this
field contains two Brioschi roots.

Exercises

7.8.1. Verify directly that fi; = T'—12h/h’ where h is the dehomogenization
of F 1,I-

7.8.2. Show that fi; =1 — deg(H) = —11 at the fixed points.

7.8.3. Show that the fifteen opposing pairs of icosahedral mid-edge points
form fi1-cycles.
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7.8.4.

7.8.5.

7.8.6.

7.8.7.

7.8.8.

7.8.9.
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Prove Lemma 7.8.1 as follows: the numerator of f’ is (HD:G —
GD; H)., which by Euler’s identity is a scalar multiple of (D1GD2H —
DyGD; H),; this is the determinant, dehomogenized.

Use Lemma 7.8.1 to show that the critical points of fq; are precisely
the roots of the Hessian of F ;.

Give another proof that the critical points of fi; are the icosahedral
face-centers as follows. For any subgroup I' € PSLy(C) and any I'-
normal f, the critical points of f form a I'-invariant set. The equation
f11 = 0 has degree 20, so the result follows geometrically.

Use a computer to iterate fi; experimentally on random inputs and
observe its general convergence to 2-cycles.

Use Theorem 7.8.2 to show that Newton’s method for nth roots of
unity (see Section 7.1) is generally convergent to nth roots of unity.
As explained at the end of the section, the output field constructed
by F over C(W') is C(¢,'(a)) for any icosahedral face-center a, the
fixed field in C(Z) of the face-center stabilizing subgroup I', C I'y.
What are the extension degrees [C(¢,'(a)) : C(W')] and [C(Z) :
C(¢7' (@)]?

9. Computing the algorithm

Possessing explicit formulas for the model fi; and the conjugating trans-

formation ¢, we consequently possess an explicit formula for the composite
algorithm F = ¢! f11¢. One problem remains, as explained in Section 7.7:
though the theory shows that F' is a W'-parametrized rational function of the

iteration variable T', where W' is the given Brioschi coefficient field genera-

tor, our current expression for F' is Z-parametrized, where Z is the unknown

Brioschi splitting field generator. We need to express F' in terms of W' for

it to be of any use.
Recall the derivation of fq1,

fi1 = (—DyH)./(D1H). where H = F 1, the icosahedral vertex-form
=T — deg(H)h/H where h = H,, dehomogenizing (Z1, Z2) to T.

The second formula shows that fi; fixes each point where H vanishes, i.e.,

the set A of icosahedral vertices.

We now obtain similar formulas for F'. Lift ¢ and homogenize in Z and
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T to obtain a (Z1, Zy)-parametrized linear function of (71, 75),

Z\Fyp FyrDhFig || T

P T,1T5) = ’ ’ ’ .
(,2) (T T2) ZoF3 1 —Fo DB ] [ T ]

Redefine H to be a (Z;, Z)-parametrized function of (T7,T5),

(P10 ®z,,7,))(Th, T2)
F1 1(Z1,Z5)F3 1(Z1, Z2)1%"

Hz, 2,)(T1, T2)

This warrants some motivation. The numerator of H is a parametrically
transformed version of the previous H = Fj , designed to vanish on the

-1
set q)(Zl,Z2)
lifted from P!(C) to C?), precisely the set that F needs to fix. Also, the

numerator is I'-invariant in its parameter (Z;, Z2) because ® is I'}-normal

(A) (where the set A of icosahedral vertices has been suitably

and Fy r is I'j-invariant, so for any v € I'},
Firo®yz,,2,) = Fi,10 Yo D(21,25) = F1,1© P (2,,75)-

Clearly the vanishing property also holds for the quotient H, and so does
the invariance property since the denominator is I';-invariant. This doesn’t
yet explain the strange denominator, but regardless of its value, the van-
ishing and invariance properties of H suggest—and a calculation confirms
(Exercise 7.9.1)—that F' = ¢! f11¢ may be computed by the same method
as fi1. Specifically,

(7.9.1)
F = (—DyH),/(D1H), =T — deg(H)h/K  where h = H,,

where the partial derivatives are with respect to the variables 71, T5, which
dehomogenize to the iteration variable T while Z;, Zo dehomogenize to the
parameter Z. Therefore, parametrizing F' by the Brioschi parameter W'
rather than Z reduces to doing the same for h/h'. The denominator of H,
which is simply a constant as far as 77, 15 are concerned and therefore
cancels in the quotient h/h’ anyway, has been concocted to make h rather
than h/h' parametrized by W', as we will see soon. This will simplify the
notation once we compute h.

