1. The Unit Group of \(\mathbb{Z}/n\mathbb{Z} \)

Consider a nonunit positive integer,

\[n = \prod p^e > 1. \]

The Sun Ze Theorem gives a ring isomorphism,

\[\mathbb{Z}/n\mathbb{Z} \cong \prod \mathbb{Z}/p^e\mathbb{Z}. \]

The right side is the cartesian product of the rings \(\mathbb{Z}/p^e\mathbb{Z} \), meaning that addition and multiplication are carried out componentwise. It follows that the corresponding unit group is

\[(\mathbb{Z}/n\mathbb{Z})^\times \cong \prod (\mathbb{Z}/p^e\mathbb{Z})^\times. \]

Thus to study the unit group \((\mathbb{Z}/n\mathbb{Z})^\times \) it suffices to consider \((\mathbb{Z}/p^e\mathbb{Z})^\times \) where \(p \) is prime and \(e > 0 \). Recall that in general,

\[|(\mathbb{Z}/n\mathbb{Z})^\times| = \phi(n), \]

so that for prime powers,

\[|(\mathbb{Z}/p^e\mathbb{Z})^\times| = \phi(p^e) = p^{e-1}(p - 1), \]

and especially for primes,

\[|(\mathbb{Z}/p\mathbb{Z})^\times| = p - 1. \]

Here are some examples of unit groups modulo prime powers, most but not quite all cyclic.

\[(\mathbb{Z}/2\mathbb{Z})^\times = (\{1\}, \cdot) = (\{2\}, \cdot) \cong (\{0, 1\}, +) = \mathbb{Z}/2\mathbb{Z}, \]
\[(\mathbb{Z}/3\mathbb{Z})^\times = (\{1, 2\}, \cdot) = (\{2^0, 2^1\}, \cdot) \cong (\{0, 1\}, +) = \mathbb{Z}/2\mathbb{Z}, \]
\[(\mathbb{Z}/4\mathbb{Z})^\times = (\{1, 3\}, \cdot) = (\{3^0, 3^1\}, \cdot) \cong (\{0, 1\}, +) = \mathbb{Z}/2\mathbb{Z}, \]
\[(\mathbb{Z}/5\mathbb{Z})^\times = (\{1, 2, 3, 4\}, \cdot) = (\{2^0, 2^1, 2^2, 2^3\}, \cdot) \]
\[\cong (\{0, 1, 2, 3, 4\}, +) = \mathbb{Z}/4\mathbb{Z}, \]
\[(\mathbb{Z}/7\mathbb{Z})^\times = (\{1, 2, 3, 4, 5, 6\}, \cdot) = (\{3^0, 3^1, 3^2, 3^3, 3^4, 3^5\}, \cdot) \]
\[\cong (\{0, 1, 2, 3, 4, 5\}, +) = \mathbb{Z}/6\mathbb{Z}, \]
\[(\mathbb{Z}/8\mathbb{Z})^\times = (\{1, 3, 5, 7\}, \cdot) = (\{3^05^0, 3^15^0, 3^25^1, 3^35^1\}, \cdot) \]
\[\cong (\{0, 1\} \times \{0, 1\}, +) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \]
\[(\mathbb{Z}/9\mathbb{Z})^\times = (\{1, 2, 4, 5, 7, 8\}, \cdot) = (\{2^0, 2^1, 2^2, 2^3, 2^4, 2^5\}, \cdot) \]
\[\cong (\{0, 1, 2, 3, 4, 5\}, +) = \mathbb{Z}/6\mathbb{Z}. \]
2. Prime Unit Group Structure: Abelian Group Theory Argument

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,

$$(\mathbb{Z}/p\mathbb{Z})^\times \cong \mathbb{Z}/(p-1)\mathbb{Z}.$$

That is, there is a generator g mod p such that

$$(\mathbb{Z}/p\mathbb{Z})^\times = \{1, g, g^2, \ldots, g^{p-2}\}.$$

Proof. We may assume that G is not trivial. By the structure theorem for finitely generated abelian groups,

$$(G, \cdot) \cong (\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}, +), \quad k \geq 1, \ 1 < d_1 \mid d_2 \cdots \mid d_k.$$

Thus the polynomial equation $X^{d_k} = 1$, whose additive counterpart is $d_kX = 0$, is satisfied by each of the $d_1d_2\cdots d_k$ elements of G; but also, the polynomial has at most as many roots as its degree d_k. Thus $k = 1$ and G is cyclic. \hfill \Box

The proof tacitly relies on a fact from basic algebra:

Lemma 2.2. Let k be a field. Let $f \in k[X]$ be a nonzero polynomial, and let d denote its degree (thus $d \geq 0$). Then f has at most d roots in k.

