1. The Unit Group of $\mathbb{Z}/n\mathbb{Z}$

Consider a nonunit positive integer,

$$n = \prod p^e > 1.$$

The Sun Ze Theorem gives a ring isomorphism,

$$\mathbb{Z}/n\mathbb{Z} \cong \prod \mathbb{Z}/p^e\mathbb{Z}.$$

The right side is the cartesian product of the rings $\mathbb{Z}/p^e\mathbb{Z}$, meaning that addition and multiplication are carried out componentwise. It follows that the corresponding unit group is

$$(\mathbb{Z}/n\mathbb{Z})^\times \cong \prod (\mathbb{Z}/p^e\mathbb{Z})^\times.$$

Thus to study the unit group $(\mathbb{Z}/n\mathbb{Z})^\times$ it suffices to consider $(\mathbb{Z}/p^e\mathbb{Z})^\times$ where p is prime and $e > 0$. Recall that in general,

$$|(\mathbb{Z}/n\mathbb{Z})^\times| = \phi(n),$$

so that for prime powers,

$$|(\mathbb{Z}/p^e\mathbb{Z})^\times| = \phi(p^e) = p^{e-1}(p - 1),$$

and especially for primes,

$$|(\mathbb{Z}/p\mathbb{Z})^\times| = p - 1.$$

Here are some examples of unit groups modulo prime powers.

$$(\mathbb{Z}/2\mathbb{Z})^\times = \{1\}, \cdot = \{2^0\}, \cdot \cong \{0\}, +) = \mathbb{Z}/2\mathbb{Z},$$

$$(\mathbb{Z}/3\mathbb{Z})^\times = \{1, 2\}, \cdot = \{2^0, 2^1\}, \cdot \cong \{0, 1\}, +) = \mathbb{Z}/3\mathbb{Z},$$

$$(\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}, \cdot = \{3^0, 3^1\}, \cdot \cong \{0, 1\}, +) = \mathbb{Z}/4\mathbb{Z},$$

$$(\mathbb{Z}/5\mathbb{Z})^\times = \{1, 2, 3, 4\}, \cdot = \{2^0, 2^1, 2^2, 2^3\}, \cdot \cong \{0, 1, 2, 3\}, +) = \mathbb{Z}/5\mathbb{Z},$$

$$(\mathbb{Z}/7\mathbb{Z})^\times = \{1, 2, 3, 4, 5, 6\}, \cdot = \{3^0, 3^1, 3^2, 3^3, 3^4, 3^5\}, \cdot \cong \{0, 1, 2, 3, 4, 5\}, +) = \mathbb{Z}/7\mathbb{Z},$$

$$(\mathbb{Z}/8\mathbb{Z})^\times = \{1, 3, 5, 7\}, \cdot = \{3^05^0, 3^15^0, 3^05^1, 3^15^1\}, \cdot \cong \{0, 1\} \times \{0, 1\}, +) = \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z},$$

$$(\mathbb{Z}/9\mathbb{Z})^\times = \{1, 2, 4, 5, 7, 8\}, \cdot = \{2^0, 2^1, 2^2, 2^3, 2^4, 2^5\}, \cdot \cong \{0, 1, 2, 3, 4, 5\}, +) = \mathbb{Z}/9\mathbb{Z},$$

$$(\mathbb{Z}/11\mathbb{Z})^\times = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, \cdot = \{11^0, 11^1, 11^2, 11^3, 11^4, 11^5, 11^6, 11^7, 11^8, 11^9\}, \cdot \cong \{0, 1\} \times \{0, 1\}, +) = \mathbb{Z}/11\mathbb{Z}.\]
2. Prime Unit Group Structure: Abelian Group Theory Argument

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,

$$(\mathbb{Z}/p\mathbb{Z})^\times \cong \mathbb{Z}/(p-1)\mathbb{Z}.$$

That is, there is a generator g mod p such that

$$(\mathbb{Z}/p\mathbb{Z})^\times = \{1, g, g^2, \ldots, g^{p-2}\}.$$

Proof. We may assume that G is not trivial. By the structure theorem for finitely generated abelian groups,

$$(G,\cdot) \cong (\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}, +), \quad k \geq 1, \ 1 < d_1 | d_2 \cdots | d_k.$$

Thus the polynomial equation $X^{d_k} = 1$, whose additive counterpart is $d_kX = 0$, has $d_1d_2\cdots d_k$ roots in G, forcing $k = 1$ and consequently making G cyclic.