Renormalize the icosahedral invariant Brioschi parameter W’ by a frac-
tional linear transformation to W = 1 — 1728W’. The defining relations
W' =1/(1728(1 = W)), W = f1(Z) = (F3;)«/(1728F} ), and the syzygy
1728F7 | — F3, — F3; = 0 show that W = (—F3,)./(F$,). (Exercise 7.9.2).
No icosahedral invariant is canonical—we have already discussed this point
in connection with the Brioschi parameter W’ and the original icosahedral
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invariant W = f;(Z)—and W makes the calculations cleaner, so we will use
it instead of W’ from now on. In particular, the iteration is now renamed Fs.

To express h = H, in terms of W, first note that the numerator of
H, which is the composition Fj ;o ®, has degree 12 - 31 in (Z, Z) and
degree 12 in (T%,T,). Since 12 -31 = 12 (mod 60) and the I'}-invariant
forms are generated by —F5; and Fjr, arguing by degree shows that the
numerator takes the form

(7.9.2) Fiio®=F IZZ% —Fy )3 P38 Ty,
1=035=0

where the 91 coefficients a;; can be found by solving a formidable system
of 4849 linear equations. Equation (7.9.2) rewrites as

6 12 _F23] ( T, J
Rrow = Ry S o () (1)
3,1 2

i=0 5=0

and since (T5), = 1, this relation dehomogenizes to

Fio®) _ §a§= . sl
F1,1F312[ _Zzaz] - W( )

i=0 j=0

This is precisely H,, explaining where the denominator came from when we
defined H in the first place: without it, A would not be parametrized by .
Specifically, h works out to (Exercise 7.9.3)

hg = 91125W° + (—13365072 + 615607 — 193536)W°
+ (—66825T* + 1425607 + 13305672 — 614407 + 102400)W*
+ (59407 + 4752T° + 63360T* — 1408007 )W>
+ (—1485T® + 316877 — 105607°)W?
+ (=667 + 440T°)W + T'2.

(Note how many of the a;; are zero.) So we have the iteration parametrized
by the icosahedral invariant W as desired,

Fg(T) =T — 12h (T) /W (T).

Exercises

7.9.1. Holding the parameter (Z1, Z2) constant (it plays no role in this exer-
cise), write the function H (7%, T5) from the section as H = c-(F; ;o ®)
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for some constant c. Compute, using the chain rule, that

—DH | _ | Do®y —Dy®i | [ —DoFiy | o
DiH | 7| -D1®y D19 Dy Fy '

Since ® is linear, the matrix in this equation is ® ! up to constant
multiple. Dehomogenize and divide to show that (—DoH),/(D1H). =
¢~ f11¢, giving the first equality in (7.9.1); the second equality follows
as in the beginning of Section 7.8.

7.9.2. Check that W = (—=F} ). /(F3,)..

7.9.3. Write the system of linear equations defining the coefficients a;; of h
and either solve them or at least verify A from the section.

10. Solving the Brioschi quintic by iteration

Finally, to proceed from the iteration Fj;, to a root of the Brioschi quintic,
we begin by reviewing some of the machinery from Sections 4.8 and 4.9,
where the Brioschi resolvent was developed and used to invert the icosahedral
equation. (You may want to reread those sections before proceeding here.)
Recall that the icosahedral group I'; contains a tetrahedral subgroup [y that
is a rotated version of the normalized tetrahedral group I'r from Chapter 2.
Each invariant form for the corresponding rotated octahedral group provides
a quintic icosahedral resolvent. The simplest such form is 13’1,0; this form,
suitably rationalized to § = (ﬁ'lyoFf, 1/F31)« € C(Z), satisfies the Brioschi
resolvent

R; = T5 — 10W'T3 + 45W"?T — W'2,

where W' = 1/(1728(1 — f1(Z))) = (F?;/F3;)s and now W =1 — 1728W".
The five Brioschi roots are §7 as y runs through representatives of the coset
space f‘T\l" 7. Solving the icosahedral equation from the Brioschi root § was
done with the help of the renormalized tetrahedral invariant 7 = §2/W' =
(FEO /Fi1)«. Exercise 4.9.4(a) showed that the twenty icosahedral face-
centers divide into three orbits under the tetrahedral group I'z: the 4-orbit
O of tetrahedral vertices, the 4-orbit (' of countertetrahedral vertices, and
a remaining 12-orbit P (see Figure 4.9.1). From Exercise 4.9.4(b),

