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Gauss’s Theorem (1797)

The circle is divisible into n arcs of equal length
by a Euclidean construction if and only if

n:2ap1...p,r

where a > 0 and py,...,pr are distinct Fermat
primes.

(Fermat prime: p > 2, p = 2% 4 1. Necessarily
u = 2°.)
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e Euclidean constructions, and geometric con-
structions in general, go back to antiquity.
They are not innately systematic.

e Gauss’s theorem is novel in that it com-
pletely characterizes the capability of Eu-
clidean constructions in one particular sit-
uation. Analogously to Descartes, Gauss
translated a geometrical situation into an
algebraic one, where it can be analyzed
more systematically.

e Gauss’'s argument is the first proto-example
of Galois theory.



The Field of Euclidean Numbers

Identify points of the plane with complex num-
bers. Then the Euclidean numbers form a sub-
field € of C characterized by the following prop-
erties.

1. Let z=zxz+1wy € C. Then z € £ if and only
if x,y € &.

2. Let z € C. Then z € £ if and only if there is
a Galois extension Q C L C C such that z € L
and [L : Q] = 2% for some u > 0.

(In particular, £ is closed under linear and quad-
ratic equations. The Euclidean numbers are
the complex numbers derivable from Q by finitely
many steps involving algebra and square roots.)



Arithmetic of Z

Let p be prime in Z. Then

(Z/pZ)*| = p—1.

This is a power of 2 if and only if p=2 or p is
a Fermat prime.

More generally, the group (Z/nZ)”* describes
the automorphisms of the field Q({n). Its order
is a power of 2 if and only if n is @a number in
Gauss’s Theorem. This is the gist of Gauss's
argument.



Abel’s Theorem (1826)

The lemniscate can be divided into n arcs of
equal length by straightedge and compass for
the same values of n as in Gauss's Theorem.

Note: we do not have the lemniscate itself.

(x2 + y2)2 — x2 . y2

(This was also known earlier to Gauss.)



Geometric Origin of the Lemniscate

The lemniscate is a special case of the locus
of points P satisfying the condition

[P — (—a,0)| - |P — (a,0)| = b*.
For the lemniscate, a = b.

The condition is the multiplicative analogue of
the additive condition that defines an ellipse.
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This goes back to the French astronomer Cassini
(1680) and to the Bernoullis, independently of
each other (1694).



Arc Length on the Lemniscate

The polar equation of the lemniscate is
rl = cos(20).

The general differential arc length formula in
polar coordinates is

2
ds = \/1—|—fr2 (d—9> dr.
dr

On the lemniscate this works out easily to
dr

\/1—7’4’

so the arc length of the lemniscate is the ellip-
tic integral

ds =

/"“ dt

S — .

t=0 \ /1 _ t4

(The integral is called elliptic because such in-

tegrals arose in trying to find the arc length of
the ellipse.)



Here we derived the arc length of the lemnis-
cate from the general formula for arc length
in polar coordinates. In fact the general polar
arc length formula was determined precisely in
order to find the arc length of the lemniscate.

In modern calculus classes this connection is
often lost: the polar arc length formula is given
and used, the polar equation of the lemniscate
IS given, but the intriguing integral that ex-
presses the lemniscate arc length, and the ease
of this integral’'s derivation from the polar arc
length formula are not, because the integral is
not one that can not be worked by elementary
techniques.

It is much more interesting.



Just as Gauss’s argument can be viewed as the
proto-example of Galois theory, Abel's argu-
ment — while long and elementary — can be
viewed as the proto-example of complex mul-
tiplication and class field theory.

The proof of Abel’'s theorem makes use of the
ring Z[:] of Gaussian integers. From a modern
perspective, the argument uses objects analo-
gous to those in Gauss’'s argument: the struc-
ture of the quotient ring

(Z[3]/nZi]) ™,

and the realization of this quotient ring as the
Galois group of a field extension Qi) C L.
Here L is constructed from Q(7) by adjoining
the z-coordinate of an n-division point of an
elliptic curve.



Pierpont’s Theorem (1896)

The circle can be divided into n arcs of equal
length by origami if and only if

n = 2a3bp1 o Dp

where a,b > 0 and pq,...,p, are distinct Pier-
pont primes.

(Pierpont prime: p > 3, p=243"+1.)



