
A First Course in Modular Forms:
Corrections to the Third Printing

March 21, 2016

(The corrections here are also corrections to the earlier printings, but the
third printing’s pagination has changed a bit. In case of problems locating a
correction here in an earlier printing, please email jerry@reed.edu.)

Chapter 1

• Pages 21–22: The wording of exercise 1.2.4 can be improved a bit because
the condition d = 0 is impossible in Γ0(4).

Chapter 2

• Page 47, lines (−2)–(−1): Change “group” to “subset of SL2(R)” on
line (−2), and change “group” to “subgroup” on line (−1).

• Page 55, line 2: Change “
[
a b
c d

]
” to “γ =

[
a b
c d

]
”.

• Page 55, line (−6): Change “proving (1)” to “proving (c)”.
• Page 56, exercise 2.3.2: Change “If” to “If the nontrivial transformation”.
• Page 56, exercise 2.3.5(b): Change “third” to “fourth”.
• Page 61, line 14: Change “width” to “period”.

Chapter 3

• Page 65, line (-2): Change “Y \h(E)” to “Y \f(E)”.
• Page 66, line 20: Change “equal genus” to “equal genus g ≥ 1”.
• Page 69, lines 4–5 (and the relevant bibliography item): Helena Verrill’s

fundamental domain drawer is at
http://www.math.lsu.edu/ verrill/fundomain/

on April 8, 2008.
• Page 70, line (−14): Change “of order 4” to “with j′ 6= j”.
• Page 70, line (−6): Change “−6, . . . , 7” to “−6, . . . , 6,∞”.
• Page 70, line (−5): Change “of order 3 or 6” to “with j′ 6= j”.
• Page 70, line (−1): Change “with with” to “with”.
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• Page 72: The quantity denoted h in lines 4–7 should be given a different
name such as ~, as it is not necessarily the h or the h′ in the discussion on
page 74. The sentence “Thus f has period ~.” on lines 4–5 is correct, but
~ need not be the smallest period of f .

• Page 74, line (−9): Change “qh′ = e2πi/h
′
” to “qh′ = e2πiτ/h

′
”.

• Page 74, line (−8): Delete “qh′ = e2πiτ/h
′

and”.
• Pages 74–75: The discussion in the “Defining. . . ” paragraph on page 74 has

an error: the period is 2h in the third case independently of k, even though
f(τ+h) = f(τ) for k even. That is, in the first two cases we have h′ = 2~ =
2h but in the third case we have h′ = ~ = 2h. On page 75, remove “and k
is odd” from (3.3), and change the text immediately following, from “This
can be half-integral in the exceptional case, when π(s) or s itself is called
an irregular cusp of Γ . For example, when k is odd 1/2 is an irregular
cusp. . . ” to “This is half-integral if (α−1Γα)∞ = 〈− [ 1 h0 1 ]〉 (when π(s) or
s itself is called an irregular cusp of Γ ) and k is odd. For example, 1/2 is
an irregular cusp. . . ”.

• Page 81, paragaph beginning “On the other hand...”: Replace the discus-
sion leading up to (3.7) with “On the other hand, if Uj contains a cusp sj
then δj takes sj to ∞ and the function (f [α]2n)(z) takes the form gj(qh)
where h is the width of s and qh = e2πiz/h; here gj is meromorphic in qh

at 0 if the cusp is regular and gj is meromorphic in q
1/2
h = eπiz/h at 0 if

the cusp is irregular, but we think of gj as a series in powers of qh (half-
integral powers in the irregular case) so that the order is the index of the
leading coefficient. The relevant local differential is now”.

