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Abstract. Let p be prime. Because Z[1/p] is dense in Qp and in R, and

because the unitary dual Z[1/p]∨ is the projective limit limk≥0 R/pkZ, which

contains Qp and R, it follows readily that Qp and R are unitarily self-dual.

Let S1 denote the unit circle in the complex plane, a multiplicative group car-
rying the subspace topology from C. For a topological ring R, let R∨ denote the
unitary dual of R as an additive group, the group of continuous homomorphisms
f : (R,+) −→ S1. Let p be prime. With “=” denoting natural isomorphisms of
topological groups here and throughout, two well known equalities are

Q∨p = Qp and R∨ = R.

For example, these are special cases of Lemma 2.2.1 at the beginning of Tate’s
thesis [7], proved there and in ensuing expositions such as the Ramakrishnan–
Valenza text [6] by using results about locally compact topological groups. Such an
argument is an appropriate scalable approach, but this note follows other authors in
proving these two equalities in a way that requires less background. A quick proof
of the first equality is in Washington’s Monthly article [8]. A quick proof of the
second equality, using integration, is in Theorem VII.9.11 of Conway’s functional
analysis text [2], and this approach also scales. An elementary approach to these
matters is in an online writeup by Conrad [1] mainly focused on Q∨. Here we prove
the two equalities by using the fact that the localization Z[1/p] of Z is dense both
in Qp and in R. When the localization has the discrete topology its unitary dual
Z[1/p]∨ is the projective limit limk≥0 R/pkZ, called the solenoid in online writeups
by Garrett [4, 3]. The solenoid contains Qp and R as the duals of Z[1/p] with the
subspace topologies from Qp and R, and therefore as the duals Q∨p and R∨.

Section 1 skims how the definition of Zp as a projective limit implies that Qp is
such a limit as well. Section 2 explains the p-adic exponential. Section 3 introduces
the solenoid, denoted Sp, and establishes one p-adic and one real solenoid property.
Section 4 shows that the dual Z[1/p]∨ is Sp, so that the restriction of an element
of Q∨p or R∨ to the dense subset Z[1/p] of Qp or R can be viewed as a solenoid
element. Section 5 uses this and the two established solenoid properties to show
that Q∨p = Qp and R∨ = R algebraically; the quick ease of these arguments is
the point of this note. Section 6 shows that these equalities are also topological.
We assume that the reader is amenable to p-adic ideas and to ideas of point set
topology, and we hope that the reader will enjoy the utility of these ideas in action,
in particular analysis at one prime proving a real result.

1. Qp as a limit

For any subring R of R, for a prime p, and with the natural projection map
π`,k : R/p`Z −→ R/pkZ for 0 ≤ k ≤ ` induced by the identity map on R, the
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projective limit limk≥0R/p
kZ is the abelian group of compatible vectors

v = (vpk) ∈
∏
k≥0

R/pkZ, π`,k(vp`) = vpk for 0 ≤ k ≤ `,

also a ring if Z is an ideal of R. Here any vpn determines vpk for 0 ≤ k < n. In
particular, the p-adic integer ring Zp is defined as this limit with R = Z and then
its quotient p-adic number field Qp is a localization of Zp,

Zp = lim
k≥0

Z/pkZ and Qp = Zp[1/p].

Granting the natural-looking third equality to follow, Qp as an abelian group is
also a limit but with the localization Z[1/p] rather than Z as R,

Qp = Zp[1/p] = (lim
k≥0

Z/pkZ)[1/p] = lim
k≥0

Z[1/p]/pkZ.

For the third equality, the mutually inverse maps between (limk≥0 Z/pkZ)[1/p] and
limk≥0 Z[1/p]/pkZ are

x = (xpk + pkZ)k≥0/p
n 7−→ y = (xpk+n/pn + pkZ)k≥0

y = (ypk + pkZ)k≥0 7−→ x = (pnypk−n + pkZ)k≥n/p
n.

In the second map the element y of limk≥0 Z[1/p]/pkZ has a common denominator
because pny1 lies in Z for some n and then pnypk ≡ pny1 mod Z lies in Z for all k.
The first map makes no reference to the entries of x lower than xpn + pnZ, and the
second map produces an x starting at xpn +pnZ, but as just explained the first map
loses no information in creating y and the second map determines the rest of x.

2. Exponential

Because Z[1/p] is dense in Qp and Zp is open in Qp and Z[1/p] ∩ Zp = Z there
is a natural group isomorphism Z[1/p]/Z −→ Qp/Zp, and this is further a homeo-
morphism when Z[1/p] carries the subspace topology from Qp. Thus the map

e : Z[1/p]/Z −→ S1, e(q + Z) = e2πiq

defines a resulting continuous homomorphism

ep : Qp −→ S1, ker(ep) = Zp.