According to Sequence A005109 of Sloane’s
On-Line Encyclopedia of Integer Sequences,
the first forty Pierpont primes are

P = {5,7,13,17,19,37,73,97,109, 163, 193,
257,433,487,577,769,1153,1297, 1459
2593,2917,3457, 3889, 10369, 12289,
17497, 18433,39367, 52489, 65537,
139969, 147457,209953, 331777,
472393,629857, 746497, 786433,
839809, 995329}

Pierpont’'s theorem holds for all forty primes in
P, while the pending clover theorem applies to
thirty-eight of them and the origami leminis-
cate theorem applies to thirty-five.



The Field of Origami Numbers

The origami numbers form a subfield O of C
characterized by the following properties.

1. Letz=xz+1wy € C. Then z € O if and only
if xz,y € O.

2. Let z € C. Then z € O if and only if there is
a Galois extension Q C L C C such that z € L
and [L : Q] = 243Y for some u,v > 0.

(In particular, O is closed under equations of
degree up to four. The origami numbers are
the numbers derivable from Q by finitely many
steps involving algebra, square roots, and cube
roots.)

Gist of Pierpont’'s argument: [(Z/nZ)*| = 243?
if and only if n is @ number as in the theorem.



Folding a Parabola Tangent

Given a point F' and a line D, the folds that
take F' to points Q of L are the tangent lines
of the parabola with focus F' and directrix D.



Solving a Cubic by Origami

slope 2

The cubic equation

34+ bzl +cx+d=0

IS solved by slopes of the common tangents of
the two parabolas

(y + )% = —4d(z — b), 2 = —4y.



The m-clover

For any positive integer m the m-clover is the
set of points in the plane satisfying the polar
equation

rm/2 — cos('50).

For m odd the polar equation can be taken as

rm = %(1 + cos(me)).

The lemniscate arc length and Abel’s Theorem
are essentially related to the square lattice Z[7].
The m-clovers were discovered in trying to find
a corresponding geometric object and theorem
for the triangular lattice Z[(3].



Table of First Four Clovers

m Equation Name Graph
r1/2 = cos(50)

1 or Cardioid @
r = (1 + cos#)

2 r = cosé Circle J@
r3/2 = cos(36)

3 or Clover %

r3 = 2(1 + cos(36))
4 r? = cos(26) Lemniscate @’@
In general,

m even: m/2 leaves.

m odd: m leaves.

Principal leaf: the leaf through (1,0).




New m-clover Division Theorems

m — 1: For any positive integer n, the car-
dioid can be divided into n arcs of equal length
by straightedge and compass, and therefore by
origami.

m — 3: The clover can be divided into n arcs
of equal length by origami if and only if

n=2%3%; ... p,
where a,b > 0 and pq,...,p, are distinct Pier-

pont primes with each p; being 5 or 17 or a
3k + 1 prime.

m = 4. The lemniscate can be divided into n
arcs of equal length by origami if and only if

n = 2%3%; ... p,
where a,b > 0 and py1,...,pr are distinct Pier-

pont primes with each p; being 7 or a 4k + 1
prime.

(No straightedge and compass theorem for m =
3, i.e., for the clover.)



The Set-up
Let m be fixed.

Question: For a given n, can we construct the
n-division points (x,y) of the principal leaf of
the m-clover?

Note that we do not already have a graph of
the clover itself, despite using the computer to
draw such graphs for these slides.

Intermediate quantities: The polar coordinates
(r,0) of the points.

Work backwards. Suppose that we have x and
r. T hen the Pythagorean equation

2 + y2 — 2
shows that finding y amounts to solving a quad-
ratic equation. This can be done by Euclidean

construction or by origami. So we need to find
x and r.



Relation Between x and r on the m-clover

Let 7, be the nth Tchebyshev polynomial, de-
fined by

cos(nf) = Tp(cos(8)).

m even: r™/2 =T, (x/r), polynomial relation
of degree m/2 in «.

m odd: r™ = %(1 —|—Tm(:v/r)), polynomial rela-
tion of degree m in x.



Relation Between x and r on the
Lemniscate

rd = 242 — 2

So Euclidean constructions recover x from 7.

Relation Between x and r on the Clover

2r0 = 13 — 32z + 423

So origami is needed to recover x from r. Hence
no straightedge and compass theorem for the
clover by these methods.

Now the problem is reduced to finding r.



r as a Function of s: Polar Radius on the
m-clover

1 J
r

The radius function is written r = pm(s).