• Page 81, line (−7): Change “Ωk/2(H)” to “Ω⊗k/2(H)”.
• Page 90: Change “ε3,i” to “ε3” on the first line of the three-line display.
• Page 95, line 4: Change “γ” to “γJ”.
• Page 95, line 15: Change “γ =” to γ = detm·”.
• Section 3.7: A more transparent approach comes from the moduli space

point of view, identifying Y0(N) and S0(N) as in Theorem 1.5.1. For
N = 1, elliptic points of Y0(N) correspond to elliptic curves C/Λτ with
automorphisms other than multiplication by ±1. Since only two imaginary
quadratic orders have more than two units, and they are both PID’s, there
are two elliptic points: one of order 2 corresponding to Λτ = iZ⊕ Z, and
one of order 3 corresponding to Λτ = µ3Z⊕Z. For Γ0(N), reason likewise.
To find elliptic points of order 3, for example, look at the order N cyclic
subgroups of the lattice µ3NZ ⊕ NZ, and count how many of them are
invariant under multiplication by µ3. These are precisely the subgroups
generated by mµ3 + 1 where m2 −m+ 1 ≡ 0 (mod N). Thus the number
of elliptic points of order 3 is the number of solutions of the congruence
m2 = m+ 1 ≡ 0 (mod N).

• Page 103, line 9: Change “y0 ≡ c′c−1 (mod N)” to “y0 ≡ c′c−1 (mod N/d)”.
A procedure to list the cusps of Γ0(N) is as follows: For each positive di-
visor of N choose some nonnegative integer c such that gcd(c,N) is the
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given divisor (e.g., take c = 0 if the divisor is N and otherwise take c to
be the divisor), then for each class in (Z/ gcd(c,N/ gcd(c,N))Z)∗ choose
a representative a coprime to c and take a matrix

[
a b
c d

]
∈ SL2(Z). Note

that (Z/Z)× is not empty but rather consists of one class, all of Z. Espe-
cially, if gcd(c,N/ gcd(c,N)) = 1 then the only corresponding cusp is [ 1 0

c 1 ]
(though for c = 1 the representative

[
0 −1
1 0

]
is preferable to [ 1 0

1 1 ]), and thus
a squarefree level N = p1 · · · pt has 2t cusps. Similarly, for N = 4 there are
three cusps,

[
0 −1
1 0

]
, [ 1 0

2 1 ], and [ 1 0
0 1 ], and for N = 9 there are four cusps,[

0 −1
1 0

]
, [ 1 0

3 1 ], [ 2 1
3 2 ], and [ 1 0

0 1 ].
• Page 106, fifth line of section 3.9: Change “X1(N)” to “X(1)”.
• Page 106, after the displayed formula for d(Γ1(N)): Change “So −I /∈

Γ0(N) while −I ∈ SL2(Z).” to “So −I /∈ Γ1(N) but −I ∈ Γ0(N).”

Chapter 4

• Page 123, line 9: Change “an−1(k)” to “an(k)”.
• Page 123, exercise 4.4.1(c): Change “Re(s) > 1” to “Re(s) > 0”.
• Page 127, line 13: Change “e′ ≡ (e + c′bγ)dγ (mod u)” to “e′ ≡ (e +

c′bγ)dγ − q (mod u), where q = (d′ − ddγ)/v”.
• Page 131: On the second line of the first two-line display the summand

should begin “mµdvmN ” rather than “µdvmN ”. On the third line of the three-
line display a right parenthesis is missing from “(1− δ(cv))” and the sum-
mand has the same error.

• Page 133: Add an Exercise 4.6.4: “Use results from Chapter 3 to show
that S2(Γ0(4)) = 0 and that dim(M2(Γ0(4))) = 2. This section shows
that E11,11,2

2 and E11,11,4
2 form a basis of M2(Γ0(4)); the function θ(τ, 4)

from the beginning of Section 1.2 lies in M2(Γ0(4)) as well. Show that
θ(τ, 4) is a scalar multiple of E11,11,4

2 . Show that E11,11,4
2 − 3E11,11,2

2 is a
scalar multiple of the function

f(τ) =
∑
n≥1
odd

σ1(n)qn

(which is not a cusp form despite vanishing at infinity). Thus θ(τ, 4) and
f(τ) form a basis of M2(Γ0(4)).”

• Page 136, line 11: Change “negated” to “preserved”.
• Page 136, line 12: Change “t > 0” to “t < 0”.