Specifically, ep(x) = e(qx) where x ∈ Qp decomposes (nonuniquely) as x = qx + xo
with qx ∈ Z[1/p] and xo ∈ Zp. And of course the usual map e(x) = e2πix from R
to S1 is a continuous homomorphism having kernel Z.

3. Solenoid

Let Sp denote the projective limit limk≥0 R/pkZ, consisting of the compatible
vectors s = (spk) ∈

∏
k≥0 R/pkZ with π`,k(sp`) = spk for 0 ≤ k ≤ `. This limit is

denoted Sp and named the solenoid because of how its transition maps π`,k wrap
circles. Each solenoid element uniquely takes the form

s = (rpk + pkZ),

(
rpk ∈ [−pk/2, pk/2) ⊂ R

rp` ≡ rpk mod pkZ

)
for 0 ≤ k ≤ `.

The solenoid Sp = limk≥0 R/pkZ clearly contains Qp = limk≥0 Z[1/p]/pkZ. It
also contains a copy of R, consisting of the vectors such that rpk ≡ r mod pkZ for
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some r ∈ R and all k, and we freely refer to this copy as R. Criteria to discern
solenoid elements in Qp and in R are as follows. For p-adic elements,

for all s = (rpk + pkZ) ∈ Sp, r1 ∈ Z[1/p] =⇒ s ∈ Qp.

Indeed, if r1 ∈ Z[1/p] then the solenoid compatibility conditions give rpk ∈ Z[1/p]

for all k and so s ∈ limk Z[1/p]/pkZ = Qp. As for real solenoid elements, we prove
that

(∗) for all s = (rpk + pkZ) ∈ Sp, lim
k→∞

rpk/p
k = 0 =⇒ s ∈ R.

An induction argument shows that there exist ko and r ∈ R such that rpk = r

for all k ≥ ko, as follows. The hypothesis limk→∞ rpk/p
k = 0 in (∗) says that

there exists ko such that for all k ≥ ko, |rpk/pk| < 1/(2p) and so |rpk | < pk−1/2.
Let r = rpko . The claimed equality rpk = r holds for k = ko by the definition
of r. Suppose inductively that it holds for some k ≥ ko. Because k + 1 ≥ ko we
have |rpk+1 | < pk/2, and also |rpk | ≤ pk/2, and also rpk+1 ≡ rpk mod pk, and so
rpk+1 = rpk . The inductive hypothesis is rpk = r, and so rpk+1 = r. This completes

the inductive proof that rpk = r for all k ≥ ko, and so certainly rpk +pkZ = r+pkZ
for such k. For 0 ≤ k < ko the solenoid condition rpk + pkZ = rpko + pkZ and the

equality rpko = r give rpk +pkZ = r+pkZ as well, and (∗) is proved. The converses
of the two criteria hold easily as well, but we don’t need them.

4. Localization dual Z[1/p]∨ = Sp
The solenoid Sp is the unitary dual Z[1/p]∨, where Z[1/p] carries the discrete

topology. Indeed, Z[1/p] is the non-direct sum
∑
k≥0 Z · 1/pk, and so any f

in Z[1/p]∨ is determined by its values f(1/pk), these values satisfying compati-
bility conditions. The values are

f(1/pk) = e(spk/p
k), spk ∈ R/pkZ, k = 0, 1, 2, . . . ,

each spk uniquely of the form rpk + pkZ as above. The compatibility conditions

are (f(1/p`))p
`−k

= f(1/pk) for 0 ≤ k ≤ `, or (e(sp`/p
`))p

`−k

= e(spk/p
k), or

e(sp`/p
k) = e(spk/p

k), or rp`/p
k ≡ rpk/pk mod Z, or

rp` + pkZ = rpk + pkZ, 0 ≤ k ≤ `.
That is, the rpk are compatible with the transition maps of the solenoid. These steps

are reversible, and so elements f : 1/pk 7→ e(rpk/p
k) of Z[1/p]∨ and s = (rpk +pkZ)

of Sp are naturally identified.

5. p-adic dual Q∨p = Qp and real dual R∨ = R

Every p-adic number r defines an element of Q∨p ,

fr : Qp −→ S1, fr(x) = ep(rx).

