
MATH 361: NUMBER THEORY — SIXTH LECTURE

SUPPLEMENT

1. Computation of
√
−1 in Z5

Let p = 5. Let
f(x) = 1 + x2, f ′(x) = 2x.

The condition f(x) = 0 is x2 = −1. That is, finding a root of f amounts to finding
a square root of −1.

Let x1 = 2. Thus

f(x1) = 5, f ′(x1) = 4,

and so

f(x1) = 0 mod 51, f ′(x1) = 0 mod p0, f ′(x1) ̸= 0 mod p1.

Here we have n = 1, k = 0, and 2k ≤ n− 1.

Let x2 = x1 + 51k = 2 + 5k, with k to be determined. Compute

f(x2) = 1 + 22 + 2 · 2 · 5k + 52k2 = 5(1 + 4k) mod 52.

This is 0 mod 52 if 1+4k = 0 mod 5, or 1 = k mod 5, so take k = 1. Now x2 = 7 .

Thus
f(x2) = 50, f ′(x2) = 14.

So x2 = x1 mod 51 and

f(x2) = 0 mod 52, f ′(x2) = 0 mod p0, f ′(x2) ̸= 0 mod p1.

Now we have n = 2, k = 0, and still 2k ≤ n− 1.

Let x3 = x2 + 52k = 7 + 25k, with k to be determined. Compute

f(x3) = 1 + 72 + 2 · 7 · 52k + 54k2 = 52(2 + 14k) mod 53.

This is 0 mod 53 if 2+4k = 0 mod 5, or 2 = k mod 5, so take k = 2. Now x3 = 57 .

Thus
f(x3) = 3250 = 26 · 53, f ′(x2) = 114.

So x3 = x2 mod 52 and

f(x3) = 0 mod 53, f ′(x3) = 0 mod p0, f ′(x3) ̸= 0 mod p1.

Now we have n = 3, k = 0, and still 2k ≤ n− 1.

Let x4 = x3 + 53k = 57 + 125k, with k to be determined. Compute

f(x4) = 1 + 572 + 2 · 57 · 53k + 56k2 = 53(26 + 2 · 57k) mod 54.

This is 0 mod 54 if 1 + 4k = 0 mod 5, or 1 = k mod 5, so take k = 1. Now

x4 = 182 . So x4 = x3 mod 53, and we can confirm that

f(x4) = 0 mod 54, f ′(x4) = 0 mod p0, f ′(x4) ̸= 0 mod p1.

And now we have n = 4, k = 0, and still 2k ≤ n− 1.
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We can continue indefinitely in this fashion. At each step, no matter how large n
is, the congruence to solve for k will take the form a+4k = 0 mod 5, or a = k mod 5,
so we take k = a and then xn+1 = xn + 5nk.

2. p-adic valuation and absolute value

Fix a prime p. Every nonzero rational number x uniquely takes the form

x = pe
m

n
, e ∈ Z, m, n ∈ Z− {0}, p ∤ mn, n > 0, gcd(m,n) = 1.

Here we crucially use unique factorization in Z+. The p-adic valuation function
on Q is

νp : Q −→ Z ∪ {−∞}
given by

νp(x) =

{
e if x = pem/n

−∞ if x = 0.

For x = pem/n and x′ = pe
′
m′/n′, compute

νp(xx
′) = νp

(
pe+e′ mm′

nn′

)
= e+ e′ = νp(x) + νp(x

′).

And if at least one of x and x′ is 0 then, again,

νp(xx
′) = νp(0) = −∞ = νp(x) + νp(x

′).

(Here −∞+ e′ = −∞ for all e′ ∈ Z ∪ {−∞}.) That is, for all x, x′ ∈ Q,

νp(xx
′) = νp(x) + νp(x

′).

As an application, if r ∈ Q squares to 2 then

2ν2(r) = ν2(r
2) = ν2(2) = 1,

giving ν2(r) = 1/2 /∈ Z, impossible. So no rational number can square to 2.

Again for x = pem/n and x′ = pe
′
m′/n′, now take e′ > e so that e′ = e + δ

where δ > 0. Because p ∤ mn′ + pδm′n we have

νp(x+ x′) = νp

(
pe

mn′ + pδm′n

nn′

)
= e = min{νp(x), νp(x′)}.

But if instead e′ = e, so that now δ = 0 and possibly p | mn′ +m′n, we have only

νp(x+ x′) = νp

(
pe

mn′ +m′n

nn′

)
≥ e = min{νp(x), νp(x′)}.

If x ̸= 0 as above but now x′ = 0 then

νp(x+ x′) = νp(x) = e > −∞ = min{νp(x), νp(x′)},

and if x = x′ = 0 then

νp(x+ x′) = νp(0) = −∞ = min{νp(x), νp(x′)}.

That is, overall, for all x, x′ ∈ Q,

νp(x+ x′) ≥ min{νp(x), νp(x′)}, with equality if νp(x) ̸= νp(x
′).
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As an application, for any integer n ≥ 2 let 2s be the biggest power of 2 that lies
in {1, . . . , n}; thus 2s+1 > n and so no proper integer multiple of 2s lies in {1, . . . , n}.
Consequently

ν2(1/2
s) = −s

ν2(1/k) > −s for all k ̸= 2s in {1, . . . , n}.
It follows that

ν2

(
1 +

1

2
+ · · ·+ 1

n
− 1

2s

)
> −s

and therefore that

ν2

(
1 +

1

2
+ · · ·+ 1

n

)
= −s < 0.

Thus 1 + 1/2 + · · ·+ 1/n is not an integer.

The p-adic absolute value on Q is

| · |p : Q −→ R≥0

given by
|x|p = p−νp(x).

This formula is understood to connote that |0|p = p−∞ = 0; for all nonzero x ∈ Q
the absolute value |x|p is positive. The two boxed formulas above give for all
x, x′ ∈ Q,

|xx′|p = |x|p|x′|p
and

|x+ x′|p ≤ max{|x|p, |x′|p}, with equality if νp(x) ̸= νp(x
′).

This last relation is called the ultrametric inequality because it is stronger than
the usual metric inequality |x+ x′| ≤ |x|+ |x′|. Because the ultrametric inequality
applies with −x′ in place of x′, and because | − x′|p = | − 1|p|x′|p = |x′|p, this says
that p-adically all triangles are isosceles.