_ 11+ 3iV15 _ 11-3iV/15

7(O) 5 5

7(O') 7(P) = 3.
Exercise 4.9.4(c) gave an explicit formula for the quotient Fy 1/F o, which
is integral, and showed that 7 — 3 = (FQ,[/FQ,O)*/(FLI)*. We will use this

tetrahedral invariant to solve the Brioschi quintic.
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Let A again denote the attractor of fi; o fi1, i.e., the set of icosahe-
dral face-centers. For each value z of the Brioschi splitting field genera-
tor Z, the conjugating transformation ¢, ! maps A to the cross-section of
Out(F}, o Fy;) over the corresponding value % of the renormalized Brioschi
parameter,

¢;1 A — Att(FuA, o Fw),

cf. Exercise 7.3.4. Iterating Fj o Fy on various initial ¢-values converges to
values ¢; ! (a) for various a € A, as depicted in Figure 7.1.1. Thus ¢,'(a) is
our general iteration output. Applying F once more to an output ¢, '(a)
gives another output ¢, (—a) since fi1(a) = —a. This is all in accord with
the end of Theorem 7.3.5, which says that the output field of Fﬁ, o Fﬁ, over
the Brioschi coefficient field C(W) is C(p,'(a)) for any a € A, at the level
of function field equivalence. The output field is the fixed field of stab(a) in
the splitting field C(Z).

Fix any face-center a € A. The group stab(a) sits in two tetrahedral sub-
groups of the icosahedral group, the rotation groups for the tetrahedron 7,
with vertex a and the tetrahedron 7, with vertex —a. Note that 7, is
not counter to 7,, cf. Figure 2.5.10. Exercise 7.10.1 asks for proofs of the
following assertions: each coset f‘T'y € f‘T\F[ takes a into one of the fT—
orbits O, @', P; one coset fTW takes a into O, another coset fT71 takes a
into @', and the other three cosets take a into P. With this notation in place,
the tetrahedral subgoups containing stab(a) are explicitly I'ro = 7, T
and I'rp = v, lf‘Tfyl. The corresponding intermediate fields of the Brioschi
splitting field extension are generated by appropriate translates of the tetra-
hedral invariant, frp = f7° and fr; = f;*. So we have the lattices shown
in Figure 7.10.1.

{1} C(2)
stab(a) C(¢5'(a))
T T C(fro) C(fr,1)

T, c(W)
Figure 7.10.1. Groups and fields associated with the iteration

The two Brioschi roots sg = §7 and s; = 5", being translated tetrahe-
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dral invariants, lie in the fields C(f7,) and C(fr,1), so Figure 7.10.1 shows
that sp and s; are rational expressions in qSEl(a). To find them, exploit
the values taken by the tetrahedral invariant ¥ — 3 on its three orbits by
introducing the W—parametrized rational function of T

(7.10.1)
pp (T) = Z §(Z) - (77 0 ¢z(T) — 3) € C(W)(T).
YETr\I's

o~

(Exercise 7.10.2 asks why u lies in the subfield C(W)(T") of C(Z)(T').) At our
iteration outputs ¢, (a) and Fﬁ,(qﬁgl(a)) = $,*(—a), this function evaluates
to (Exercise 7.10.3(a))

_ 5+ 3iv/15 5 —3iv15 11
pi (67 (a) = 5 S0t 5 1% o,
_ 5 —3iv1d 5+ 3iv15 1
MVAV(QSZI(—G)) = 5 S0 + 9 515 1.