• Page 136, line 13: Change “
∫ 0

t=−∞” to “
∫ −∞
t=0

”.
• Page 137, line 9: Change “(n)” to “(k)”.
• Page 139: Right parenthesis missing from “(1− δ(cv))” on the second line

of the second two-line display.
• Page 140, line 8: Change “−cv” to “N − cv” in the first superscript. Make

the same change on page 142 in exercise 4.8.6.
• Page 140, line (−1): Change the first ζ-superscript to “d+ ev”.
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• Page 146, exercise 4.9.2: In part (a), change the condition defining Sm to
“|n| = m”, omit the “Note that. . . ” sentence, and change “l(2m+ 1)l−1”
to “(2m+ 1)l”. In part (c), change “l(2m+ 1)l−1” to “(2m+ 1)l” and take
the first sum over n ∈ Zl such that |n| ≥M .

• Page 155, line 5: Change “g(ϕ̄)/v” to “ϕ(−1)g(ϕ̄)/v”.
• Page 155, line 11: Change “(−1)k” to “ψ(−1)”.
• Page 155, line 19: Remove “ϕ(−1)”.
• Page 157, line 14: The two-line display should end “· · · = θv(it,N)”.

• Page 162, exercise 4.11.5(c): The definition of σψ,10 (m) should sum over
divisors of m.

Chapter 5

• Page 174, diagram (5.8): Change “D” to “Div” four times.
• Page 186, line 4: Change “β′j = det(β)β−1” to “β′j = det(βj)β

−1
j ”.

• Page 192, line 8: Delete “πd1d2 =”.
• Page 202, third line of the three-line display in the middle of the page:

Change “p1−k−2s” to “pk−1−2s”.
• Page 204, second line of section 5.10: Change “ns” to “n−s”.
• Page 204, line (−3): Change “idempotent” to “an involution”.
• Page 205, line 4: Delete “under the Hecke algebra”.
• Page 206, line 3: Change “idempotent” to “an involution”.
• Section 5.11: The calculation of orthogonality is formally correct, but the

absolute convergence of the double integral is not supported correctly by
the text.

• Page 209, line 1: Change f(α(τ ′)) to (f [α]k)(τ ′).
• Page 209, lines 2–3: Delete “if Re(k + 2s) > 0”.

Chapter 6

• Page 212, lines (−4) and (−5): Change “V1,2” to “V1” and change “V2,1”
to “V2”.

• Page 214, line 12 (third display): Change “f ∈ C(X)” to “f ∈ C(X)∗”.
• Page 215, line (−3): Change “homomorphic” to “homomorphism”.
• Page 220, line (−5): Change “γ” to “δ”.
• Page 221, line (−1): Change “

∫
γ” to “

∫
γ
”.

• Page 228: In diagram (6.11), change “[γY,j ]2” to [α−1γY,j ]2” and also
change the last “X” to “Y ”; in the following display, change “[γY,j ]2”
to [α−1γY,j ]2”.

• Page 232, line (−2): Change “R(f(x), g(x), x)” to “R(f(x), g(x);x)”.
• Page 233, line (−3): Change “characteristic” to “minimal”.
• Page 235, paragraph starting “Again suppose”: Also A and k are assumed

to be structurally compatible as needed.
• Page 239, second display: Change “g” to “gi” on the right side of the

equality.

Chapter 7
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• Page 268, line 3: Change “∈” to “⊂” twice.
• Page 273: Change “k[x]” to “k(x)” in (7.6).
• Page 275: Change Exercise 7.3.4(b) to “Show that if νP (x) is even and

nonzero, or if νP (x) = 0 and νP (y) 6= 0, then νP (F (x)) is even for any
rational function F .”. These are the cases used in the text.

• Page 277, line 9: Change “(f2 ◦ [N ]” to “(f2 ◦ [N ])”.
• Page 283, lines 8–10: Replace the sentence beginning, “A complementary

argument. . . ” with “For each v ∈ (Z/NZ)2, the function f±v0 determines
two N -torsion points of Ej unless 2v = 0, in which case it determines
one (Exercise 7.5.5(a)), and so we have found all N2 points of Ej [N ]
(Exercise 7.5.5(b)).”