Proof. If f has no roots then we are done. Otherwise let $a \in k$ be a root. Write

$$f(X) = q(X)(X - a) + r(X), \quad \deg(r) < 1 \text{ or } r = 0.$$

Thus $r(X)$ is a constant. Substitute a for X to see that in fact $r = 0$, and so $f(X) = q(X)(X - a)$. Because we are working over a field, any root of f is a root of q, and by induction q has at most $d - 1$ roots in k, so we are done. \hfill \Box

The lemma does require that k be a field, not merely a ring. For example, the polynomial $X^2 - 1$ over the ring $\mathbb{Z}/24\mathbb{Z}$ has for its roots

$$\{1, 5, 7, 11, 13, 17, 19, 23\} = (\mathbb{Z}/24\mathbb{Z})^\times.$$

To count the generators of $(\mathbb{Z}/p\mathbb{Z})^\times$, we establish a handy result that is slightly more general.

Proposition 2.3. Let n be a positive integer, and let e be an integer. Let $\gamma = \gcd(e, n)$. The map

$$\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}, \quad x \mapsto ex$$

has

- **image** $\langle \gamma + n\mathbb{Z} \rangle$, of order n/γ,
- **kernel** $\langle n/\gamma + n\mathbb{Z} \rangle$, of order γ.

Especially, each $e + n\mathbb{Z}$ where e is coprime to n generates $\mathbb{Z}/n\mathbb{Z}$, which therefore has $\phi(n)$ generators.

Indeed, the image is $\{ex + n\mathbb{Z} : x \in \mathbb{Z}\} = \{ex + ny + n\mathbb{Z} : y, x \in \mathbb{Z}\} = \langle \gamma + n\mathbb{Z} \rangle$.

The rest of the proposition follows, or we can see the kernel directly by noting that $n \mid ex$ if and only if $n/\gamma \mid (e/\gamma)x$, which by Euclid’s Lemma holds if and only if $n/\gamma \mid x$.

Because $(\mathbb{Z}/p\mathbb{Z})^\times$ is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$, the proposition shows that if g is a generator then all the generators are the $\phi(p-1)$ powers g^e where $\gcd(e, p-1) = 1$.

3. **Prime Unit Group Structure: Elementary Argument**

From above, a nonzero polynomial over \(\mathbb{Z}/p\mathbb{Z}\) cannot have more roots than its degree. On the other hand, Fermat’s Little Theorem says that the polynomial

\[f(X) = X^{p-1} - 1 \in (\mathbb{Z}/p\mathbb{Z})[X] \]

has a full contingent of \(p - 1\) roots in \(\mathbb{Z}/p\mathbb{Z}\).

For any divisor \(d\) of \(p - 1\), consider the factorization (in consequence of the finite geometric sum formula)

\[f(X) = X^{p-1} - 1 = (X^d - 1) \sum_{i=0}^{\frac{p-1}{d} - 1} X^{id} = g(X)h(X). \]

We know that

- \(f\) has \(p - 1\) roots in \(\mathbb{Z}/p\mathbb{Z}\),
- \(g\) has at most \(d\) roots in \(\mathbb{Z}/p\mathbb{Z}\),
- \(h\) has at most \(p - 1 - d\) roots in \(\mathbb{Z}/p\mathbb{Z}\).

It follows that \(g(X) = X^d - 1\) where \(d \mid p - 1\) has \(d\) roots in \(\mathbb{Z}/p\mathbb{Z}\).

Now factor \(p - 1\),

\[p - 1 = \prod q^{e_q}. \]

For each factor \(q^e\) of \(p - 1\),

\[X^{q^e} - 1 \text{ has } q^e \text{ roots in } \mathbb{Z}/p\mathbb{Z}, \]
\[X^{q^{e-1}} - 1 \text{ has } q^{e-1} \text{ roots in } \mathbb{Z}/p\mathbb{Z}, \]

and so \((\mathbb{Z}/p\mathbb{Z})^\times\) contains \(q^e - q^{e-1} = \phi(q^e)\) elements \(x_q\) of order \(q^e\). (The order of an element is the smallest positive number of times that the element is multiplied by itself to give 1.) Plausibly, any product \(\prod x_q\) has order \(\prod q^{e_q} = p - 1\),

and certainly there are \(\phi(p - 1)\) such products. In sum, we have done most of the work of showing

Proposition 3.1. Let \(p\) be prime. Then \((\mathbb{Z}/p\mathbb{Z})^\times\) is cyclic, with \(\phi(p-1)\) generators.