The proof tacitly relies on a fact from basic algebra:

Lemma 2.2. Let k be a field. Let $f \in k[X]$ be a nonzero polynomial, and let d denote its degree (thus $d \geq 0$). Then f has at most d roots in k.

Proof. If f has no roots then we are done. Otherwise let $a \in k$ be a root. Write

$$f(X) = q(X)(X-a) + r(X), \quad \deg(r) < 1 \text{ or } r = 0.$$

Thus $r(X)$ is a constant. Substitute a for X to see that in fact $r = 0$, and so $f(X) = q(X)(X-a)$. By induction, q has at most $d-1$ roots in k and we are done.

The lemma does require that k be a field, not merely a ring. For example, the polynomial $X^2 - 1$ over the ring $\mathbb{Z}/24\mathbb{Z}$ has for its roots

$$\{1, 5, 7, 11, 13, 17, 19, 23\} = (\mathbb{Z}/24\mathbb{Z})^\times.$$

To count the generators of $(\mathbb{Z}/p\mathbb{Z})^\times$, consider any finite cyclic abelian group,

$$G \cong \mathbb{Z}/n\mathbb{Z}.$$

For any integer k the subgroup of $\mathbb{Z}/n\mathbb{Z}$ generated by $k + n\mathbb{Z}$ is

$$(k + n\mathbb{Z}) = k\mathbb{Z} + n\mathbb{Z} = \gcd(k, n)\mathbb{Z} + n\mathbb{Z} = (\gcd(k, n) + n\mathbb{Z}),$$

which clearly has order $n/\gcd(k, n)$. Especially, each $k + n\mathbb{Z}$ where k is coprime to n generates the full group, and there are $\phi(n)$ such values of k. In particular, $(\mathbb{Z}/p\mathbb{Z})^\times$ has $\phi(p-1)$ generators.

3. Prime Unit Group Structure: Elementary Argument

From above, a nonzero polynomial over $\mathbb{Z}/p\mathbb{Z}$ can not have more roots than its degree. On the other hand, Fermat’s Little Theorem says that the polynomial

$$f(X) = X^{p-1} - 1 \in (\mathbb{Z}/p\mathbb{Z})[X]$$

has a full contingent of $p-1$ roots in $\mathbb{Z}/p\mathbb{Z}$.

For any divisor d of $p-1$, consider the factorization (in consequence of the finite geometric sum formula)

$$f(X) = X^{p-1} - 1 = (X^d - 1) \sum_{i=0}^{p-1} X^{id} = g(X)h(X).$$
We know that
• f has $p - 1$ roots in $\mathbb{Z}/p\mathbb{Z}$,
• g has at most d roots in $\mathbb{Z}/p\mathbb{Z}$,
• h has at most $p - 1 - d$ roots in $\mathbb{Z}/p\mathbb{Z}$.

It follows that $g(X) = X^d - 1$ where $d \mid p - 1$ has d roots in $\mathbb{Z}/p\mathbb{Z}$.

