1. The Unit Group of $\mathbb{Z}/n\mathbb{Z}$

Consider a nonunit positive integer,

$$n = \prod p^e > 1.$$

The Sun Ze Theorem gives a ring isomorphism,

$$\mathbb{Z}/n\mathbb{Z} \cong \prod \mathbb{Z}/p^e\mathbb{Z}.$$

The right side is the cartesian product of the rings $\mathbb{Z}/p^e\mathbb{Z}$, meaning that addition and multiplication are carried out componentwise. It follows that the corresponding unit group is

$$(\mathbb{Z}/n\mathbb{Z})^\times \cong \prod (\mathbb{Z}/p^e\mathbb{Z})^\times.$$

Thus to study the unit group $(\mathbb{Z}/n\mathbb{Z})^\times$ it suffices to consider $(\mathbb{Z}/p^e\mathbb{Z})^\times$ where p is prime and $e > 0$. Recall that in general,

$$|(\mathbb{Z}/n\mathbb{Z})^\times| = \phi(n),$$

so that for prime powers,

$$|(\mathbb{Z}/p^e\mathbb{Z})^\times| = \phi(p^e) = p^{e-1}(p - 1),$$

and especially for primes,

$$|(\mathbb{Z}/p\mathbb{Z})^\times| = p - 1.$$

Here are some examples of unit groups modulo prime powers, most but not quite all cyclic.

$$(\mathbb{Z}/2\mathbb{Z})^\times = \{1\}, \cdot = \{2^0\}, \cdot \cong \{0, +\} = \mathbb{Z}/\mathbb{Z},$$

$$(\mathbb{Z}/3\mathbb{Z})^\times = \{1, 2\}, \cdot = \{2^0, 2^1\}, \cdot \cong \{0, 1\} = \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}, \cdot = \{3^0, 3^1\}, \cdot \cong \{0, 1\} = \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/5\mathbb{Z})^\times = \{1, 2, 3, 4\}, \cdot = \{2^0, 2^1, 2^2, 2^3\}, \cdot \cong \{0, 1, 2, 3\}, + = \mathbb{Z}/4\mathbb{Z},$$

$$(\mathbb{Z}/7\mathbb{Z})^\times = \{1, 2, 3, 4, 5, 6\}, \cdot = \{3^0, 3^1, 3^2, 3^3, 3^4, 3^5\}, \cdot \cong \{0, 1, 2, 3, 4, 5\}, + = \mathbb{Z}/6\mathbb{Z},$$

$$(\mathbb{Z}/8\mathbb{Z})^\times = \{1, 3, 5, 7\}, \cdot = \{3^05^0, 3^15^0, 3^25^1\}, \cdot \cong \{0, 1\} \times \{0, 1\}, + = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/9\mathbb{Z})^\times = \{1, 2, 4, 5, 7, 8\}, \cdot = \{2^0, 2^1, 2^2, 2^3, 2^4, 2^5\}, \cdot \cong \{0, 1, 2, 3, 4, 5\}, + = \mathbb{Z}/6\mathbb{Z}. $$
2. Prime Unit Group Structure: Abelian Group Theory Argument

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,

$$\left(\mathbb{Z}/p\mathbb{Z}\right)^\times \cong \mathbb{Z}/(p-1)\mathbb{Z}.$$

That is, there is a generator g mod p such that

$$\left(\mathbb{Z}/p\mathbb{Z}\right)^\times = \{1, g, g^2, \ldots, g^{p-2}\}.$$

Proof. We may assume that G is not trivial. By the structure theorem for finitely generated abelian groups,

$$(G, \cdot) \cong (\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}, +), \quad k \geq 1, \quad 1 < d_1 \mid d_2 \cdots \mid d_k.$$

Thus the polynomial equation $X^{d_k} = 1$, whose additive counterpart is $d_kX = 0$, is satisfied by each of the $d_1d_2\cdots d_k$ elements of G; but also, the polynomial has at most as many roots as its degree d_k. Thus $k = 1$ and G is cyclic. \hfill \Box

The proof tacitly relies on a fact from basic algebra:

Lemma 2.2. Let k be a field. Let $f \in k[\!\![X]\!\!]$ be a nonzero polynomial, and let d denote its degree (thus $d \geq 0$). Then f has at most d roots in k.