• Page 286: Replace Exercise 7.5.5. The new exercise is, “(a) Show that for
each v ∈ (Z/NZ)2, the function f±v0 determines two N -torsion points of Ej
unless 2v = 0, in which case it determines one. (b) Show that consequently,
regardless of whether N is odd or even, we have found all N2 points
of Ej [N ].”

• Page 290: In the second paragraph of Section 7.7, change “three” to “two”
and remove the references to K′0, C(j, jN ), and K ′0. (It takes some work to
show that K′0 is an intermediate field as claimed, and we do not need this
result.)

• Page 291, line 14: Change “indeterminants” to “indeterminates”.
• Page 291, line (−6): Change “either f0 or jN” to “f0”.
• Page 294, line (−9): Change “K0, K ′0, and K1” to “K0 and K1”.

Chapter 8

• Page 316, line (−15): Change “lie in k.” to “lie in k. For char(k) = 2,
assume that every element of k is a square.”.

• Page 326, line 1: Change the initial value “a1(E) = 1” to “a1(E) = 2”.
Furthermore, the normalized solution-counts that are denoted ape(E) on
page 325 should be given a different name, as the true ape(E) are indeed
defined as on page 361 by the same initial value and recurrence as the
Fourier coefficients ape(f) of a newform. For now the normalized solution-
counts are renamed tpe(E). Note that tp(E) = ap(E).

• Page 333, line (−15): Change “Z” to “Z(p)”.
• Page 334, line 3: Change “kernel” to “kernel zero and”.
• Page 335, line 12: Change “[N ]” to “[p]” twice.
• Page 336, line 3: Change “µ6” to “µ6”.
• Page 342, line 20 (end of first complete paragraph): Change “Ji” to “J(i)”.
• Page 346, line 5: Change “I 7→ IM” to “I 7→ Ik[C]P ”.
• Page 351, lines 4–6 (clarification, not correction): The argument given is

necessary. The fact that the bottom arrow of the diagram is the zero map
does not immediately show that ker(ψ̃) = Ẽ′[p], because the domain of ψ̃

is all of Ẽ′.
• Page 353, line (−8): Change “(7.18)” to “(7.18) (page 304)”.
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• Page 361: The right idea is to define for any prime p the local counting
zeta-function of E, encoding the normalized solution-counts tpe(E) = pe+

1− |Ẽ(Fpe)|, as

Zp(X,E) = exp

( ∞∑
e=1

tpe(E)

e
Xe

)
.

Taking logarithmic derivatives shows that in fact for X = p−s the local
zeta-function takes the form of an Euler factor,

Zp(p
−s, E) = (1− ap(E)p−s + 1E(p)p1−2s)−1.

(The relation ap(E) = tp(E) is explained in the correction to page 326.)
The Hasse-Weil L-function of E is the product of these Euler factors,

L(s, E) =
∏
p

(1− ap(E)p−s + 1E(p)p1−2s)−1.

By the methods of the proof of Theorem 5.9.2, the Dirichlet series form of
the L-function is

L(s, E) =

∞∑
n=1

an(E)n−s

where similarly to the Fourier coefficients of a newform, the an(E) satisfy

a1(E) = 1,

ap(E) = p+ 1− |Ẽ(Fp)|,
ape(E) = ap(E)ape−1(E)− 1E(p)pape−2(E), e ≥ 2,

amn(E) = am(E)an(E), (m,n) = 1,

Chapter 9

• Page 367, second display: Also d 6= 0, 1.
• Page 368, third display: No claim is made that the powers of µN are

independent over Z.
• Page 368, line 16: Change “ramify in Q(µN ).” to “ramify in Q(µN ) (except

that 2 does not ramify if N ≡ 2 (mod 4), but then Q(µN ) = Q(µN/2) and
N/2 is odd).”