The loose end is as follows.

Lemma 3.2. In a commutative group, consider two elements whose orders are coprime. Then the order of their product is the product of their orders.

Proof. Let \(e\) and \(f\) denote the orders of \(a\) and \(b\), and let \(g\) denote the order of \(ab\). Compute,

\[(ab)^{ef} = (a^e)^f (b^f)^e = 1^f 1^e = 1. \]

Thus \(g \mid ef\). Also, using the condition \((e, f) = 1\) for the third implication to follow,

\[(ab)^g = 1 \implies 1 = ((ab)^g)^f = (a^f b^f)^g = a^{fg} \implies e \mid fg \implies e \mid g, \]

and symmetrically \(f \mid g\). Thus \(ef \mid g\), again because \((e, f) = 1\). Altogether \(g = ef\) as claimed. \(\square\)
4. Odd Prime Power Unit Group Structure: p-Adic Argument

Proposition 4.1. Let p be an odd prime, and let e be any positive integer. The multiplicative group modulo p^e is cyclic.

Proof. (Sketch.) We have the result for $e = 1$, so take $e \geq 2$. The structure theorem for finitely generated abelian groups and then the Sun Ze theorem combine to show that $(\mathbb{Z}/p^e\mathbb{Z})^\times$ takes the form

$$(\mathbb{Z}/p^e\mathbb{Z})^\times = A_{p^e-1} \times A_{p-1}$$

(where A_n denotes an abelian group of order n).

By the Sun Ze Theorem, it suffices to show that each of A_{p^e-1} and A_{p-1} is cyclic.

The natural epimorphism $$(\mathbb{Z}/p^e\mathbb{Z})^\times \to (\mathbb{Z}/p\mathbb{Z})^\times$$ maps A_{p^e-1} to 1 in $(\mathbb{Z}/p\mathbb{Z})^\times$, because the orders of the two groups are coprime but the image is a quotient of the first and a subgroup of the second. Consequently the restriction of the natural epimorphism to A_{p-1} must be an isomorphism, making A_{p-1} cyclic because $(\mathbb{Z}/p\mathbb{Z})^\times$ is. Furthermore, this discussion has shown that A_{p^e-1} is the natural epimorphism’s kernel,

$$A_{p^e-1} = \{ a + p^e \mathbb{Z} \in (\mathbb{Z}/p^e\mathbb{Z})^\times : a \equiv 1 \bmod{p} \}.$$

Working p-adically, we have additive-to-multiplicative group isomorphisms

$$\exp : p^f \mathbb{Z}_p \to 1 + p^f \mathbb{Z}_p, \quad f \geq 1,$$

because $\exp(ap^f)$ for any $a \in \mathbb{Z}_p$ begins with $1 + ap^f$, and then for $n \geq 2$,

$$\nu_p \left(\frac{(ap^f)^n}{n!} \right) \geq n \left(f - \frac{1}{p-1} \right) \geq 2 \left(f - \frac{1}{2} \right) = 2f - 1 \geq f.$$

Especially, we have the isomorphisms for $f = 1$ and for $f = e$. Thus the surjective composition $p\mathbb{Z}_p \xrightarrow{\exp} 1 + p\mathbb{Z}_p \to A_{p^e-1}$, where the second map is the restriction of the ring map $\mathbb{Z}_p \to \mathbb{Z}_p/p^e\mathbb{Z}_p \approx \mathbb{Z}/p^e\mathbb{Z}$ to the multiplicative group map $1 + p\mathbb{Z}_p \to (\mathbb{Z}/p^e\mathbb{Z})^\times$, factors through the quotient of its domain $p\mathbb{Z}_p$ by $p^e\mathbb{Z}_p$,

$$\begin{array}{ccc}
p\mathbb{Z}_p & \xrightarrow{\sim} & 1 + p\mathbb{Z}_p \\
\downarrow & \downarrow & \downarrow \\
p\mathbb{Z}_p/p^e\mathbb{Z}_p & \to & A_{p^e-1}
\end{array}$$