Now factor $p - 1$,
$$p - 1 = \prod q^{e_q}.$$

For each factor q^e of $p - 1$,
$$X^{q^e} - 1 \text{ has } q^e \text{ roots in } \mathbb{Z}/p\mathbb{Z},$$
$$X^{q^{e-1}} - 1 \text{ has } q^{e-1} \text{ roots in } \mathbb{Z}/p\mathbb{Z},$$

and so $(\mathbb{Z}/p\mathbb{Z})^\times$ contains $q^e - q^{e-1} = \phi(q^e)$ elements of order q^e. (The order of an element is the smallest positive number of times that the element is multiplied by itself to give 1.) Plausibly,
$$\text{any product } \prod x_q \text{ has order } \prod q^{e_q} = p - 1,$$

and certainly there are $\phi(p - 1)$ such products. In sum, we have done most of the work of showing

Proposition 3.1. Let p be prime. Then $(\mathbb{Z}/p\mathbb{Z})^\times$ is cyclic, with $\phi(p - 1)$ generators.

The loose end is as follows.

Lemma 3.2. In a commutative group, consider two elements whose orders are coprime. Then the order of their product is the product of their orders.

Proof. We have $a^e = b^f = 1$, and so
$$(ab)^{ef} = (a^e)^f (b^f)^e = 1^f 1^e = 1.$$

Also we have $(e, f) = 1$. So for any positive integer d,
$$(ab)^d = 1 \implies 1 = (ab)^d = (a^e b^f)^d = b^d \implies f \mid ed \implies f \mid d,$$

and symmetrically $e \mid d$. Thus $ef \mid d$. \qed

4. **Odd Prime Power Unit Group Structure: p-Adic Argument**

Proposition 4.1. Let p be an odd prime, and let e be any positive integer. The multiplicative group modulo p^e is cyclic.

Proof. We have the result for $e = 1$, so take $e \geq 2$. The structure theorem for finitely generated abelian groups and then the Sun Ze theorem combine to show that $(\mathbb{Z}/p^e\mathbb{Z})^\times$ takes the form
$$(\mathbb{Z}/p^e\mathbb{Z})^\times = A_{p^{e-1}} \times A_{p-1} \quad (\text{where } A_n \text{ denotes an abelian group of order } n).$$

By the Sun Ze Theorem, it suffices to show that each of $A_{p^{e-1}}$ and A_{p-1} is cyclic.

The natural epimorphism $(\mathbb{Z}/p^e\mathbb{Z})^\times \twoheadrightarrow (\mathbb{Z}/p\mathbb{Z})^\times$ maps $A_{p^{e-1}}$ to 1 in $(\mathbb{Z}/p\mathbb{Z})^\times$ since the orders of the two groups are coprime but the image is a quotient of the first and a subgroup of the second. Consequently the restriction of the natural epimorphism to A_{p-1} must be an isomorphism, and thus A_{p-1} is cyclic because
$(\mathbb{Z}/p\mathbb{Z})^\times$ is. Furthermore, this discussion has shown that $A_{p^{e-1}}$ is the kernel of the natural epimorphism,

$$A_{p^{e-1}} = \{a + p^e\mathbb{Z} : a = 1 \mod p\}.$$

Working p-adically, consider the group isomorphism

$$\exp : p\mathbb{Z}_p \longrightarrow 1 + p\mathbb{Z}_p.$$

The exponential series converges on $p\mathbb{Z}_p$ because the summands decay notwithstanding the factorial in the denominator,

$$\nu_p\left(\frac{(ap)^n}{n!}\right) \geq n - \sum_{i \geq 1}^{n} \frac{n}{p^{i}} = \frac{p - 2}{p - 1} - \frac{1}{2} n, \quad n \in \mathbb{Z}_{\geq 0}.$$

Similarly, the exponential map takes $p^e\mathbb{Z}_p$ into $1 + p^e\mathbb{Z}_p$. Indeed, the first two terms of $\exp(ap^e)$ for any $a \in \mathbb{Z}_p$ are $1 + ap^e$, and then for $n \geq 2$,

$$\nu_p\left(\frac{(ap^e)^n}{n!}\right) \geq n\left(e - \frac{1}{p - 1}\right) \geq 2(e - \frac{1}{2}) = 2e - 1 > e.$$

Now we know that the surjective composition $p\mathbb{Z}_p \xrightarrow{\exp} 1 + p^e\mathbb{Z}_p \rightarrow A_{p^{e-1}}$ factors through $p\mathbb{Z}/p^e\mathbb{Z}$, with the resulting map $p\mathbb{Z}/p^e\mathbb{Z} \rightarrow A_{p^{e-1}}$ an isomorphism because the two finite groups have the same order.