Proof. If f has no roots then we are done. Otherwise let $a \in k$ be a root. Write

$$f(X) = q(X)(X - a) + r(X), \quad \deg(r) < 1 \text{ or } r = 0.$$

Thus $r(X)$ is a constant. Substitute a for X to see that in fact $r = 0$, and so $f(X) = q(X)(X - a)$. Because we are working over a field, any root of f is a or is a root of g, and by induction q has at most $d - 1$ roots in k, so we are done. \hfill \Box

The lemma does require that k be a field, not merely a ring. For example, the polynomial $X^2 - 1$ over the ring $\mathbb{Z}/24\mathbb{Z}$ has for its roots

$$\{1, 5, 7, 11, 13, 17, 19, 23\} = (\mathbb{Z}/24\mathbb{Z})^\times.$$

To count the generators of $(\mathbb{Z}/p\mathbb{Z})^\times$, we establish a handy result that is slightly more general.

Proposition 2.3. Let n be a positive integer, and let e be an integer. Let $\gamma = \gcd(e, n)$. The map

$$\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}, \quad x \mapsto ex$$

has

- image $\langle \gamma + n\mathbb{Z} \rangle$, of order n/γ,
- kernel $\langle n/\gamma + n\mathbb{Z} \rangle$, of order γ.

Especially, each $e + n\mathbb{Z}$ where e is coprime to n generates $\mathbb{Z}/n\mathbb{Z}$, which therefore has $\phi(n)$ generators.

Indeed, the image is $\{ex + n\mathbb{Z} : x \in \mathbb{Z}\} = \{ex + ny + n\mathbb{Z} : x, y \in \mathbb{Z}\} = \langle \gamma + n\mathbb{Z} \rangle$. The rest of the proposition follows, or we can see the kernel directly by noting that $n \mid ex$ if and only if $n/\gamma \mid (e/\gamma)x$, which by Euclid’s Lemma holds if and only if $n/\gamma \mid x$.

Because $(\mathbb{Z}/p\mathbb{Z})^\times$ is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$, the proposition shows that if g is a generator then all the generators are the $\phi(p-1)$ powers g^e where $\gcd(e, p-1) = 1$.

3. Prime Unit Group Structure: Elementary Argument

From above, a nonzero polynomial over \(\mathbb{Z}/p\mathbb{Z} \) can not have more roots than its degree. On the other hand, Fermat’s Little Theorem says that the polynomial

\[
f(X) = X^{p-1} - 1 \in (\mathbb{Z}/p\mathbb{Z})[X]
\]

has a full contingent of \(p - 1 \) roots in \(\mathbb{Z}/p\mathbb{Z} \).

For any divisor \(d \) of \(p - 1 \), consider the factorization (in consequence of the finite geometric sum formula)

\[
f(X) = X^{p-1} - 1 = (X^d - 1) \sum_{i=0}^{p-1} X^{id} \equiv g(X)h(X).
\]

We know that

- \(f \) has \(p - 1 \) roots in \(\mathbb{Z}/p\mathbb{Z} \),
- \(g \) has at most \(d \) roots in \(\mathbb{Z}/p\mathbb{Z} \),
- \(h \) has at most \(p - 1 - d \) roots in \(\mathbb{Z}/p\mathbb{Z} \).

It follows that \(g(X) = X^d - 1 \) where \(d \mid p - 1 \) has \(d \) roots in \(\mathbb{Z}/p\mathbb{Z} \).

Now factor \(p - 1 \),

\[
p - 1 = \prod q^e.
\]

For each factor \(q^e \) of \(p - 1 \),

\[
X^{q^e} - 1 \quad \text{has} \quad q^e \quad \text{roots in} \quad \mathbb{Z}/p\mathbb{Z},
\]

\[
X^{q^{e-1}} - 1 \quad \text{has} \quad q^{e-1} \quad \text{roots in} \quad \mathbb{Z}/p\mathbb{Z},
\]

and so \((\mathbb{Z}/p\mathbb{Z})^\times \) contains \(q^e - q^{e-1} = \phi(q^e) \) elements \(x_q \) of order \(q^e \). (The order of an element is the smallest positive number of times that the element is multiplied by itself to give 1.) Plausibly,

\[
\text{any product} \quad \prod x_q \quad \text{has order} \quad \prod q^{e_q} = p - 1,
\]

and certainly there are \(\phi(p - 1) \) such products. In sum, we have done most of the work of showing

Proposition 3.1. Let \(p \) be prime. Then \((\mathbb{Z}/p\mathbb{Z})^\times \) is cyclic, with \(\phi(p-1) \) generators.