Further, $p\mathbb{Z}_p/p^e\mathbb{Z}_p \approx p\mathbb{Z}/p^e\mathbb{Z} \approx \mathbb{Z}/p^{e-1}\mathbb{Z}$. So the surjection $p\mathbb{Z}_p/p^e\mathbb{Z}_p \to A_{p^e-1}$ is an isomorphism because the two finite groups have the same order, and then A_{p^e-1} is cyclic because $\mathbb{Z}/p^{e-1}\mathbb{Z}$ is. This completes the proof. \(\square\)

The condition $-1/(p-1) > -1/2$ in the proof fails for $p = 2$, but a modification of the argument shows that $(\mathbb{Z}/2^e\mathbb{Z})^\times$ has a cyclic subgroup of index 2.

Once one is aware that the truncated exponential series gives an isomorphism $p\mathbb{Z}/p^e\mathbb{Z} \xrightarrow{\sim} A_{p^e-1}$, the isomorphism can be confirmed without direct reference to the p-adic exponential. For example with $e = 3$, any $px + p^2\mathbb{Z}$ has image $1 + px + \frac{1}{2}p^2x^2 + p^3\mathbb{Z}$, and similarly $py + p^2\mathbb{Z}$ has image $1 + py + \frac{1}{2}p^2y^2 + p^3\mathbb{Z}$; their sum $p(x+y) + p^2\mathbb{Z}$ maps to $1 + p(x+y) + \frac{3}{2}p^2(x^2 + 2xy + y^2) + p^3\mathbb{Z}$, which is also the product of the images, even though $1 + p(x+y) + \frac{3}{2}p^2(x^2 + 2xy + y^2)$ is not the product of $1 + px + \frac{1}{2}p^2x^2$ and $1 + py + \frac{1}{2}p^2y^2$. This idea underlies the elementary argument to be given next.
5. Odd Prime Power Unit Group Structure: Elementary Argument

Again we show that for any odd prime p and any positive e, the group $(\mathbb{Z}/p^e\mathbb{Z})^\times$ is cyclic. Here the argument is elementary.

Proof. Let g generate $(\mathbb{Z}/p\mathbb{Z})^\times$. Since

$$(g + p)^{p-1} = g^{p-1} + (p - 1)g^{p-2}p \mod p^2 \neq g^{p-1} \mod p^2,$$

it follows that

$$g^{p-1} \neq 1 \mod p^2 \quad \text{or} \quad (g + p)^{p-1} \neq 1 \mod p^2.$$

So after replacing g with $g + p$ if necessary, we may assume that $g^{p-1} \neq 1 \mod p^2$.

Thus we know that

$$g^{p-1} = 1 + k_1 p, \quad p \nmid k_1.$$

By the Binomial Theorem,

$$g^{p(p-1)} = (1 + k_1 p)^p = 1 + pk_1 p + \sum_{j=2}^{p-1} \binom{p}{j} k_1^j p^j + k_1 p^p$$

$$= 1 + k_2 p^2, \quad p \nmid k_2.$$

The last equality holds because the terms in the sum and the term $k_1^j p^j$ are multiples of p^3. (Here it is relevant that $p > 2$. The assertion fails for $p = 2, g = 3$ because of the last term. That is, $3^{2-1} = 1 + 1 \cdot 2$ so that $k_1 = 1$ is not divisible by $p = 2$, but then $3^{2(2-1)} = 9 = 1 + 2 \cdot 2^2$ so that $k_2 = 2$ is.) Again by the Binomial Theorem,

$$g^{p^2(p-1)} = (1 + k_2 p^2)^p = 1 + pk_2 p^2 + \sum_{j=2}^{p} \binom{p}{j} k_2^j p^{2j}$$

$$= 1 + k_3 p^3, \quad p \nmid k_3,$$

because the terms in the sum are multiples of p^4. Similarly

$$g^{p^3(p-1)} = 1 + k_4 p^4, \quad p \nmid k_4,$$

and so on, up to

$$g^{p^{e-2}(p-1)} = 1 + k_{e-1} p^{e-1}, \quad p \nmid k_{e-1}.$$

That is,

$$g^{p^{e-2}(p-1)} \neq 1 \mod p^e.$$

The order of g in $(\mathbb{Z}/p^e\mathbb{Z})^\times$ must divide $\phi(p^e) = p^{e-1}(p - 1)$. If the order takes the form p^d where $\varepsilon \leq e - 1$ and d is a proper divisor of $p - 1$ then Fermat’s Little Theorem $(g^p = g \mod p)$ shows that the relation

