
NONVANISHING OF DIRICHLET L-FUNCTIONS AT s = 1

In the proof of Dirichlet’s theorem on arithmetic progressions, after the various
sums and products are unwound, and after what amounts to a simple piece of
Fourier analysis, the crucial fact is that for any nontrivial Dirichlet character χ,

L(χ, s) 6= 0 at s = 1.

The fact can be proved in various ways. For example, our handout on Dirichlet’s
theorem made use of cyclotomic arithmetic. Here we give, with some motivation,
a more direct elementary argument, which admittedly is a bit ad hoc.

Contents

1. The argument when χ2 is nontrivial 1
2. The argument when χ2 is trivial 2
3. Landau’s lemma 3

1. The argument when χ2 is nontrivial

For any s ∈ C such that Re(s) > 1,

L(χ, s) = exp logL(χ, s) = exp log
∏
p

(1− χ(p)p−s)−1

= exp
∑
p∈P

log(1− χ(p)p−s)−1 = exp
∑
p∈P

∑
n∈Z+

χ(p)n

npns
.

Because in general | exp(z)| = exp(Re(z)), it follows that for real s > 1,

|L(χ, s)| = exp
∑
p,n

cos(nθp)

npns
where χ(p) = eiθp .

The cosines in the sum could well be positive or negative. However, modifying the
calculation makes the summands nonnegative,

ζ(s)L(χ, s) = exp log(
∏
p

(1− p−s)−1(1− χ(p)p−s)−1)

= exp
∑
p∈P

log(1− p−s)−1 + log(1− χ(p)p−s)−1

= exp
∑
p∈P

∑
n∈Z+

1 + χ(p)n

npns
, s > 1,

so that

|ζ(s)L(χ, s)| = exp
∑
p,n

1 + cos(nθp)

npns
, s > 1.
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Now the summands are nonnegative, and thus

|ζ(s)L(χ, s)| ≥ 1, s > 1.

This doesn’t give L(χ, 1) 6= 0, though, because ζ has a simple pole at s = 1, and
so the previous display shows only that L(χ, s) either is nonzero at s = 1 or has a
simple zero at s = 1. Because a zero would force ζ(s)L(χ, s)2 to vanish at s = 1,
the next step is to study

|ζ(s)L(χ, s)2| = exp
∑
p,n

1 + 2 cos(nθp)

npns
, s > 1,

but now we are back to a scenario where the terms of the sum need not be positive.
To address this, the expression 1 + 2 cos(nθp) can be augmented to a square by
adding cos2(nθp). Thus, consider

L(χ2, s) = exp
∑
p,n

(χ(p)n)2

npns
,

so that, because χ(p)n = cos(nθp) + i sin(nθp), and hence (χ(p)n)2 has real part

cos2(nθp)− sin2(nθp) = 2 cos2(nθp)− 1,

|L(χ2, s)| = exp
∑
p,n

2 cos2(nθp)− 1

npns
, s > 1.

Thus, more generally,

|ζ(s)aL(χ, s)bL(χ2, s)c| = exp
∑
p,n

a− c+ b cos(nθp) + 2c cos2(nθp)

npns
, s > 1.

Specialize to (a, b, c) = (3, 4, 1) to get

|ζ(s)3L(χ, s)4L(χ2, s)| = exp
∑
p,n

2 + 4 cos(nθp) + 2 cos2(nθp)

npns

= exp
∑
p,n

2(1 + cos(nθp))
2

npns
≥ 1, s > 1,

so that

ζ(s)3L(χ, s)4L(χ2, s) does not go to 0 as s→ 1+.

But ζ(s)3 has a pole of order 3 at s = 1, and assuming that χ2 is not the trivial
character, L(χ2, s) does not have a pole at s = 1. So the previous display shows
that L(χ, s) can’t have a zero at s = 1 if χ2 is nontrivial.

2. The argument when χ2 is trivial

The case where χ2 is trivial needs to be handled separately. Here we have

ζ(s)L(χ, s) = exp
∑
p,n

1 + χ(p)n

npns
, Re(s) > 1.

The sum in the previous display is a Dirichlet series D(s) with nonnegative coeffi-
cients,

D(s) =
∑
m∈Z+

am
ms

, am =

{
(1 + χ(p)n)/n if m = pn,

0 otherwise.
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Suppose that L(χ, 1) = 0. Then consequently:

• The function ζ(s)L(χ, s) is analytic on {Re(s) > 0}.
• The Dirichlet series D(s) converges on Re(s) > 1 to a function g(s) such

that exp g(s) = ζ(s)L(χ, s). Landau’s lemma, below, says that conse-
quently expD(s) = ζ(s)L(χ, s) for s ∈ (0, 1).
• However, when n is even, χ(p)n = 1, and so for real s > 1/2,

D(s) ≥
∑
p,n

2

2np2ns
=
∑
p,n

1

np2ns
= log ζ(2s).

Thus D(s)→∞ as s→ 1/2+.

The third bullet contradicts the second, so the supposition L(χ, 1) = 0 is untenable.

3. Landau’s lemma

Proposition 3.1 (Weak version of Landau’s lemma). Suppose that a Dirichlet
series with nonnegative coefficients,

D(s) =
∑
n≥1

ann
−s, an ≥ 0 for all n,

converges to an analytic function f(s) on the open right half plane {Re(s) > σo}.
Suppose that for some ε > 0, the function f(s) extends analytically to the larger
open right half plane {Re(s) > σo − ε}. Then the Dirichlet series D(s) converges
to f(s) on the x-axis portion of the larger right half plane, i.e., D(σ) = f(σ) for
all σ ∈ (σo − ε, σo).

Proof. By way of quick review, recall the basic definition

az = ez log a, a ∈ R+, z ∈ C,
so that the derivatives of az are

(az)(k) = (log a)kaz, a ∈ R+, z ∈ C, k ∈ Z≥0.
Thus the power series expansion of az about z = 0 is

az =
∑
k≥0

(log a)k

k!
zk, a ∈ R+, z ∈ C,

Note that this is a small variant of the familiar series of ez. We will refer back to
this expansion later in the argument.

Returning to Landau’s lemma, we may translate the problem and take σo = 0.
The translation leaves the Dirichlet series coefficients nonnegative. The function
f(s) is analytic on B(1, 1 + ε). Thus for any σ ∈ (−ε, 0) the power series represen-
tation of f(s) about s = 1 converges at σ to f(σ),

f(σ) =
∑
k≥0

f (k)(1)

k!
(σ − 1)k =

∑
k≥0

(−1)kf (k)(1)

k!
(1− σ)k, −ε < σ < 0.

Because the Dirichlet series D(s) =
∑
n≥1 ann

−s converges to f(s) about s = 1,

compute the summand-numerator (−1)kf (k)(1) at the end of the previous display
by differentiating D(s) termwise,

(−1)kf (k)(1) = (−1)k
∑
n≥1

an(− log n)kn−s
∣∣∣
s=1

=
∑
n≥1

an(log n)k

n
.
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Thus the penultimate display is now

f(σ) =
∑
k≥0

∑
n≥1

an(log n)k

k!n
(1− σ)k, −ε < σ < 0.

All of the terms are nonnegative, so we may rearrange the sum,

f(σ) =
∑
n≥1

an
n

∑
k≥0

(log n)k

k!
(1− σ)k, −ε < σ < 0.

As explained at the beginning of the proof, the inner sum is the power series
expansion of ns about 0 at s = 1− σ. Thus

f(σ) =
∑
n≥1

an
n
n1−σ =

∑
n≥1

ann
−σ = D(σ), −ε < σ < 0.

This is the desired result. �


