THE CYCLOTOMIC ZETA FUNCTION

1. Dirichlet Characters

Let N be a positive integer. A Dirichlet character modulo N is defined initially as a homomorphism

$$\chi : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times.$$

Any such character determines a least positive divisor M of N such that the character factors as

$$\chi = \chi_o \circ \pi_M : (\mathbb{Z}/N\mathbb{Z})^\times \xrightarrow{\pi_M} (\mathbb{Z}/M\mathbb{Z})^\times \xrightarrow{\chi_o} \mathbb{C}^\times.$$

The integer M is the conductor of χ, and the character χ_o is primitive. Note that if $n \in \mathbb{Z}$ is not coprime to N but is coprime to M then $\chi_o(n + M\mathbb{Z})$ is defined and nonzero. Perhaps confusingly at first, we also use the symbol χ to denote χ_o lifted to a multiplicative function on the integers,

$$\chi : \mathbb{Z} \rightarrow \mathbb{C}, \quad \chi(n) = \begin{cases} \chi_o(n + M\mathbb{Z}) & \text{if } \gcd(n, M) = 1, \\ 0 & \text{if } \gcd(n, M) > 1. \end{cases}$$

Thus (the lifted) $\chi(n)$ need not equal (the original) $\chi(n + N\mathbb{Z})$, and in particular $\chi(n)$ need not equal 0 even when $\gcd(n, N) > 1$.

Especially, if $N > 1$ then the trivial character 1 modulo N has conductor $M = 1$, and the trivial character 1_o modulo 1 is identically 1 on $(\mathbb{Z}/1\mathbb{Z})^\times = \{0\}$, and this character lifts to the constant function 1(n) = 1 for all $n \in \mathbb{Z}$, even though the original character 1 modulo N is undefined on the coset $N\mathbb{Z}$ in $\mathbb{Z}/N\mathbb{Z}$.

Fix a rational prime p.

- Let $p^d \parallel N$ and $N_p = N/p^d$ and $e = \phi(p^d)$.
- Let f denote the order of $p + N_p\mathbb{Z}$ in $(\mathbb{Z}/N_p\mathbb{Z})^\times$.
- Let $g = \phi(N_p)/f = \phi(N)/(ef)$.

Note that $N_p = N$ and $e = 1$ for all primes p other than the finitely many prime divisors of N. For $k = 0, \ldots, f - 1$, there exist Dirichlet characters modulo N_p that take p to ζ_f^k, where $\zeta_f = e^{2\pi i/f}$. The number of such characters is g, independently of k. Any Dirichlet character modulo N that is not defined modulo N_p takes p to 0. That is, for $k = 0, \ldots, f - 1$, there exist g Dirichlet characters modulo N that take p to ζ_f^k, and any Dirichlet character modulo N that does not take p to ζ_f^k for some k takes p to 0.

2. Cyclotomic Arithmetic

Again let N be a positive integer. Let $\zeta_N = e^{2\pi i/N}$, and consider the cyclotomic number field

$$K = \mathbb{Q}(\zeta_N).$$

For any rational prime p, again let $p^d \parallel N$ and let $N_p = N/p^d$. Then p factors in \mathcal{O}_K as

$$p\mathcal{O}_K = (p_1 \cdots p_g)^e,$$
where all the primes lying over p have

- ramification degree $e = \phi(p^d) = p^d - (p - 1)$,
- inertial degree $f = \text{ord}_p(p + N_p \mathbb{Z})$ in $(\mathbb{Z}/N_p \mathbb{Z})^\times$,
- and decomposition index $g = \phi(N_p)/f = \phi(N)/(ef)$,
- so that altogether $efg = \phi(N)$.

The rational primes that ramify are precisely the prime divisors of N, except that 2 does not ramify if $2 \mid N$ but $4 \nmid N$. In the exceptional case $N = 2 \mod 4$, in fact $\mathbb{Q}(\zeta_N) = \mathbb{Q}(\zeta_{N/2})$, so if we avoid redundant cyclotomic extensions $\mathbb{Q}(\zeta_N)$ where $N = 2 \mod 4$ then the primes that ramify are exactly the prime divisors of N.

3. Cyclotomic Galois Theory, Briefly

The Galois group of $K = \mathbb{Q}(\zeta_N)$ over \mathbb{Z} is

$$G = \{ \zeta_N \mapsto \zeta_N^a : a + NZ \in (\mathbb{Z}/N\mathbb{Z})^\times \}.$$

The fact that the Galois group is a subgroup of G is clear. On the other hand, showing that the Galois group is all of G is not entirely trivial, though it can be made elementary. We freely make the identifications

$$G = (\mathbb{Z}/N\mathbb{Z})^\times = (\mathbb{Z}/N_p\mathbb{Z})^\times \times (\mathbb{Z}/p^d\mathbb{Z})^\times.$$

Fix a rational prime p. The inertia and decomposition subgroups of p in G are

$$I_p = \{1\} \times (\mathbb{Z}/p^d\mathbb{Z})^\times, \quad D_p = \langle p + N_p \mathbb{Z} \rangle \times (\mathbb{Z}/p^d\mathbb{Z})^\times.$$

Thus $|I_p| = e$ and $|D_p| = ef$.