Thus $A_{p^{e-1}}$ is cyclic, and the proof is complete. \square

The condition $(p - 2)/(p - 1) > 0$ in the proof fails for $p = 2$, but a modification of the ideas here shows that $(\mathbb{Z}/2^e\mathbb{Z})^\times$ has a cyclic subgroup of index 2.

5. **Odd Prime Power Unit Group Structure: Elementary Argument**

Again we show that for any odd prime p and any positive e, the group $(\mathbb{Z}/p^e\mathbb{Z})^\times$ is cyclic. Here the argument is elementary.

Proof. Let g generate $(\mathbb{Z}/p\mathbb{Z})^\times$. Since

$$(g + p)^{p-1} = g^{p-1} + (p - 1)g^{p-2}p \mod p^2 \neq g^{p-1} \mod p^2,$$

it follows that

$$g^{p-1} \neq 1 \mod p^2 \quad \text{or} \quad (g + p)^{p-1} \neq 1 \mod p^2.$$

So after replacing g with $g + p$ if necessary, we may assume that $g^{p-1} \neq 1 \mod p^2$. Thus we know that

$$g^{p-1} = 1 + k_1 p, \quad p \upharpoonright k_1.$$

By the Binomial Theorem,

$$g^{p(p-1)} = (1 + k_1 p)^p = 1 + pk_1 p + \sum_{j=2}^{p-1} \binom{p}{j} k_1^j p^j + k_1^p p^p$$

$$= 1 + k_2 p^2, \quad p \upharpoonright k_2.$$
The last equality holds because the terms in the sum and the term \(k_1^p p^n\) are multiples of \(p^3\). (Here it is relevant that \(p > 2\). The assertion fails for \(p = 2, g = 3\) because of the last term. That is, \(3^{2-1} = 1 + 1 \cdot 2\) so that \(k_1 = 1\) is not divisible by \(p = 2\), but then \(3^{2(2-1)} = 9 = 1 + 2 \cdot 2^2\) so that \(k_2 = 2\) is.) Again by the Binomial Theorem,

\[
g^{p^2(p-1)} = (1 + k_2 p^3)^p = 1 + pk_2 p^2 + \sum_{j=2}^{p} \binom{p}{j} k_2^j p^{2j}
\]

\[= 1 + k_3 p^3, \quad p \nmid k_3,
\]

because the terms in the sum are multiples of \(p^4\). Similarly

\[
g^{p^3(p-1)} = 1 + k_4 p^4, \quad p \nmid k_4,
\]

and so on, up to

\[
g^{p^{e-2}(p-1)} = 1 + k_{e-1} p^{e-1}, \quad p \nmid k_{e-1}.
\]

That is,

\[
g^{p^{e-2}(p-1)} \neq 1 \mod p^e.
\]

The order of \(g\) in \((\mathbb{Z}/p^e\mathbb{Z})^\times\) must divide \(\phi(p^e) = p^{e-1}(p - 1)\). If the order takes the form \(p^\varepsilon d\) where \(\varepsilon \leq e - 1\) and \(d\) is a proper divisor of \(p - 1\) then Fermat’s Little Theorem \((g^p = g \mod p)\) shows that the relation

\[
g^{p^\varepsilon d} = 1 \mod p^e
\]

reduces modulo \(p\) to

\[
g^d = 1 \mod p.
\]

But this contradicts the fact that \(g\) is a generator modulo \(p\). Thus the order of \(g\) in \((\mathbb{Z}/p^e\mathbb{Z})^\times\) takes the form \(p^\varepsilon(p - 1)\) where \(\varepsilon \leq e - 1\). The calculation above has shown that \(\varepsilon = e - 1\), and the proof is complete. \(\square\)

For example, 2 generates \((\mathbb{Z}/5\mathbb{Z})^\times\), and \(2^5 - 1 = 16 \neq 1 \mod 5^2\), so in fact 2 generates \((\mathbb{Z}/5^e\mathbb{Z})^\times\) for all \(e \geq 1\).