• Page 375, line 5: Change “1 + `nZ∗`” to “1 + `nZ`”.
• Page 381, line 12: Change “of C” to “of the curve C from Section 9.2”.
• Page 383, middle of the page: Replace “For each n the field Q(E[`n]) is a

Galois number field, giving a restriction map

GQ −→ Gal(Q(E[`n])/Q), σ 7→ σ|Q(E[`n]),

and there is also an injection



7

Gal(Q(E[`n])/Q) −→ Aut(E[`n]).”

with “Under the isomorphic identification of E with Pic0(E), multiplica-
tion by `n on E for any n ∈ Z+ becomes purely formal on Pic0(E), and
so it clearly commutes with the GQ-action on Pic0(E). Thus the actions
on E commute as well, and so the Galois action restricts to `n-torsion,

GQ −→ Aut(E[`n]).”

• Page 384, line (−10): Replace “Theorem 8.4.4” by “Proposition 8.4.4”.
• Page 384: The second paragraph of the proof of Theorem 9.4.1 is correct

but it can be replaced by the following two paragraphs if desired.

“The relation ap(E) = σp,∗ + σ∗p as endomorphisms of Pic0(Ẽ) (Proposi-
tion 8.3.2) and the preservation of `n-torsion under reduction combine to
show that Frobp satisfies its asserted characteristic equation. Consider the
diagram

E[`n]
ap(E)

//

��

E[`n]

��

Ẽ[`n]
σp+p σp

−1

// Ẽ[`n].

Identifying elliptic curves with their degree-0 Picard groups as earlier, and
recalling from equations (8.14) and (8.15) that σp = σp,∗ and pσ−1p = σ∗p
under the identification, we see that the diagram commutes. The same dia-
gram but instead with Frobp+pFrob−1p across the top row also commutes.

Since the vertical arrows are isomorphisms, ap(E) = Frobp + pFrob−1p

on E[`n], and since n is arbitrary, the equality extends to Ta`(E). Multi-
ply the equality through by Frobp to get Frob2

p − ap(E)Frobp + p = 0.

The previous paragraph shows that the minimal polynomial of Frobp di-
vides x2 − ap(E)x + p but not yet that this is the characteristic poly-
nomial. (For example, the identity operator on a 2-dimensional vector
space satisfies any quadratic polynomial (x− 1)(x− a), not only its char-
acteristic polynomial (x − 1)2.) To finish establishing the characteristic
polynomial of Frobp for p - `N , we show that det ρE,`(Frobp) = p. Let
let ρn : GQ −→ GL2(Z/`nZ) be the nth entry of ρE,` for n ∈ Z+. As in
Lemma 7.6.1, the Weil pairing shows that the action of σ ∈ GQ on the
root of unity µ`n is given by the determinant, but by definition the action
is also to raise µ`n to the nth entry of the cyclotomic character χ`(σ),

µσ`n = µ
det ρn(σ)
`n = µ

χ`,n(σ)
`n .

That is, det ρn(σ) = χ`,n(σ) in (Z/`nZ)∗ for all n, so det ρE,`(σ) = χ`(σ)
in Z∗` . In particular (9.13) gives det ρE,`(Frobp) = p, as desired.”

• Page 385: Exercise 9.4.2 requires many changes.
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The exercise applies to the tpe(E) rather than to the ape(E), and so this
change should be made throughout.

Change the initial value from t1(E) = 1 to t1(E) = 2.

At the end of the text leading up to part (a), delete “except when p = 2
and 2 | N”.

With the proof of Theorem 9.4.1 modified, change Ae to Frob2
p throughout

parts (a) and (b).

At the end of part (a), add the sentence, “Note that the equality holds for
e = 0 as well.”

In part (b), change “Show that” to “Show that for e ≥ 2”.

Change part (c) to “(c) For p | N , (8.11) says that we may take Ẽ :
(y − m1x)(y − m2x) = x3 with m1 + m2,m1m2 ∈ Fp. Show that the
formula

t 7→ ((t−m1)(t−m2), t(t−m1)(t−m2))

