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1. INTRODUCTION. In 1826 Abel discovered that the lemniscate, the curve
(x2 + y2)2 = x2 − y2 pictured in Figure 1, can be divided into n arcs of equal
length by straightedge and compass if and only if n is a power of 2 times a product
of distinct Fermat primes [1, p. 314]. By an earlier theorem of Gauss, these are
exactly the values of n for which a regular n-gon is constructible by straightedge
and compass or, equivalently, the values of n for which the circle can be divided
into n arcs of equal length.
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Figure 1. The lemniscate.

This paper places these results in a more general context by investigating geo-
metric constructions on the plane curve defined by the polar equation

rm/2 = cos(m2 θ), (1)

where m is a fixed positive integer. According to [29], a sinusoidal spiral is a curve
defined by ra = cos(aθ) for fixed a in Q. Hence (1) is the sinusoidal spiral with
a = m/2 for m in Z+. We call this curve the m-clover. The m-clovers with m = 1,
2, and 4 are the cardioid, the circle, and the lemniscate, respectively. The 3-clover,
called simply the clover in this paper, appears not to have been studied before.
The first four m-clovers and their equations are shown in Figure 2.

We study two types of constructions on m-clovers: straightedge and compass,
and origami (paper folding). This is the “geometry” in the title of the paper. The
capabilities of both constructions are known for the circle. We remind the reader
that a Fermat prime is a prime p greater than 2 of the form 2u + 1 with u ≥ 0 and
a Pierpont prime is a prime p greater than 3 of the form 2u3v + 1 with u, v ≥ 0.

Theorem 1 (Circle Theorem). Let n be a positive integer. Then the following
statements are true:

(1) The circle can be divided into n arcs of equal length by straightedge and
compass if and only if n = 2ap1 · · · pr, where a ≥ 0 and p1, . . . , pr are
distinct Fermat primes.

(2) The circle can be divided into n arcs of equal length by origami if and only
if n = 2a3bp1 · · · pr, where a, b ≥ 0 and p1, . . . , pr are distinct Pierpont
primes.

1



2

m Equation Name Graph

1
r1/2 = cos( 1

2θ)
or

r = 1
2 (1 + cos θ)

Cardioid

2 r = cos θ Circle

3
r3/2 = cos( 3

2θ)
or

r3 = 1
2 (1 + cos(3θ))

Clover

4 r2 = cos(2θ) Lemniscate

Figure 2. m-clovers for m = 1, 2, 3, 4.

As already noted, the first part of the circle theorem is due to Gauss. The second
part was proved by Pierpont [18] in 1895. Also as noted, the circle is the 2-clover.
The circle theorem extends to the other m-clovers in Figure 2 as follows:

Theorem 2 (Cardioid Theorem). Let n be a positive integer. Then the cardioid
can be divided into n arcs of equal length by straightedge and compass.

Theorem 3 (Clover Theorem). Let n be a positive integer. Then the clover can
be divided into n arcs of equal length by origami if and only if n = 2a3bp1 · · · pr,
where a, b ≥ 0 and p1, . . . , pr are distinct Pierpont primes such that pi = 5, pi = 17,
or pi ≡ 1 (mod 3).

Theorem 4 (Lemniscate Theorem). Let n be a positive integer. Then the
following statements are true:

(1) The lemniscate can be divided into n arcs of equal length by straightedge
and compass if and only if n = 2ap1 · · · pr, where a ≥ 0 and p1, . . . , pr are
distinct Fermat primes.

(2) The lemniscate can be divided into n arcs of equal length by origami if and
only if n = 2a3bp1 · · · pr, where a, b ≥ 0 and p1, . . . , pr are distinct Pierpont
primes such that pi = 7 or pi ≡ 1 (mod 4).

The first part of the lemniscate theorem is due to Abel; the second part, and
the cardioid and clover theorems, are proved in this paper. Since origami subsumes
straightedge and compass, the cardioid theorem implies that the cardioid can be
divided into any number of arcs of equal length by origami. On the other hand, the
clover theorem mentions only origami, since our methods do not lead to straightedge
and compass constructions on the clover. This is explained in Example 3 of section 3
and in the discussion following the proof of the clover theorem in section 6.