A small consequence of the proposition is that since \((\mathbb{Z}/p^e\mathbb{Z})^\times\) is cyclic for odd \(p\), and since \(\phi(p^e) = p^{e-1}(p - 1)\) is even, the equation

\[x^2 = 1 \mod p^e\]

has two solutions: 1 and \(g^{\phi(p^e)/2}\).

6. Powers of 2 Unit Group Structure

Proposition 6.1. The structure of the unit group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is

\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \begin{cases}
\mathbb{Z}/\mathbb{Z} & \text{if } e = 1, \\
\mathbb{Z}/2\mathbb{Z} & \text{if } e = 2, \\
(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2^{e-2}\mathbb{Z}) & \text{if } e \geq 3.
\end{cases}
\]

Specifically, \((\mathbb{Z}/2\mathbb{Z})^\times = \{1\}\), \((\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}\), and for \(e \geq 3\),

\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \{\pm 1\} \times \{1, 5, 5^2, \ldots, 5^{e-2}-1\}.
\]
Proof. The results for \((\mathbb{Z}/2\mathbb{Z})^\times\) and for \((\mathbb{Z}/4\mathbb{Z})^\times\) are readily observable, and so we take \(e \geq 3\).

Since \(|(\mathbb{Z}/2^e\mathbb{Z})^\times| = \phi(2^e) = 2^e - 1\), we need to show that
\[
5^{2^e - 3} \not\equiv 1 \pmod{2^e}, \quad 5^{2^e - 2} \equiv 1 \pmod{2^e},
\]
Similarly, to the previous argument, start from
\[
5^{2^0} = 5 = 1 + k_2 2^2, \quad 2 \mid k_2,
\]
and thus
\[
5^{2^1} = 5^2 = 1 + 2k_2 2^2 + k_2^2 2^4 = 1 + k_3 2^3, \quad 2 \mid k_3,
\]
and then
\[
5^{2^2} = 5^4 = 1 + 2k_3 2^3 + k_3^2 2^6 = 1 + k_4 2^4, \quad 2 \mid k_4,
\]
and so on up to
\[
5^{2^e - 3} = 1 + k_{e-1} 2^{e-1}, \quad 2 \mid k_{e-1},
\]
and finally
\[
5^{2^e - 2} = 1 + k_e 2^e, \quad 2 \mid k_e.
\]
The last two displays show that
\[
5^{2^e - 3} \not\equiv 1 \pmod{2^e}, \quad 5^{2^e - 2} = 1 \pmod{2^e},
\]
That is, 5 generates half of \((\mathbb{Z}/2^e\mathbb{Z})^\times\). To show that the full group is
\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \{\pm 1\} \times \{1, 5, 5^2, \ldots, 5^{2^e-2}-1\},
\]
suppose that
\[
(-1)^a 5^b = (-1)^c 5^d \pmod{2^e}, \quad a, c \in \{0, 1\}, \quad b, d \in \{0, \ldots, 2^{e-2} - 1\}.
\]
Inspect modulo 4 to see that \(c = a\). So now \(5^b = 5^d \pmod{2^e}\), and the restrictions on \(b\) and \(d\) show that \(d = b\) as well. □

The group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is not cyclic for \(e \geq 3\) because all of its elements have order dividing \(2^{e-2}\).