Let w,, denote the arc length of the principal
leaf. T he n-division problem is not to compute
the polar radius in general, but to start from
the particular arc length values

14
Sg = —wm, £L=1,...,n—1,
n

and compute the corresponding polar radius
values,

re = om(sp), £=1,...,n—1.



s as a Function of r: Arc Lendgth on the
m-clover

No formula presents itself immediately for r as
a function of s. So solve the inverse problem:
find s in terms of r.

This works on the m-clover exactly as it worked
on the lemniscate. Recall the polar differential
arc length formula,

2
ds = \/1—|—r2 (d—9> dr.
dr

On the m-clover this works out to
dr

V1—7rm’

so the arc length of the m-clover is the integral

ds =

/?“ dt
S = .
t=0+v1 —tm



wwm: the Length of the Principal Leaf

The principal leaf has length

N 2/1 dt

T o V1

Let v = t". Then
P 3/1 wl/m=1(1 _ )1/2-1 gy,
m JO

This is a beta integral. It works out to
TG +1)
MG+ 3)
SO0 w1 =4, wo = m, and limy, wy, = 2 since the
leaves get flatter as their number increases.




The Arc Length Integral When m = 2

/7“ dt

S —

t=0 \ /1 . t2

SO the derivative of s as a function of r satisfies
ds 1

E— ‘/1_,',.2

sO the derivative of » as a function of s satisfies

(4 =1-2
ds

Also, r(n/2) =1 and 7/(x/2) = 0. So studying
the radius as the inverse function of the arc
length integral shows that it satisfies a differ-
ential equation that identifies it as a periodic
function,

r = sin(s).



Arc Length and Radius on the m-clover

For 0 <r <1 and 0 < s < wpy/2, arc length
and polar radius are inverse functions,

T dt
s — < r = S).
/t=0 V1—tm P (s)
As with m = 2, the radius therefore satisfies
the differential equation

2
Pm” =1—¢m

with the initial conditions

om(@m/2) =1,  @h(wm/2) = 0.

This function can be considered m-clover ana-
logue of the sine function.



The 3-clover Sine
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The 1-clover sine is a parabola over [0, 4], the
2-clover sine is the usual sine on [0, x], the 4-
clover sine is what Gauss called the lemniscate

sine, and as m — oo the m-clover sine tends to
a piecewise linear function on [0, 2].



The Insight of Gauss and Abel

For m = 4 the elliptic integral

/"“ dt

S —

t=0 ‘/1 _ t4

is the inverse function of a doubly periodic

function of a complex variable. The periods
are (essentially) the square lattice Z[7].

That is, the right idea is to study
r = p4(s)

as such a function of s.

This applies when m = 3 as well, and the peri-
ods are (essentially) the triangular lattice Z[{3].



@ In Terms of p for the Clover

Then ¢ is defined in terms of the Weierstrass
o-function having period lattice wZ[(3],

o(s) = § p((w + ).

Byproduct of the argument:

/ 1 27
140 > 5= 16
wZ[(3]

(Similarly 602;4%] w—4 = 4, aresult that goes
back to Landau.)

In general

"(2) — o/ (3 2
p(z +2) = —p(2) — p(2) + 3 <Z§z; — z(('z"))> .

Combining these results gives the addition law
for the clover (next slide).



Addition Law for the Clover

Let s,¢t,s+t liein [0,w]. Let

a=¢(s), a =¢'(s), b=o(t), b =¢'(t).
Then

Coo + C10d’ + Co1b' 4 C11d'V
(4a + 4b + a2b2)?2

p(s+1t) =2
where

Coo = —8 + 4a3 + 4b3 + 40%b + 4ab?
— a*b? — a%p* — 6a262,

Cio = 8 + 4a°b + 12ab? + 4b3 — a?b*,

Co1 = 8 + 4ab” + 12a°b + 4a3 — a*b°,

C11 = —8 + 4a°b + 4ab°.

Consequence: If p(s) and ¢(t) are origami num-
bers then so is p(s+t).



Connection to Class Fields

The polar radius of the point 4w /n of the way
around the principal leaf is

r = % o(wiv3 n3—_|7;€)

Since wiv3 € wZ[(3], this r-value is the first
coordinate of a division point of the elliptic
curve

y° = 423 — 27/16.

(Note: x and y here are not the xz and y of the
clover’'s environment.)