The loose end is as follows.

Lemma 3.2. In a commutative group, consider two elements whose orders are coprime. Then the order of their product is the product of their orders.

Proof. We have \(a^e = b^f = 1 \), and so

\[
(ab)^{ef} = (a^e)^f (b^f)^e = 1^f 1^e = 1.
\]

Also we have \((e, f) = 1 \). So for any positive integer \(d \),

\[
(ab)^d = 1 \implies 1 = ((ab)^d)^e = (a^e b^e)^d = b^{ed} \implies f \mid cd \implies f \mid d,
\]

and symmetrically \(e \mid d \). Thus \(ef \mid d \). \(\square \)
4. Odd Prime Power Unit Group Structure: \(p \)-Adic Argument

Proposition 4.1. Let \(p \) be an odd prime, and let \(e \) be any positive integer. The multiplicative group modulo \(p^e \) is cyclic.

Proof. (Sketch.) We have the result for \(e = 1 \), so take \(e \geq 2 \). The structure theorem for finitely generated abelian groups and then the Sun Ze theorem combine to show that \((\mathbb{Z}/p^e\mathbb{Z})^\times\) takes the form

\[
(\mathbb{Z}/p^e\mathbb{Z})^\times = A_{p^{e-1}} \times A_{p-1}
\]

(\(A_n \) denotes an abelian group of order \(n \)).

By the Sun Ze Theorem, it suffices to show that each of \(A_{p^{e-1}} \) and \(A_{p-1} \) is cyclic.

The natural epimorphism \((\mathbb{Z}/p^e\mathbb{Z})^\times \to (\mathbb{Z}/p\mathbb{Z})^\times\) maps \(A_{p^{e-1}} \) to 1 in \((\mathbb{Z}/p\mathbb{Z})^\times\) because the two finite groups have the same order, and then for finitely generated abelian groups and then the Sun Ze theorem combine to show that \((\mathbb{Z}/p)^\times\) is cyclic because \((\mathbb{Z}/p^f\mathbb{Z})^\times\) is an isomorphism because the two finite groups have the same order, and then \(A_{p-1} \) is cyclic.

Furthermore, this discussion has shown that \(A_{p^{e-1}} \) is the kernel of the natural epimorphism,

\[
A_{p^{e-1}} = \{ a + p^e\mathbb{Z} : a = 1 \mod p \}.
\]

Working \(p \)-adically, we have additive-to-multiplicative group isomorphisms

\[\exp : p^f\mathbb{Z}_p \to 1 + p^f\mathbb{Z}_p, \quad f \geq 1,\]

because \(\exp(ap^f) \) for any \(a \in \mathbb{Z}_p \) begins with \(1 + ap^f \), and then for \(n \geq 2, \)

\[
\nu_p \left(\frac{(ap^f)^n}{n!} \right) \geq n\left(f - \frac{1}{p-1}\right) \geq 2\left(f - \frac{1}{2}\right) = 2f - 1 \geq f.
\]

Especially, we have the isomorphisms for \(f = 1 \) and for \(f = e \). Thus the surjective composition \(p\mathbb{Z}_p \searrow 1 + p\mathbb{Z}_p \to A_{p^{e-1}} \), where the second map is the restriction of the ring map \(\mathbb{Z}_p \to \mathbb{Z}_p/p^e\mathbb{Z}_p \approx \mathbb{Z}/p^e\mathbb{Z} \) to the subgroup \(1 + p\mathbb{Z}_p \) of \(\mathbb{Z}_p^\times \), factors through the quotient of its domain \(p\mathbb{Z}_p \) by \(p^e\mathbb{Z}_p \).

\[
\begin{array}{ccc}
p\mathbb{Z}_p & \sim \to & 1 + p\mathbb{Z}_p \\
\exp \downarrow & & \downarrow \\
p\mathbb{Z}_p/p^e\mathbb{Z}_p & \to & A_{p^{e-1}}
\end{array}
\]

Further, \(p\mathbb{Z}_p/p^e\mathbb{Z}_p \approx p\mathbb{Z}/p^e\mathbb{Z} \approx \mathbb{Z}/p^{e-1}\mathbb{Z} \). Thus the surjection \(p\mathbb{Z}_p/p^e\mathbb{Z}_p \to A_{p^{e-1}} \) is an isomorphism because the two finite groups have the same order, and then \(A_{p^{e-1}} \) is cyclic because \(\mathbb{Z}/p^{e-1}\mathbb{Z} \) is.

