NONVANISHING OF DIRICHLET L-FUNCTIONS AT s=1

In the proof of Dirichlet’s theorem on arithmetic progressions, after the various
sums and products are unwound, and after what amounts to a simple piece of
Fourier analysis, the crucial fact is that for any nontrivial Dirichlet character x,

L(x,s)#0 ats=1.

The fact can be proved in various ways. For example, our handout on Dirichlet’s
theorem made use of cyclotomic arithmetic. Here we give, with some motivation,
a more direct elementary argument, which admittedly is a bit ad hoc.
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1. THE ARGUMENT WHEN Y2 IS NONTRIVIAL

For any s € C such that Re(s) > 1,

L(x; s) = explog L(x, s) = explog H(l —x(@p~*)7

= exp Z log(1 — x(p)p~°)" " =exp Z Z p
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Because in general |exp(z)| = exp(Re(z)), it follows that for real s > 1,

cos(nfp) )
IL(x,s)| = eXpZ e Where x(p) = e’

The cosines in the sum could well be positive or negative. However, modifying the
calculation makes the summands nonnegative,

C(s) L(x, s) = exp log(H(l —p ) 1= x(p)p )Y

= exp Z log(1 — ' 4 log(1 — x(p)p~*)~*
peP
1
—ep > Y +X s> 1,
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Now the summands are nonnegative, and thus

[C(s) Lx,s) =1, s> 1.
This doesn’t give L(x, 1) # 0, though, because ¢ has a simple pole at s = 1, and
so the previous display shows only that L(x,s) either is nonzero at s = 1 or has a
simple zero at s = 1. Because a zero would force ¢((s)L(x, s)? to vanish at s = 1,
the next step is to study

1—|—2cosn9
€6 Lo = e 3 L 2eosndy) oy,

but now we are back to a scenario where the terms of the sum need not be positive.
To address this, the expression 1 + 2cos(nf,) can be augmented to a square by
adding cos®(n#,). Thus, consider

_ x(p)")?
L2 = ey

p,n

so that, because x(p)" = cos(nb,) + isin(nb,), and hence (x(p)")? has real part
cos?(nb,) —sin®(nf,) = 2cos?(nb,) — 1,

2 cos*(nbp
IL(x%, s)\—eXpZ—( ns) . s> 1.
np
pn
Thus, more generally,

1C(5)°L(x, 8)°L(x2, 8)°| = exp > a—c+bceos

p,n
Specialize to (a,b,¢) = (3,4,1) to get

() L, $) L, 8)] = exp 3 25208

p;n

(1 Op
fepole, s> 1,

(nBp) + 2ccos?(nb,)
npns

, s>1.

(nB) + 2 cos?(nb,)
npns

so that
C(s)*L(x, 8)*L(x* s) does not goto 0 ass— 1.
But ((s)® has a pole of order 3 at s = 1, and assuming that x? is not the trivial

character, L(x?,s) does not have a pole at s = 1. So the previous display shows
that L(x, s) can’t have a zero at s = 1 if x? is nontrivial.

2. THE ARGUMENT WHEN X? IS TRIVIAL
The case where x? is trivial needs to be handled separately. Here we have

¢(s)L = expz ! +X Re(s) > 1.

p,n

The sum in the previous display is a Dirichlet series D(s) with nonnegative coeffi-
cients,

D(s)= Y am:{(1+x(p)”)/n if m = pn,

) .
s 0 otherwise.
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Suppose that L(x,1) = 0. Then consequently:

e The function ((s) L(x, s) is analytic on {Re(s) > 0}.

e The Dirichlet series D(s) converges on Re(s) > 1 to a function g(s) such
that expg(s) = ((s) L(x,s). Landau’s lemma, below, says that conse-
quently exp D(s) = ((s) L(x, s) for s € (0,1).

e However, when n is even, x(p)™ = 1, and so for real s > 1/2,

2 1
P2 S g = 5 e = 10820

Thus D(s) — co as s — 1/27.
The third bullet contradicts the second, so the supposition L(y,1) = 0 is untenable.

3. LANDAU’S LEMMA

Proposition 3.1 (Weak version of Landau’s lemma). Suppose that a Dirichlet
series with nonnegative coefficients,

D(s) = Z ann” %, ap >0 for all n,
n>1
converges to an analytic function f(s) on the open right half plane {Re(s) > o,}.
Suppose that for some ¢ > 0, the function f(s) extends analytically to the larger
open right half plane {Re(s) > o, — e}. Then the Dirichlet series D(s) converges
to f(s) on the x-axis portion of the larger right half plane, i.e., D(o) = f(o) for
all o € (0, —€,0,).
Proof. By way of quick review, recall the basic definition
a® =e*l8e g e RT, 2 €C,
so that the derivatives of a* are
(@*)®) = (loga)ka®, a€R*, 2€C, k€ Zso.
Thus the power series expansion of a® about z = 0 is

.\ (loga)* +
a—z 7 2, a€RT, z€C,
k>0

Note that this is a small variant of the familiar series of e*. We will refer back to
this expansion later in the argument.

Returning to Landau’s lemma, we may translate the problem and take o, = 0.
The translation leaves the Dirichlet series coefficients nonnegative. The function
f(s) is analytic on B(1,1+ ¢). Thus for any o € (—¢,0) the power series represen-
tation of f(s) about s =1 converges at o to f(o),

(k) _1)k (k)
floy=>" ! k'(l)(a— 1)* :Z%a-ﬁ, —e<0o<0.
k>0 ’ k>0 ’

S

Because the Dirichlet series D(s) = >_, -, a,n™° converges to f(s) about s = 1,

compute the summand-numerator (—1)* f(*)(1) at the end of the previous display
by differentiating D(s) termwise,
Z an(log n)k

(D91 = (1)F 3 an(—logn)n~?| E

n>1 n>1
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Thus the penultimate display is now

a Onk
f((’):zz%(l—a)k, —e<0o<0.

k>0n>1

All of the terms are nonnegative, so we may rearrange the sum,

a O, le
f(a):zgnz%(pa)k, —e <o <0

n>1 k>0

As explained at the beginning of the proof, the inner sum is the power series
expansion of n® about 0 at s =1 — ¢. Thus

_ aj l1—0 __ —0 __ _
f(U)—Znn =Y amn 7 =D(0), —e<o<0.
n>1 n>1
This is the desired result. O