Now linear algebra gives the Brioschi roots sy and s; (Exercise 7.10.3(b)),

9 — V15 941215
o + 251

_9+ivis - 9-iVip
90 90 3 - Mo M-

90 90

S = 81

Computing p explicitly will complete the Brioschi algorithm. To do so,
first homogenize, using the formulas for § and 7 — 3, and then rationalize,

pe(M =Y §(Z)- (7 ($z(T)) - 3)

'YEFT\FI
= Z FKOFIZ’I . (FQ’I/FZO) © CI)(Z1,Z2)(T17T2)
14 F Friod T,.T
et 1,1 © Dz, 2,)(T1, T3)

*

2t FloF 11 - (Fa1/F] o) © @2y, 2,) (T1, T2)) [ i
(F1,1 0 ®(7,,2)(T1, T2)) [ (F1,1F37)

where h was found in the preceding section and similarly k takes the form
(Exercise 7.10.4)
6 12

kg =D by WY

i=0 j=0
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Solving another large linear system gives (Exercise 7.10.4 again)
kg = 100W (W —1) -
[(1215T — 648)W* + (—540T° — 21672 — 1152T + 640)W>
+ (378T° — 504T* + 960T°%)W? + (3677 — 168T%)W — T7].

This gives the long-awaited purely iterative algorithm for the Brioschi
quintic:

(7.10.2) ALGorIiTHM. To solve any specific Brioschi quintic by = T® —
10w'T3 + 45w'*T — w'? with w' € C,
1. Let @ = 1 — 1728w" and compute the polynomials hg, kg €
C[T].
2. Iterate the rational function Fy = T — 12hg/hl;, € C(T) an
even number of times on a random initial guess t until the
iteration converges to some value to. Set t1 = Fy(to).

3. Set Mo = kw(to)/hw(to) and M1 = k@(tl)/h@(tl).

4. Then
o o 9IS 9+iVID nd s = I FIVIS 9 —iVIE
0= 90 Ho 90 K1, 1= 90 Ho 90 M1

are a pair of Brioschi roots. Finding the other three roots now
reduces to solving a cubic equation, a process that can be car-
ried out by radicals or by further iteration as described in Sec-
tion 7.3.

Recall that Chapter 5 uses radicals to reduce the general quintic to
Brioschi form. The summary Figure 5.9.1 shows in detail how solving the
Brioschi quintic translates back to solving the general case. We have learned
that radicals alone do not suffice to solve the quintic in its general form;
classically, special forms were solved with transcendental functions. In par-
ticular, Klein solved the Brioschi form a century ago with the inverse to his
icosahedral invariant, a function powerful enough to combine with radicals
to solve the quintic but not equations of higher degree. Now, in concert with
Klein’s icosahedral geometry, modern dynamical theory shows that iteration
and radicals are also just strong enough to solve the quintic.

Exercises

7.10.1. Let a € A be any icosahedral face-center. Show that each coset
I'yy € T'p\I's takes a into one of the I'p-orbits O, O, P. Show that
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one coset fT'yO takes a into O, another coset fT')q takes a into O',
and the other three cosets take a into P. Show that the tetrahedral
subgoups containing stab(a) are explicitly I'rg = 7, 1T and Lrq =
" 1]-—‘T'Yl- -

7.10.2. Show that pg lies in the subring C(W)[T] of C(Z)[T] by showing
that for any g € ', replacing Z by ¢Z in (7.10.1) leaves the sum
unaffected.

7.10.3. (a) Confirm the values of uw(cﬁgl(a)) and uvz[\,(gb}l(—a)). (The first
value follows from Exercise 7.10.1 and properties of 7. For the second
value, note that —O = 0" and —P =P.)

(b) Confirm the values of sy and si.

7.10.4. Explain why k takes the form claimed in the section. Write the
system of linear equations defining the coefficients b;; of k£ and either
solve them or at least verify k.

7.10.5. Implement the Brioschi algorithm and check it, finding various roots
of various Brioschi quintics.

11. Onward

For the historical context of the first six chapters of this book, see Klein’s
Development of mathematics in the 19th century [K1 2]. Meanwhile, math-
ematical research continues on these topics. For example, Dummit [Du]
shows how to solve a quintic by radicals when its Galois group is solvable,
Buhler-Reichstein [Bu-Re] generalizes Kronecker’s Theorem, Crass [Cr] dis-
cusses solving the sextic by iteration of more than one variable, and Beukers
[Be] addresses the diophantine equation z°® + y® = 22 using the icosahedral
invariants.

Nonicosahedral approaches to the quintic abound, of course. See Sturm-
fels [Stu] for recent results on solutions by hypergeometric series, or more
generally consult the extended bibliography accompanying the poster “Solv-
ing the Quintic with Mathematica” [Wo).