This completes the proof. \(\square \)

The condition \(-1/(p-1) \geq -1/2 \) in the proof fails for \(p = 2 \), but a modification of the argument shows that \((\mathbb{Z}/2^e\mathbb{Z})^\times \) has a cyclic subgroup of index 2.

Once one is aware that the truncated exponential series gives an isomorphism \(p\mathbb{Z}/p^e\mathbb{Z} \overset{\sim}{\to} A_{p^{e-1}} \), the isomorphism can be confirmed without direct reference to the \(p \)-adic exponential. For example with \(e = 3 \), any \(px + p^3\mathbb{Z} \) has image \(1 + px + \frac{1}{2}p^2x^2 + p^3\mathbb{Z} \), and similarly \(py + p^3\mathbb{Z} \) has image \(1 + py + \frac{1}{2}p^2y^2 + p^3\mathbb{Z} \); their sum \(p(x+y) + p^3\mathbb{Z} \) maps to \(1 + p(x+y) + \frac{1}{2}p^2(x^2 + 2xy + y^2) + p^3\mathbb{Z} \) which is also the product of the images, even though \(1 + p(x+y) + \frac{1}{2}p^2(x^2 + 2xy + y^2) \) is not the product of \(1 + px + \frac{1}{2}p^2x^2 \) and \(1 + py + \frac{1}{2}p^2y^2 \). This idea underlies the elementary argument to be given next.
5. Odd Prime Power Unit Group Structure: Elementary Argument

Again we show that for any odd prime p and any positive e, the group $(\mathbb{Z}/p^e\mathbb{Z})^\times$ is cyclic. Here the argument is elementary.

Proof. Let g generate $(\mathbb{Z}/p\mathbb{Z})^\times$. Since

$$(g + p)^{p-1} = g^{p-1} + (p - 1)g^{p-2}p \mod p^2 \neq g^{p-1} \mod p^2,$$

it follows that

$$g^{p-1} \neq 1 \mod p^2 \text{ or } (g + p)^{p-1} \neq 1 \mod p^2.$$

So after replacing g with $g + p$ if necessary, we may assume that $g^{p-1} \neq 1 \mod p^2$. Thus we know that

$$g^{p-1} = 1 + k_1p, \quad p \nmid k_1.$$

By the Binomial Theorem,

$$g^{p(p-1)} = (1 + k_1p)^p = 1 + pk_1p + \sum_{j=2}^{p-1} \binom{p}{j} k_1^j p^j + k_1^p p^p
$$

$$= 1 + k_2p^2, \quad p \nmid k_2.$$

The last equality holds because the terms in the sum and the term $k_1^p p^p$ are multiples of p^3. (Here it is relevant that $p > 2$. The assertion fails for $p = 2, g = 3$ because of the last term. That is, $3^{2-1} = 1 + 1 \cdot 2$ so that $k_1 = 1$ is not divisible by $p = 2$, but then $3^{2(2-1)} = 9 = 1 + 2 \cdot 2^2$ so that $k_2 = 2$ is.) Again by the Binomial Theorem,

$$g^{p^2(p-1)} = (1 + k_2p^2)^p = 1 + pk_2p^2 + \sum_{j=2}^{p} \binom{p}{j} k_2^j p^{2j}
$$

$$= 1 + k_3p^3, \quad p \nmid k_3,$$

because the terms in the sum are multiples of p^4. Similarly

$$g^{p^3(p-1)} = 1 + k_4p^4, \quad p \nmid k_4,$$

and so on, up to

$$g^{p^{e-2}(p-1)} = 1 + k_{e-1}p^{e-1}, \quad p \nmid k_{e-1}.$$

That is,

$$g^{p^{e-2}(p-1)} \neq 1 \mod p^e.$$

The order of g in $(\mathbb{Z}/p^e\mathbb{Z})^\times$ must divide $\phi(p^e) = p^{e-1}(p - 1)$. If the order takes the form p^rd where $\varepsilon \leq e - 1$ and d is a proper divisor of $p - 1$ then Fermat’s Little Theorem ($g^p = g \mod p$) shows that the relation