$$g^{p^d} = 1 \mod p^e$$

reduces modulo p to

$$g^d = 1 \mod p.$$

But this contradicts the fact that g is a generator modulo p. Thus the order of g in $(\mathbb{Z}/p^e\mathbb{Z})^\times$ takes the form $p^{\varepsilon}(p - 1)$ where $\varepsilon \leq e - 1$. The calculation above has shown that $\varepsilon = e - 1$, and the proof is complete. \square
For example, 2 generates \((\mathbb{Z}/5\mathbb{Z})^\times\), and \(2^5 - 1 = 16 \neq 1 \mod 5^2\), so in fact 2 generates \((\mathbb{Z}/5^e\mathbb{Z})^\times\) for all \(e \geq 1\).

A small consequence of the proposition is that since \((\mathbb{Z}/p^e\mathbb{Z})^\times\) is cyclic for odd \(p\), and since \(\phi(p^e) = p^e - 1\), the equation
\[
x^2 = 1 \mod p^e
\]
has two solutions: 1 and \(g^{\phi(p^e)/2}\).

6. Powers of 2 Unit Group Structure

Proposition 6.1. The structure of the unit group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is

\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \begin{cases} \mathbb{Z}/\mathbb{Z} & \text{if } e = 1, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } e = 2, \\ (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2^{e-2}\mathbb{Z}) & \text{if } e \geq 3. \end{cases}
\]

Specifically, \((\mathbb{Z}/2\mathbb{Z})^\times = \{1\}, (\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}\), and for \(e \geq 3\),
\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \{\pm 1\} \times \{1, 5, 5^2, \ldots, 5^{2^{e-2}-1}\}.
\]

Proof. The results for \((\mathbb{Z}/2\mathbb{Z})^\times\) and for \((\mathbb{Z}/4\mathbb{Z})^\times\) are readily observable, and so we take \(e \geq 3\).

Since \(|(\mathbb{Z}/2^e\mathbb{Z})^\times| = \phi(2^e) = 2^{e-1}\), we need to show that
\[
5^{2^{e-3}} \neq 1 \mod 2^e, \quad 5^{2^{e-2}} = 1 \mod 2^e,
\]
Similarly, to the previous argument, start from
\[
5^{2^0} = 5 = 1 + k_22^2, \quad 2 \nmid k_2,
\]
and thus
\[
5^{2^1} = 5^2 = 1 + 2k_22^2 + k_2^22^4 = 1 + k_32^3, \quad 2 \nmid k_3,
\]
and then
\[
5^{2^2} = 5^4 = 1 + 2k_32^3 + k_3^22^6 = 1 + k_42^4, \quad 2 \nmid k_4,
\]
and so on up to
\[
5^{2^{e-3}} = 1 + k_{e-1}2^{e-1}, \quad 2 \nmid k_{e-1},
\]
and finally
\[
5^{2^{e-2}} = 1 + k_e2^e, \quad 2 \nmid k_e.
\]
The last two displays show that
\[
5^{2^{e-3}} \neq 1 \mod 2^e, \quad 5^{2^{e-2}} = 1 \mod 2^e.
\]
That is, 5 generates half of \((\mathbb{Z}/2^e\mathbb{Z})^\times\). To show that the full group is
\[
(\mathbb{Z}/2^e\mathbb{Z})^\times \cong \{\pm 1\} \times \{1, 5, 5^2, \ldots, 5^{2^{e-2}-1}\},
\]
suppose that
\[
(-1)^a5^b = (-1)^c5^d \mod 2^e, \quad a, c \in \{0, 1\}, b, d \in \{0, \ldots, 2^{e-2} - 1\}.
\]
Inspect modulo 4 to see that \(c = a\). So now \(5^b = 5^d \mod 2^e\), and the restrictions on \(b\) and \(d\) show that \(d = b\) as well. \(\square\)
The group \((\mathbb{Z}/2^e\mathbb{Z})^\times\) is not cyclic for \(e \geq 3\) because all of its elements have order dividing \(2^{e-2}\).