describes a map from P1(Fq) to Ẽ(Fq). By considering the map (x, y) 7→ y/x

from Ẽ(Fq)− {(0, 0)} to P1(Fq) also, show that the displayed map injects
except for possibly hitting (0, 0) more than once (when m1,m2 are distinct
and lie in Fq) and that the map surjects except for possibly missing (0, 0)
(when m1,m2 do not lie in Fq), and so the map bijects when m1 = m2 lies
in Fq.
The reduction Ẽ is multiplicative if m1 6= m2. Show that if the reduction
is split, i.e., m1,m2 ∈ Fp, then tpe(E) = 1 for all e ≥ 1. Show that if the
reduction is nonsplit, i.e., m1,m2 /∈ Fp, then tpe(E) = (−1)e for all e ≥ 1.
Show that the recurrence is satisfied in both cases.
The reduction is additive if m1 = m2. Show that the common value m lies
in Fp (the argument will be different for p = 2). Show that tpe(E) = 0 for
all e ≥ 1, and show that the recurrence is satisfied in this case as well.”

Add a new part to the exercise: “(d) Again assume that p - N . Show that

(1− ap(E)x+ px2)−1 = (1− λ1x)−1(1− λ2x)−1 =

∞∑
e=0

( ∑
c+d=e

λc1λ
d
2

)
xe.

Explain why it follows that whereas the normalized prime-power solution-
counts of the elliptic curve are tpe(E) = λe1 +λe2, the corresponding prime-
power Dirichlet coefficients of L(s, E) are ape(E) =

∑
c+d=e λ

c
1λ
d
2.”

• Page 388, line 4: Replace “The field extension Q(Pic0(X1(N))[`n])/Q is
Galois for each n ∈ Z+” with “The Galois action commutes with the purely
formal action of multiplication by `n for any n ∈ Z+”.

• Page 390: The proof of Lemma 9.5.2 can be clarified as follows.

“Multiplication by `n is surjective on IfJ1(N). Indeed, it is surjective on
the complex torus J1(N), and the commutative Hecke algebra TZ contains
both If and `n, so that `nIfJ1(N) = If `

nJ1(N) = IfJ1(N).
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To show the first statement of the lemma, take any y ∈ Af [`n]. Then y =
x+IfJ1(N) for some x ∈ J1(N) such that `nx ∈ IfJ1(N). Thus `nx = `nx′

for some x′ ∈ IfJ1(N) by the previous paragraph. The difference x − x′
lies in J1(N)[`n] = Pic0(X1(N))[`n] and maps to y as desired.

The kernel is Pic0(X1(N))[`n] ∩ IfJ1(N) = (IfJ1(N))[`n]. We claim that
the containment

(IfPic0(X1(N)))[`n] ⊂ (IfJ1(N))[`n],

is in fact equality. Granting the equality, the second statement of the
lemma follows quickly: the kernel is now (IfPic0(X1(N)))[`n]. That is,
the kernel is Pic0(X1(N))[`n] ∩ IfPic0(X1(N)), which is stable under the
Galois action: the first intersectand is stable because the Galois action
on Pic0(X1(N)) preserves `n-torsion, and the second is stable because the
Galois and Hecke actions on Pic0(X1(N)) commute.

To prove that the containment is equality, note that it is a containment
of torsion of If -images, while if instead we were considering If -images
of torsion then there would be nothing to show, i.e., Pic0(X1(N))[`n] =
J1(N)[`n] and thus If (Pic0(X1(N))[`n]) = If (J1(N)[`n]). So the argu-
ment will relate the given containment of torsion of If -images to an
equality of If -images of torsion, To do so, let S2 = S2(Γ1(N)) and
H1 = H1(X1(N)C,Z) ⊂ S∧2 . Thus J1(N) = S∧2 /H1 and

IfJ1(N) = (IfS∧2 +H1)/H1
∼= IfS∧2 /(H1 ∩ IfS∧2 ).

Now suppose that y ∈ (IfJ1(N))[`n]. Then y = x + H1 where by the
previous display we may take

x ∈ IfS∧2 and `nx ∈ H1 ∩ IfS∧2 .

Proposition 6.2.4 shows that H1 ∩ IfS∧2 contains IfH1 as a subgroup of
some finite index M . Consequently H1 ∩ IfS∧2 ⊂ IfM

−1H1. From the
previous display and the containment, `nx ∈ IfM−1H1, and so

x ∈ IfM−1`−nH1.