$$g^{p^rd} = 1 \mod p^e$$

reduces modulo p to

$$g^d = 1 \mod p.$$

But this contradicts the fact that g is a generator modulo p. Thus the order of g in $(\mathbb{Z}/p^e\mathbb{Z})^\times$ takes the form $p^{e}(p - 1)$ where $\varepsilon \leq e - 1$. The calculation above has shown that $\varepsilon = e - 1$, and the proof is complete. \qed
For example, 2 generates \((\mathbb{Z}/5\mathbb{Z})^\times\), and \(2^5 - 1 = 16 \neq 1 \mod 5^2\), so in fact 2 generates \((\mathbb{Z}/5^e\mathbb{Z})^\times\) for all \(e \geq 1\).

A small consequence of the proposition is that since \((\mathbb{Z}/p^e\mathbb{Z})^\times\) is cyclic for odd \(p\), and since \(\phi(p^e) = p^{e-1}(p-1)\) is even, the equation
\[x^2 = 1 \mod p^e\]
has two solutions: 1 and \(g^{\phi(p^e)/2}\).

6. Powers of 2 Unit Group Structure

Proposition 6.1. The structure of the unit group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is
\[\begin{align*}
(\mathbb{Z}/2^e\mathbb{Z})^\times &\cong \begin{cases}
\mathbb{Z}/\mathbb{Z} & \text{if } e = 1, \\
\mathbb{Z}/2\mathbb{Z} & \text{if } e = 2, \\
(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2^{e-2}\mathbb{Z}) & \text{if } e \geq 3.
\end{cases}
\end{align*}\]

Specifically, \((\mathbb{Z}/2\mathbb{Z})^\times = \{1\}\), \((\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}\), and for \(e \geq 3\),
\[\begin{align*}
(\mathbb{Z}/2^e\mathbb{Z})^\times &\cong \{\pm 1\} \times \{1, 5^{2^e-2}\}.
\end{align*}\]

Proof. The results for \((\mathbb{Z}/2\mathbb{Z})^\times\) and for \((\mathbb{Z}/4\mathbb{Z})^\times\) are readily observable, and so we take \(e \geq 3\).

Since \(|(\mathbb{Z}/2^e\mathbb{Z})^\times| = \phi(2^e) = 2^{e-1}\), we need to show that
\[5^{2^{e-3}} \neq 1 \mod 2^e, \quad 5^{2^{e-2}} = 1 \mod 2^e,\]

Similarly, to the previous argument, start from
\[5^{2^0} = 5 = 1 + k_2 2^2, \quad 2 \nmid k_2,\]
and thus
\[5^{2^1} = 5^2 = 1 + 2k_2 2^2 + k_2^2 2^4 = 1 + k_3 2^3, \quad 2 \nmid k_3,\]
and then
\[5^{2^2} = 5^4 = 1 + 2k_3 2^3 + k_3^2 2^6 = 1 + k_4 2^4, \quad 2 \nmid k_4,\]
and so on up to
\[5^{2^{e-3}} = 1 + k_{e-1} 2^{e-1}, \quad 2 \nmid k_{e-1},\]
and finally
\[5^{2^{e-2}} = 1 + k_e 2^e, \quad 2 \nmid k_e.\]

The last two displays show that
\[5^{2^{e-3}} \neq 1 \mod 2^e, \quad 5^{2^{e-2}} = 1 \mod 2^e.\]

That is, 5 generates half of \((\mathbb{Z}/2^e\mathbb{Z})^\times\). To show that the full group is
\[\begin{align*}
(\mathbb{Z}/2^e\mathbb{Z})^\times &\cong \{\pm 1\} \times \{1, 5^{2^e-2}\},
\end{align*}\]
suppose that
\[\begin{align*}
(-1)^a 5^b &\equiv (-1)^c 5^d \mod 2^e, \quad a, c \in \{0, 1\}, \quad b, d \in \{0, \cdots, 2^{e-2} - 1\}.
\end{align*}\]
Inspect modulo 4 to see that \(c = a\). So now \(5^b = 5^d \mod 2^e\), and the restrictions on \(b\) and \(d\) show that \(d = b\) as well.
The group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is not cyclic for \(e \geq 3\) because all of its elements have order dividing \(2^{e-2}\).