The inertia field $K_{I,p}$ and the decomposition field $K_{D,p}$ of p are the intermediate fields of K/\mathbb{Q} corresponding to the inertia and decomposition subgroups of G. Thus $\mathbb{Q} \subset K_{D,p} \subset K_{I,p} \subset K$. The decomposition field is so named because p decomposes there as $p \mathcal{O}_D = p_{1,D} \cdots p_{g,D}$ (the $p_{i,D}$ are ideals), and for each i there is no residue field growth, meaning that $[\mathcal{O}_D/p_{i,D} : \mathbb{Z}/p\mathbb{Z}] = 1$, and visibly there is no ramification. The inertia field is so named because each $p_{i,D}$ remains inert in \mathcal{O}_I, which is to say that $p_{i,D} \mathcal{O}_I$ takes the form $p_{i,I}$ rather than decomposing further, but here there is residue field growth, specifically $[\mathcal{O}_I/p_{i,I} : \mathcal{O}_D/p_{i,D}] = f$, and again there is no ramification. Finally, each $p_{i,I}$ ramifies in \mathcal{O}_K as $p_{i,I}/\mathcal{O}_K = p_{i,I}^e$ but with no further decomposition and with no further residue field growth, $[\mathcal{O}_K/p_{i,I} : \mathcal{O}_I/p_{i,I}] = 1$.

4. The Dedekind Zeta Function and its Euler Product

The ring of integers of K is $\mathcal{O}_K = \mathbb{Z}[\zeta_N]$.

Define the norm of a nonzero ideal \mathfrak{a} of \mathcal{O}_K to be

$$N\mathfrak{a} = |\mathcal{O}_K/\mathfrak{a}|.$$

Thus we tacitly assert without proof that the quotient is finite. We further assert without proof that the norm is strongly multiplicative, and that

$$Np = p^f \quad \text{where} \quad p \mid p \text{ and } f \text{ is the inertial degree as above.}$$
Definition 4.1. The Nth cyclotomic Dedekind zeta function is

\[\zeta_K(s) = \sum_a N^{-s} = \prod_p (1 - Np^{-s})^{-1}, \quad \text{Re}(s) > 1. \]

The sum is taken over nonzero ideals of \(\mathcal{O}_K \), and the product is taken over maximal ideals.

For any \(p \), compute that

\[\prod_p (1 - Np^{-s})^{-1} = (1 - p^{-fs})^{-g} = \prod_{k=0}^{f-1} (1 - \zeta_K^k p^{-s})^{-g} = \prod_{\chi} (1 - \chi(p)p^{-s})^{-1}, \]

where the product is taken over all characters \(\chi \) modulo \(N \), each character understood to be the underlying primitive character extended to a multiplicative function on \(\mathbb{Z} \). As discussed above, \(\chi(p) = \zeta_K^k \) for \(g \) characters \(\chi \) modulo \(N \), independently of \(k \), these characters being defined modulo \(Np \) while the characters \(\chi \) modulo \(N \) that are not defined modulo \(Np \) take \(p \) to 0 and thus contribute a trivial factor of 1 to the last product in the previous display. Overall, then, we have

\[\zeta_K(s) = \prod_p \prod_{\chi} (1 - \chi(p)p^{-s})^{-1} = \prod_{\chi} \prod_p (1 - \chi(p)p^{-s})^{-1}, \]

which is to say that the Nth cyclotomic Dedekind zeta function factors as the product of all Dirichlet L-functions modulo \(N \),

\[\zeta_K(s) = \prod_{\chi} L(\chi, s). \]

One consequence of these calculations is as follows. It is known that the function \(L(1, s) = \zeta(s) \), which is initially defined only for \(\text{Re}(s) > 1 \), extends to a meromorphic function on \(\{\text{Re}(s) > 0\} \) whose only singularity is a simple pole at \(s = 1 \), and it is known that \(L(\chi, s) \) for \(\chi \neq 1 \) is analytic on \(\{\text{Re}(s) > 0\} \). Thus \(\zeta_N(s) \) is meromorphic on \(\{\text{Re}(s) > 0\} \) with its only possible pole at \(s = 1 \). Recall that \(\prod_p (1 - Np^{-s})^{-1} = (1 - p^{-fs})^{-g} \), and estimate for any positive real \(s \) that

\[(1 - p^{-fs})^{-g} = \left(\sum_{n=0}^{\infty} p^{-nf_N} \right)^{g} \geq \sum_{n=0}^{\infty} p^{-nf_N} \geq \sum_{n=0}^{\infty} p^{-n\phi(N)s} = (1 - p^{-\phi(N)s})^{-1}. \]

Multiplying over \(p \) gives

\[\zeta_N(s) \geq \zeta(\phi(N)s), \quad s > 0. \]

Thus \(\zeta_N(s) \) must have a pole at \(s = 1 \): if it didn’t then it would converge for all \(s > 0 \), but the displayed inequality shows that it diverges at \(s = 1/\phi(N) \). The fact that \(\zeta_N(s) \) has a pole at \(s = 1 \) is the crux of Dirichlet’s proof that there are infinitely many primes in any credible arithmetic progression.

The Dedekind zeta function of \(K \) is the generating function for a representation number function,

\[\zeta_K(s) = \sum_{n=1}^{\infty} |\{a : Na = n\}| n^{-s}. \]
On the other hand, let $d = \phi(N)$. Then
\[
\prod_{\chi} L(\chi, s) = \sum_{n=1}^{\infty} \left[\sum_{n_1 \cdots n_d = n} \chi_1(n_1) \cdots \chi_d(n_d) \right] n^{-s}.
\]
And so
\[
|\{a : Na = n\}| = \sum_{n_1 \cdots n_d = n} \chi_1(n_1) \cdots \chi_d(n_d).
\]
In particular, for any prime p,
\[
|\{p : Np = p\}| = \sum_{\chi} \chi(p).
\]
The previous display is nothing other than the second orthogonality relation,
\[
\sum_{\chi} \chi(p) = \begin{cases}
\phi(N_p) & \text{if } p \equiv 1 \pmod{N_p}, \\
0 & \text{otherwise}.
\end{cases}
\]
That is, the second orthogonality relation is a special case of a cyclotomic counting formula.