To show that these make up all of Q∨p , let f ∈ Q∨p be given and let s(f) = (rpk +pkZ)

be the solenoid element corresponding to its restriction to Z[1/p]. Because pdZp lies
in any neighborhood of 0 in Qp for large enough d, and f is continuous at 0, f maps
some pdZp into the open right half of S1, which contains no nontrivial subgroup, and

so f(pdZp) = 1; thus (e(r1))p
d

= (f(1))p
d

= f(pd) = 1, giving r1 ∈ 1/pd·Z ⊂ Z[1/p].
As explained in section 3, consequently s(f) is a p-adic number r. For each k ≥ 0 the



4 CRIS POOR, JERRY SHURMAN, AND DAVID S. YUEN

congruence rpk ≡ r mod pkZp gives f(1/pk) = e(rpk/p
k) = ep(r/p

k) = fr(1/p
k),

and so f = fr on the dense subset Z[1/p] of Qp. Thus f = fr.
Every real number r defines an element of R∨,

fr : R −→ S1, fr(x) = e(rx).

To show that these make up all of R∨, let p be any prime, let f ∈ R∨ be given,
and let sp(f) = (rpk + pkZ) be the solenoid element corresponding to its re-

striction to Z[1/p]. Because limk→∞ 1/pk = 0 in R and f is continuous at 0,
limk→∞ e(rpk/p

k) = limk→∞ f(1/pk) = f(0) = 1 in S1, giving limk→∞ rpk/p
k = 0

in R. As explained in section 3, consequently sp(f) is a real number r. For each k ≥
0 the congruence rpk ≡ r mod pkZ gives f(1/pk) = e(rpk/p

k) = e(r/pk) = fr(1/p
k),

and so f = fr on the dense subset Z[1/p] of R. Thus f = fr.

6. Topology

As a projective limit of compact spaces, Sp = limk R/pkZ is compact, its limit
topology being the subspace topology that it inherits from the product topology
of
∏
k≥0 R/pkZ. In particular, a subbasis about 0 consists of the sets

T`,ε = {(rpk + pkZ) ∈ Sp : |rp`/p`| < ε}, ` ∈ Z≥0, ε > 0.

The unitary dual Z[1/p]∨ carries the compact-open topology. Because the compact
subsets of Z[1/p] are the finite sets, a compact-open subbasis about 1 in Z[1/p]∨

consists of the sets

U`,ε = {f ∈ Z[1/p]∨ : f(1/p`) ∈ e((−ε, ε))}, ` ∈ Z≥0, ε > 0.

And because f(1/p`) = e(rp`/p
`), these identify with the subsets T`,ε of Sp. Thus

the identification of Z[1/p]∨ and Sp is a topological group isomorphism.
The map r 7→ fr from Qp to Q∨p or from R to R∨ is a group isomorphism,

its homomorphic property and injectivity clear and its surjectivity now established.
Further it is a topological isomorphism by a standard exercise in which the solenoid
plays no role, as follows. In the compact-open topology of Q∨p , a subbasis at 1
consists of the sets

VK,ε = {f : f(K) ⊂ e((−ε, ε))}, K compact in Qp, ε > 0.

Let {frn} go to 1 in Q∨p . Given a positive integer m, there exists no such that for

all n ≥ no, frn ∈ Vp−mZp,π/2 and so ep(rnp
−mZp) is a subgroup of e((−π/2, π/2)),

making it 1, from which rn ∈ pmZp; thus {rn} goes to 0 in Qp. Conversely, let
{rn} go to 0 in Qp. Given K compact in Qp and ε > 0, there exists no = no(m, ε)
such that for all n ≥ no, rnK ⊂ Zp and so ep(rnK) = {1} ⊂ e((−ε, ε)), from which
frn ∈ VK,ε; thus {frn} goes to 1 in Q∨p . In the compact-open topology of R∨, a
subbasis at 1 consists of the sets

WK,ε = {f : f(K) ⊂ e((−ε, ε))}, K compact in R, ε > 0.

Let {frn} go to 1 in R∨. Given ε > 0, there exists no such that for all n ≥ no,
frn ∈ W[−1,1],ε and so rn[−1, 1] ⊂ (−ε, ε) and so |rn| < ε; thus {rn} goes to 0
in R. Conversely, let {rn} go to 0 in R. Given K compact in R and ε > 0, there
exists δ > 0 such that K ⊂ [−δ, δ] and then no = no(δ, ε) such that for all n ≥ no,
|rn|δ < ε and so frn ∈WK,ε; thus {frn} goes to 1 in R∨.
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7. Rational dual

As a final comment we state without proof that the localization unitary dual
Z[1/p]∨ = Sp = limk≥0 R/pkZ is (R × Qp)/Z[1/p], and that beyond the scope of
this note, the rational unitary dual Q∨ is the larger solenoid S = limn≥1 R/nZ =∏
p limk≥0 R/pkZ =

∏
p Sp, which is A/Q where the rational adele ring A is not the

full product R ×
∏
pQp. See Garrett’s writeup [5] for these matters, or Conrad’s

writeup [1] for a treatment of Q∨ that is solenoid-free.
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