TAYLOR'S THEOREM FOR POLYNOMIALS

Consider a polynomial

$$
f(x)=\sum_{m=0}^{n} c_{m} x^{m}
$$

We show algebraically that

$$
f(a+h)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) h^{k}
$$

First consider a pure monomial function $f_{m}(x)=x^{m}$. The binomial expansion

$$
(a+h)^{m}=\sum_{k=0}^{m}\binom{m}{k} a^{m-k} h^{k}
$$

is precisely the Taylor expansion

$$
f_{m}(a+h)=\sum_{k=0}^{m} \frac{1}{k!} f_{m}^{(k)}(a) h^{k}
$$

The result for general polynomials follows from this and linearity. Indeed, we have

$$
f(x)=\sum_{m=0}^{n} c_{m} f_{m}(x)
$$

and so by the expansion of $f_{m}(a+h)$ derived just above,

$$
f(a+h)=\sum_{m=0}^{n} c_{m} f_{m}(a+h)=\sum_{m=0}^{n} c_{m} \sum_{k=0}^{m} \frac{1}{k!} f_{m}^{(k)}(a) h^{k}
$$

Reverse the order of summation and then note that $f_{m}^{(k)}(x)=0$ for $m=0, \ldots, k-1$ to get

$$
f(a+h)=\sum_{k=0}^{n} \frac{1}{k!} \sum_{m=k}^{n} c_{m} f_{m}^{(k)}(a) h^{k}=\sum_{k=0}^{n} \frac{1}{k!} \sum_{m=0}^{n} c_{m} f_{m}^{(k)}(a) h^{k}
$$

Because a linear combination of derivatives is the derivative of the linear combination, this in turn is what we want,

$$
f(a+h)=\sum_{k=0}^{n} \frac{1}{k!}\left(\sum_{m=0}^{n} c_{m} f_{m}\right)^{(k)}(a) h^{k}=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) h^{k} .
$$

Finally we note that there really are no denominators in these formulas because the binomial coefficients in the expansion of $(a+h)^{m}$ are integers.