The equation
\[x^2 = 1 \mod 2^e\]
has one solution if \(e = 1\), two solutions if \(e = 2\), and four solutions if \(e \geq 3\),
\[(1, 1), \ (-1, 1), \ (1, 5^{2^{e-3}}), \ (-1, 5^{2^{e-3}}).
\]

With this information in hand, the Sun Ze Theorem shows that the number of solutions of the equation
\[x^2 = 1 \mod n,\]
(where \(n = 2^e \prod_{i=1}^g p_i^{e_i}\)) is
\[
\begin{cases}
2^g & \text{if } e = 0, 1, \\
2 \cdot 2^g & \text{if } e = 2, \\
4 \cdot 2^g & \text{if } e \geq 3.
\end{cases}
\]

For example, if \(n = 120 = 2^3 \cdot 3 \cdot 5\) then the number of solutions is 16.

Especially, the fact that for odd \(n = \prod_{i=1}^g p_i^{e_i}\) there are \(2^g - 1\) proper square roots of 1 modulo \(n\) has to do with the effectiveness of the Miller–Rabin primality test. Recall that the test makes use of a diagnostic base \(b \in \{1, \ldots, n-1\}\) and of the factorization \(n - 1 = 2^s m\), computing (everything modulo \(n\))
\[b^m, \ (b^m)^2, \ ((b^m)^2)^2, \ldots, \ (b^{m2^{e-2}})^2 = b^{n-1}.
\]

Of course, if \(b^m = 1\) then all the squaring is doing nothing, while if \(b^{n-1} \neq 1\) then \(n\) is not prime by Fermat’s Little Theorem. The interesting case is when \(b^m \neq 1\) but \(b^{n-1} = 1\), so that repeatedly squaring \(b^m\) does give 1: in this case, squaring \(b^m\) one fewer time gives a proper square root of 1. If \(n\) has \(g\) distinct prime factors then we expect this square root to be \(-1\) only \(1/(2^g - 1)\) of the time. Thus, if the process turns up the square root \(-1\) for many values of \(b\) then almost certainly \(g = 1\), i.e., \(n\) is a prime power. Of course, if \(n\) is a prime power but not prime then we hope that it isn’t a Fermat pseudoprime base \(b\) for many bases \(b\), and the Miller–Rabin will diagnose this.

7. **Cyclic Unit Groups** \((\mathbb{Z}/n\mathbb{Z})^\times\)

Consider a positive nonunit integer
\[n = \prod_{i} p_i^{e_i}.
\]

Recall the multiplicative component of the Sun Ze Theorem,
\[(\mathbb{Z}/n\mathbb{Z})^\times \rightarrow \prod_{i} (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times, \quad a \mod n \mapsto (a \mod p_1^{e_1}, \ldots, a \mod p_k^{e_k}).
\]

Consequently, the order of \(a\) divides the least common multiple of the orders of the multiplicand-groups,
\[
\lcm\{\phi(p_1^{e_1}), \ldots, \phi(p_k^{e_k})\},
\]
and thus \(a\) can not conceivably have order \(\phi(n)\) unless all of the \(\phi(p_i^{e_i})\) are coprime.
For each odd p, the totient $\phi(p^e)$ is even for all $e \geq 1$. So for $(\mathbb{Z}/n\mathbb{Z})^\times$ to be cyclic, n can have at most one odd prime divisor. Also, $2 \mid \phi(2^e)$ for all $e \geq 2$. So the possible unit groups $(\mathbb{Z}/n\mathbb{Z})^\times$ that could be cyclic are

$$(\mathbb{Z}/2\mathbb{Z})^\times, \ (\mathbb{Z}/4\mathbb{Z})^\times, \ (\mathbb{Z}/p^e\mathbb{Z})^\times, \ (\mathbb{Z}/2p^e\mathbb{Z})^\times.$$

We know that the first three groups in fact are cyclic. For $n = 2p^e$, the Sun Ze Theorem gives

$$(\mathbb{Z}/2p^e\mathbb{Z})^\times \cong (\mathbb{Z}/2\mathbb{Z})^\times \times (\mathbb{Z}/p^e\mathbb{Z})^\times \cong (\mathbb{Z}/p^e\mathbb{Z})^\times,$$

showing that the fourth group is cyclic as well. If g generates $(\mathbb{Z}/p^e\mathbb{Z})^\times$ then whichever of g and $g + p^e$ is odd generates $(\mathbb{Z}/2p^e\mathbb{Z})^\times$.