That is, x = Tx0 where T ∈ If and x0 ∈ S∧2 and M`nx0 ∈ H1, and so
y = T (x0 +H1) where x0 +H1 ∈ J1(N) and M`n(x0 +H1) = 0. In sum,
our y from (IfJ1(N))[`n] lies in If (J1(N)[M`n]), and we are set up to use
the equality of If -images of torsion,

y ∈ If (J1(N)[M`n]) = If (Pic0(X1(N))[M`n]) ⊂ IfPic0(X1(N)).

And since `ny = 0 in fact y ∈ (IfPic0(X1(N)))[`n]. Thus the opposite con-
tainment is proved, establishing the desired equality. As explained above,
the proof of the lemma is complete.”
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• Page 391: Replace the two lines before Lemma 9.5.3 with “Since the Tate
module Ta`(Af ) ∼= Z2d

` is a module over Of , the tensor product

V`(Af ) = Ta`(Af )⊗Q ∼= Q2d
`

is a module over Of ⊗ Q = Kf . Also, it is a module over Q`, with the
two actions commuting and with the restrictions of the two actions to Q
agreeing. Thus V`(Af ) is a module over Kf ⊗Q Q`.”
Replace the proof of the lemma with “Since Ta`(Af ) is the inverse limit
of the torsion groups Af [`n], we need to describe Af [`n] in a fashion that
will help establish the freeness.
As above, let S2 = S2(Γ1(N)) and let H1 = H1(X1(N)C,Z) ⊂ S∧2 . Con-
sider the quotients S∧2 = S∧2 /IfS∧2 and H1 = (H1 + IfS∧2 )/IfS∧2 , both
Of -modules. Compute that

Af = J1(N)/IfJ1(N) =
(
S∧2 /H1

)
/
(
(IfS∧2 +H1)/H1

)
∼= S∧2 /(IfS∧2 +H1)

∼=
(
S∧2 /IfS∧2

)
/
(
(H1 + IfS∧2 )/IfS∧2

)
= S∧2 /H1.

Thus Af [`n] ∼= `−nH1/H1 for any n ∈ Z+. The Of -linear isomorphisms
`−nH1/H1 −→ H1/`

nH1 induced by multiplication by `n on `−nH1 as-
semble to give an isomorphism of Of ⊗ Z`-modules,

Ta`(Af ) = lim←−
n

{Af [`n]} = lim←−
n

{`−nH1/H1} ∼= lim←−
n

{H1/`
nH1} ∼= H1 ⊗ Z`,

where the transition maps in the last inverse limit are the natural projec-
tion maps.
The fact that Af is a complex torus of dimension d and the calculation

a moment ago that Af ∼= S∧2 /H1 combine to show that the Of -module
H1
∼= H1/(H1 ∩ IfS∧2 ) has Z-rank 2d. Since Kf is a field, H1 ⊗ Q is a

free Kf -module whose Q-rank is 2d and whose Kf -rank is therefore 2.
Consequently, H1 ⊗Q` = H1 ⊗Q⊗Q Q` is free of rank 2 over Kf ⊗Q Q`.
So finally,

V`(Af ) = Ta`(Af )⊗Q ∼= H1 ⊗ Z` ⊗Q ∼= H1 ⊗Q`

is an isomorphism of Kf ⊗Q Q`-modules, and the proof is complete.”
• Page 396, line (−11): Change “λ ∈ OKf

” to “λ ⊂ OKf
”.

• Page 397, line 11: For the Fermat equation, it is understood that ` is an
odd prime.

Hints and Answers to the Exercises

• Page 410, hint to Exercise 5.3.1: Replace “Mpe∪
[ p 0
0 p

]
Mpe−2” with “Mpe∪⋃p−1

j=0

[ p 0
0 p

]
Mpe−2

[
1 j
0 1

]
”.

• Page 414, hint to Exercise 7.7.1: Remove “jN = j(Ej/〈Qτ 〉) and since”,
remove “jσN = j(Ej/〈Qστ 〉) and”, and change “In both cases the” to “The”.