Finally, Klein’s original masterpiece [Kl], especially its second part, con-
tains lovely material beyond this book that it inspired.
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Brioschi parameter, 96
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characteristic p, 70
characteristic zero, 70
closed set in R™, 3
coefficient field, 104
collineation, 121
commutator, 62
commutator subgroup of a group, 62
compact topological space, 3
complex projective line, 13
complex projective space, 120
congruence class of a matrix, 124
congruent points under a group action,
30
congruent sets under a group action, 31
conjugate elements of a group, 19
conjugate subgroups of a group, 26
conjugating conformal map, 149, 165
connected topological space, 160
constructible extension
by iteration, 169
by radicals, 82
continuity, topological definition of, 3
in Euclidean space, 2
Continuity—Compactness Theorem, 4
contravariant map, 80
coordinate ring of an algebraic set, 155
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covariant, 56

covering group, 160

critical point of a rational function, 182
critically finite rational function, 183
cube, 33

cycle of a rational function, 182

cyclic characters, 59

cyclic extension, 83

cyclic forms, 58

cyclic invariant, 66

decision-free iteration, 148

degenerate orbit-form, 55

degree of a hypersurface, 120

degree of an extension, 71
dehomogenization operator, 15

dense subset of a topological space, 156
depressed polynomial, 113

differential, 173

differential form, 173

digon, 45

dihedral characters, 59

dihedral forms, 59

dihedral invariant, 66

dihedral syzygy, 59

Dimension Lemma, 135

discrete topological space, 160
discriminant, 104

dodecahedron, 37

dominant rational map of varieties, 157
dual of a Platonic solid, 32

dual 1-form of a rational function, 176

Eisenstein’s criterion, 74

elementary symmetric functions, 104
elliptic curve, 154

elliptic element of PSL,(C), 29
Embedding Lemma, 144

FEuclidean algorithm, 70

Euclidean ring, 70

exceptional form, 63

faithful group action, 30

field extension, 71
finite extension, 71
First Isomorphism Theorem
group theory, 19
ring theory, 70
flag, 32
form, 14
form-class, 52
form differentiation operator, 174
form resolvent, 94
fractional linear transformation, 17
full orbit-form, 54
function field class, 159
function field of a variety, 156
Fundamental Theorem of Symmetric
Functions, 106

Galois closure, 83

Galois Correspondence, 76

Galois extension, 76

Galois group, 76

Gauss’ Lemma, 74, 81

general convergence of Newton’s
method for nt* roots, 148

general linear group, 17

generally convergent algorithm, 163

golden ratio, 34

group action, 30

Heine—Borel Theorem, 3
Hermitian matrix, 27
Hessian covariant, 56

high school error, 71
homeomorphism, 3
homogeneous coordinates, 120
homogeneous ideal, 158
homogeneous polynomial, 14
homogenization operator, 15
hyperplane, 120
hypersurface, 120

icosahedral forms, 61
icosahedral invariant, 66
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icosahedron, 34

ideal associated to a set, 155
induced topology, 3

inner product on C2, 27

inner product properties, 27
invariant form, 51

invariant function, 50

inverse image, 2

Tteration Criterion (over C), 170
iteration tower over a field, 169
iterative algorithm, 162

Jacobian covariant, 56

kernel of a group action, 30
Klein four-group, 44
Kronecker’s Theorem, 139

Lagrange Lemma, 84

local coordinate function, 9

length of an orbit, 30

line in projective space, 121

Linear Independence of
Automorphisms, 83

Liiroth’s Theorem, 142

map over a field, 75
meromorphic function, 9
minimal polynomial, 71
Mobius group, 170

model for an iteration, 149, 165
multiset, 52

natural irrationality, 115
nearly solvable group, 170
neighborhood, 7
Newton’s identities, 108
Newton’s method, 147

for n** roots of unity, 148
normal extension, 75
normal function

with respect to a group, 176

with respect to an automorphism, 176
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octahedral characters, 61
octahedral forms, 60, 61
octahedral invariant, 66
octahedral syzygy, 61
octahedron, 33
1-form, 173
open set

in R™, 2

in a topological space, 3
open set properties

of R™, 2

of a topological space, 3
orbit, 30
orbit space, 66
Orbit-Stabilizer Theorem, 30
order of a meromorphic function, 10
orthogonal group, 21
orthogonal matrix, 21
output field of an algorithm, 164
output of an algorithm, 163