The equation
\[
x^2 = 1 \pmod{2^e}
\]
has one solution if \(e = 1\), two solutions if \(e = 2\), and four solutions if \(e \geq 3\),
\[
(1, 1), \quad (-1, 1), \quad (1, 5^{2e-3}), \quad (-1, 5^{2e-3}).
\]

With this information in hand, the Sun Ze Theorem shows that the number of solutions of the equation
\[
x^2 = 1 \pmod{n}, \quad (\text{where } n = 2^e \prod_{i=1}^g p_i^{e_i})
\]
is
\[
\begin{cases}
2^g & \text{if } e = 0, 1, \\
2 \cdot 2^g & \text{if } e = 2, \\
4 \cdot 2^g & \text{if } e \geq 3.
\end{cases}
\]
For example, if \(n = 120 = 2^3 \cdot 3 \cdot 5\) then the number of solutions is 16.

Especially, the fact that for odd \(n = \prod_{i=1}^g p_i^{e_i}\) there are \(2^g - 1\) proper square roots of 1 modulo \(n\) has to do with the effectiveness of the Miller–Rabin primality
test. Recall that the test makes use of a diagnostic base $b \in \{1, \ldots, n-1\}$ and of the factorization $n-1 = 2^s m$, computing (everything modulo n)

$$b^m, \quad (b^m)^2, \quad ((b^m)^2)^2, \quad \ldots, \quad (b^{m2^s-2})^2 = b^{n-1}.$$

Of course, if $b^m = 1$ then all the squaring is doing nothing, while if $b^{n-1} \neq 1$ then n is not prime by Fermat’s Little Theorem. The interesting case is when $b^m \neq 1$ but $b^{n-1} = 1$, so that repeatedly squaring b^m does give 1: in this case, squaring b^m one fewer time gives a proper square root of 1. If n has g distinct prime factors then we expect this square root to be -1 only $1/(2^g - 1)$ of the time. Thus, if the process turns up the square root -1 for many values of b then almost certainly $g = 1$, i.e., n is a prime power. Of course, if n is a prime power but not prime then we hope that it isn’t a Fermat pseudoprime base b for many bases b, and the Miller–Rabin will diagnose this.

7. Cyclic Unit Groups $(\mathbb{Z}/n\mathbb{Z})^\times$

Consider a positive nonunit integer

$$n = \prod p_i^{e_i}.$$

Recall the multiplicative component of the Sun Ze Theorem,

$$(\mathbb{Z}/n\mathbb{Z})^\times \cong \prod (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times, \quad a \mod n \mapsto (a \mod p_1^{e_1}, \ldots, a \mod p_k^{e_k}).$$

Consequently, the order of a divides the least common multiple of the orders of the multiplicand-groups,

$$\text{lcm}\{\phi(p_1^{e_1}), \ldots, \phi(p_k^{e_k})\},$$

and thus a can not conceivably have order $\phi(n)$ unless all of the $\phi(p_i^{e_i})$ are coprime.

For each odd p, the totient $\phi(p^e)$ is even for all $e \geq 1$. So for $(\mathbb{Z}/n\mathbb{Z})^\times$ to be cyclic, n can have at most one odd prime divisor. Also, $2 | \phi(2^e)$ for all $e \geq 2$. So the possible unit groups $(\mathbb{Z}/n\mathbb{Z})^\times$ that could be cyclic are

$$(\mathbb{Z}/2\mathbb{Z})^\times, \quad (\mathbb{Z}/4\mathbb{Z})^\times, \quad (\mathbb{Z}/p^e\mathbb{Z})^\times, \quad (\mathbb{Z}/2p^e\mathbb{Z})^\times.$$

We know that the first three groups in fact are cyclic. For $n = 2p^e$, the Sun Ze Theorem gives

$$(\mathbb{Z}/2p^e\mathbb{Z})^\times \cong (\mathbb{Z}/2\mathbb{Z})^\times \times (\mathbb{Z}/p^e\mathbb{Z})^\times \cong (\mathbb{Z}/p^e\mathbb{Z})^\times,$$

showing that the fourth group is cyclic as well. If g generates $(\mathbb{Z}/p^e\mathbb{Z})^\times$ then whichever of g and $g + p^e$ is odd generates $(\mathbb{Z}/2p^e\mathbb{Z})^\times$.