Gleason suggests [9, p. 191] that there may be infinitely many Pierpont primes,
although only finitely many have been found so far. According to Sequence A005109
of Sloane’s On-Line Encyclopedia of Integer Sequences [25], the known Pierpont
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primes form the set

P = {5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153,
1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367,
52489, 65537, 139969, 147457, 209953, 331777, 472393, 629857, 746497,
786433, 839809, 995329}.

The second part of the circle theorem holds for all forty primes in P, while the
clover theorem applies to the thirty-eight primes in

P \ {257, 65537}
and the second part of the leminiscate theorem applies to the thirty-five primes in

P \ {19, 163, 487, 1459, 39367}.
For the circle theorem, a key ingredient is the Galois group of Q(ζp) over Q,

where p is prime and ζp = e2πi/p. This group is isomorphic to (Z/pZ)∗, the group
of invertible elements in the quotient ring Z/pZ. Since straightedge and compass
constructions require a Galois extension of degree 2u, Fermat primes appear in the
circle theorem because

|(Z/pZ)∗| = 2u for u ≥ 0 and p > 2 ⇐⇒ p is a Fermat prime.

Similarly, since origami constructions require a Galois extension of degree 2u3v,
Pierpont primes appear in the circle theorem because

|(Z/pZ)∗| = 2u3v for u, v ≥ 0 and p > 3 ⇐⇒ p is a Pierpont prime.

The situation is much the same for the clover and lemniscate theorems, except that
in the case of the clover Z is replaced with the ring

Z[ζ3] = {a+ bζ3 | a, b ∈ Z}, ζ3 = 1
2 (−1 + i

√
3),

while the relevant ring for the lemniscate is

Z[i] = {a+ bi | a, b ∈ Z}, i =
√
−1.

In studying origami constructions on the clover, we use the observation (to be
proved in section 6) that if p is prime and greater than 3, then

|(Z[ζ3]/pZ[ζ3])∗| = 2u3v for u, v ≥ 0 ⇐⇒
{
p is a Pierpont prime such that
p = 5, p = 17, or p ≡ 1 (mod 3).

Thus the primes in the clover theorem have a strong connection to the arithmetic
of Z[ζ3]. Similarly, given a prime p greater than 3, we will see in section 7 that

|(Z[i]/pZ[i])∗| = 2u3v for u, v ≥ 0 ⇐⇒
{
p is a Pierpont prime such
that p = 7 or p ≡ 1 (mod 4).

This describes the primes in the second part of the lemniscate theorem.
The most difficult task will be to interpret (Z[ζ3]/pZ[ζ3])∗ and (Z[i]/pZ[i])∗ as

the appropriate Galois groups. The tools required for this are elliptic functions,
class field theory, and complex multiplication. This is the “number theory” in
the title of the paper. For the lemniscate, the elegant proof of the first part of the
lemniscate theorem given by Rosen in [21] provides most of what we need. Creating
a similar theory for the clover will occupy a large part of this paper.

The outline is as follows. Section 2 studies the m-clover and its arclength. It
also introduces the m-clover function ϕm, which plays a crucial role in the proofs
of our results. Section 3 begins exploring geometric constructions on m-clovers
for m = 1, 2, 3, 4 and proves the cardioid theorem. Sections 4 and 5 require more
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mathematical background. They describe the 3-clover function ϕ3 in terms of the
Weierstrass ℘-function and use the addition law for ℘ to obtain an addition law
and a duplication formula for ϕ3. Section 6 establishes the clover theorem, and
section 7 proves the second part of the lemniscate theorem. The proofs use prop-
erties of certain fields constructed by class field theory and complex multiplication.
The technical details for the clover theorem appear in the appendix, while the
corresponding details for the lemniscate theorem are in Rosen’s paper [21].
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