Platonic solid, 32
polynomial on an algebraic set, 155
positive matrix, 27
power sums, 107
prime subfield of a field, 70
primitive polynomial, 81
principal polynomial, 114
projective general linear group, 18
projective special linear group, 18
projective special unitary group, 22
projective transformation, 121
projective unitary group, 22
pullback, 79

of a differential form, 174

of a rational map, 157
purely iterative algorithm, 162

quadric hypersurface, 121
quasi-projective variety, 158
quotient topology, 4

radical closure of a field, 139
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Radical Criterion (over C), 83

radical element over a field, 139

radical reduction of a polynomial, 139

rational function on a variety, 156

rational map of varieties, 157

repelling fixed point of a rational
function, 182

resolvent, 91

resultant, 110

Riemann sphere, 8

rigid family of rational maps, 149, 165

rigid motion of R3, 25

root field, 72

root tower over a field, 82

rotated tetrahedral group, 93

rotation of the Riemann sphere, 21

rotation of the sphere, 20

running, 4, 12, 187

Second Isomorphism Theorem, 19
self-adjoint matrix, 27
separable element over a field, 75
separable extension, 75
separable polynomial, 75
simple group, 89
simple iterative algorithm, 163
skew matrix, 176
skew symmetry of differentials, 173
solvable group, 82
special linear group, 18
special orthogonal group, 21
special unitary group, 22
sphere, 1
splitting field, 71
stabilizer of a point, 30
stereographic projection, 5
subnormal series

for a nearly solvable group, 170

for a solvable group, 83
superattracting cycle of a rational

function, 183

Sylvester matrix, 110
symmetry group of a set, 30
symmetry of a set, 30
syzygy, 56

tangent hyperplane to a hypersurface,
121

tetrahedral characters, 60

tetrahedral forms, 60

tetrahedral invariant, 66

tetrahedral syzygy, 60

tetrahedron, 33

Third Isomorphism Theorem, 85

topological space, 3

topology, 3

usual on R™, 2

totally invariant form, 62

transcendence base for an extension,
136

Transcendence Degree Lemma, 136

transcendence degree of an extension,
136

transcendental element over a field, 73

transitive group action, 30

transpose of a matrix, 20

Tschirnhaus transformation, 112

nondegenerate, 117
2-form, 173

unitary group, 22
unitary matrix, 22

valuation maximal ideal, 146
valuation ring, 146

Vandermonde determinant, 109
variety, 155

variety class, 159

Variety—Field Correspondence, 159

Z-module, 70
Zariski topology, 155
0-form, 173

Zorn’s Lemma, 136
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C (Riemann sphere), 8
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* (homogenization of a polynomial), 15

« (dehomogenization of a form), 15

Aut(C) (automorphisms of the
Riemann sphere), 17

GLy(C) (general linear group), 17

PGL,(C) (projective general linear
group), 18

SLy(C) (special linear group), 18

PSLy(C) (projective special linear
group), 18

¢ (transpose of a matrix), 20

O3(R) (orthogonal group), 21

SO3(R) (special orthogonal group), 21

Rot(a) (rotations of the Riemann

sphere), 21
(adjoint of a matrix), 21
Us(C) (unitary group), 22

SUs(C) (special unitary group), 22

*

PU;(C) (projective unitary group), 22

PSU,(C) (projective special unitary
group), 22

g (golden ratio), 34

O, (vertex orbit), 41

O, (face-center orbit), 41

O3 (mid-edge orbit), 41

Cm (Mt root of unity), 43

sn, (cyclic and dihedral generator), 43

tp (second dihedral generator), 43

1 (tetrahedral group), 43

s, tr (tetrahedral generators), 43

I'o (octahedral group), 44
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Iy (icosahedral group), 44

s1, tr (icosahedral generators), 44

C(Z)' (T-invariant subfield of C(Z)),
49
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Fic,, P> c, (cyclic forms), 58
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X1,D.> X2,Dn> X3,Dn, XD, (dihedral
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Fir, Fo.7, F5 1 (tetrahedral forms), 60

X1,T5 X2,T> X3,T> XT (tetrahedral
characters), 60

Fi,0, F5,0, F5,0 (octahedral forms), 60,
61
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fp,, (dihedral invariant), 66
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/ (field extension), 71
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Att( ) (attractor of a rational map),
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d (form differentiation operator), 174

* (pullback of a differential form), 174
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¢z (conjugating transformation for the
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