The equation

\[x^2 = 1 \mod 2^e \]

has one solution if \(e = 1\), two solutions if \(e = 2\), and four solutions if \(e \geq 3\),

\[(1, 1), \ (-1, 1), \ (1, 5^{2e-3}), \ (-1, 5^{2e-3}). \]

With this information in hand, the Sun Ze Theorem shows that the number of solutions of the equation

\[x^2 = 1 \mod n, \quad (\text{where } n = 2^e \prod_{i=1}^{g} p_i^{e_i}) \]

is

\[
\begin{cases}
2^g & \text{if } e = 0, 1, \\
2 \cdot 2^g & \text{if } e = 2, \\
4 \cdot 2^g & \text{if } e \geq 3.
\end{cases}
\]

For example, if \(n = 120 = 2^3 \cdot 3 \cdot 5\) then the number of solutions is 16.

Especially, the fact that for odd \(n = \prod_{i=1}^{g} p_i^{e_i}\) there are \(2^g - 1\) proper square roots of 1 modulo \(n\) has to do with the effectiveness of the Miller–Rabin primality test. Recall that the test makes use of a diagnostic base \(b \in \{1, \ldots, n-1\}\) and of the factorization \(n - 1 = 2^s m\), computing (everything modulo \(n\))

\[b^m, \ (b^m)^2, \ ((b^m)^2)^2, \ldots, \ (b^{m2e-2})^2 = b^{n-1}. \]

Of course, if \(b^m = 1\) then all the squaring is doing nothing, while if \(b^{n-1} \neq 1\) then \(n\) is not prime by Fermat’s Little Theorem. The interesting case is when \(b^m \neq 1\) but \(b^{n-1} = 1\), so that repeatedly squaring \(b^m\) does give \(1\): in this case, squaring \(b^m\) one fewer time gives a proper square root of 1. If \(n\) has \(g\) distinct prime factors then we expect this square root to be \(-1\) only \(1/(2^g - 1)\) of the time. Thus, if the process turns up the square root \(-1\) for many values of \(b\) then almost certainly \(g = 1\), i.e., \(n\) is a prime power. Of course, if \(n\) is a prime power but not prime then we hope that it isn’t a Fermat pseudoprime base \(b\) for many bases \(b\), and the Miller–Rabin will diagnose this.

7. Cyclic Unit Groups \((\mathbb{Z}/n\mathbb{Z})^\times\)

Consider a positive nonunit integer

\[n = \prod_{i} p_i^{e_i}. \]

Recall the multiplicative component of the Sun Ze Theorem,

\[(\mathbb{Z}/n\mathbb{Z})^\times \xrightarrow{\sim} \prod (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times\quad a \mod n \mapsto (a \mod p_1^{e_1}, \ldots, a \mod p_k^{e_k}). \]

Consequently, the order of \(a\) divides the least common multiple of the orders of the multiplicand-groups,

\[\text{lcm}\{\phi(p_1^{e_1}), \ldots, \phi(p_k^{e_k})\}, \]

and thus \(a\) cannot conceivably have order \(\phi(n)\) unless all of the \(\phi(p_i^{e_i})\) are coprime.
For each odd p, the totient $\phi(p^e)$ is even for all $e \geq 1$. So for $(\mathbb{Z}/n\mathbb{Z})^\times$ to be cyclic, n can have at most one odd prime divisor. Also, $2 \mid \phi(2^e)$ for all $e \geq 2$. So the possible unit groups $(\mathbb{Z}/n\mathbb{Z})^\times$ that could be cyclic are

$$(\mathbb{Z}/2\mathbb{Z})^\times, \quad (\mathbb{Z}/4\mathbb{Z})^\times, \quad (\mathbb{Z}/p^e\mathbb{Z})^\times, \quad (\mathbb{Z}/2p^e\mathbb{Z})^\times.$$

We know that the first three groups in fact are cyclic. For $n = 2p^e$, the Sun Ze Theorem gives

$$(\mathbb{Z}/2p^e\mathbb{Z})^\times \cong (\mathbb{Z}/2\mathbb{Z})^\times \times (\mathbb{Z}/p^e\mathbb{Z})^\times \cong (\mathbb{Z}/p^e\mathbb{Z})^\times,$$

showing that the fourth group is cyclic as well. If g generates $(\mathbb{Z}/p^e\mathbb{Z})^\times$ then whichever of g and $g + p^e$ is odd generates $(\mathbb{Z}/2p^e\mathbb{Z})^\times$.