Class field theory and complex multiplication
say that such first coordinates generate abelian
extensions of imaginary quadratic fields. This
is the idea of the proof of the clover theorem,
to be sketched at the end of the talk.



Duplication Formula for the Clover

Let » = p(s), v = o/(s). Let ¥ = p(2s). Then

—16 43273 — 167° + (16 4+ 4073 — 2¢0)¢/

(8r + r4)2 '
This shows that that if the polar radius r of a
division point is known, then the correspond-
ing » and r’ for dividing the clover into twice
as many pieces satisfy a polynomial relation
involving the datum r.

r=2

Also. since 2 =1 —r3, we can eliminate ' by

taking a square.



The Simplest Example

In particular set
s = w/4.

Then 2s = w/2 is half the arc length of the
principal leaf, and the corresponding 2-division
radius 7 = ¢(2s) on the left side of the dupli-
cation formula is

=N
|
=

Square the relation

—16 4+ 32r3 — 167° + (16 + 4073 — 270)¢/
(8r + r4)2

and substitute ’° = 1 — 3 to get

r2(241r)2(4—2r+7r2)%(-8+48r+8r3+r*H? = 0.

So the positive real root r must satisfy the
relation

1=2

—8—|—8'r—|—8fr3—|—r4=O.

(Continued on next slide.)



0 X 1

Solving the quartic polynomial gives

r=—2-+3+/3(3+4 2V3) ~ 0.671619,

and then the cubic equation that gives zx in
terms of r gives the 4-division z-coordinate

r ~ 0.531137.

The radius r is constructible by straightedge
and compass, but the minimal polynomial of
x over Q has degree 12, so constructing the
point P requires origami.

Note that z is a little bigger than 1/2, as it
must be since the clover bulges to the right.



Proof of the Clover Theorem

The argument uses

e the arithmetic of the Eisenstein integer ring
O = Z[¢3],

e class field theory and complex multiplica-
tion.



Arithmetic of Z[(3]

Let p be prime in Z. Let O = Z[{3].

o If p # 3 then

(p—1)2 ifp=1 (mod 3),

|((’)/p(’))><|:{p2_1 if p=2 (mod 3).

e If p > 3 then |(O/pO)*| = 243Y for some
u,v > 0 if and only if p is a Pierpont prime
p=1(mod3) or p = 5,17. (The two
p = 2 (mod 3) solutions arise from Levi
Ben Gershon's special case of the Catalan
conjecture.)



Results from Class Field Theory and
Complex Multiplication

Let K = Q(¢3) and let 8 € O be nonzero.

There exists a ray class field KB of K such that

Gal(Kg/K) ~ (0/BO)* /O*.
(Here we write O* for its image in (O/B80)*.)

For any a € O relatively prime to g,

Kg = K(p3(%w)).



A Special Case

Let n be a positive integer and let ¢ be coprime
ton, 1</4<n-—1. Define

{e+n if¢+n=20 (mod3),
o =

ff—g if C+n=0 (mod 3),

and

g {(—Gn ifLtnzo (mod3)
n if£4+n=0 (mod 3).

Then the cube of the polar radius for s = ¢w/n
IS

P>(1Z) = (%)393(%73)-
Also, a and B are relatively prime in O since
gcd(d,n) = 1. So by the theorem,

Ks = K(¢>(%)).



The Galois group Gal(Kg/K) has order

©/80)* /0% | = < T] P~ V1(0/p0)*|.
pe||n
This takes the form 2%3Y for n as described in
the Clover Theorem.

The proof of the Clover Theorem is completed
by observing that a square root constructs K
from Q while a cube root constructs the ¢/n
division radius from KB'



Kronecker’s Theorem

Let L be any Abelian extension of Q. Then
L is contained in a cyclotomic extension of Q,
i.e., an extension generated by division points
of a circle:

QcCcLcQ() forsome n.

Kronecker’s Jugendtraum

Let K be an imaginary quadratic field, K =
Q(v/d) where d < 0, and let E be an ellip-
tic curve such that j(F) = j(Ok). Let L be
any Abelian extension of K. Then L is con-
tained in an extension of K generated by the
x-coordinates of division points of an elliptic
curve E associated to K:

KcLcCK(x(E[N])) for some N.

In the special case K = Q(i) we only need
the squares of the x-coordinates. Similarly for
K = Q(¢3) and the cubes of the z-coordinates.



