MATH 361: NUMBER THEORY — SIXTH LECTURE
SUPPLEMENT

1. COMPUTATION OF +/—1 IN Zs
Let p =5. Let

flx) =1+2?
The condition f(z) = 0 is 22
a square root of —1.

Let Thus

f(x1) =5, fl(x1) =4,
and so

f(z) = 2u.
—1. That is, finding a root of f amounts to finding

f(z1) = 0 mod 5%, f'(x1) =0 mod p°, f'(x1) # 0 mod p'.
Here we have n =1, k =0, and 2k <n — 1.
Let x5 = 21 + 5'k = 2 + 5k, with k to be determined. Compute
f(x2) = 14224225k + 5%k% = 5(1 + 4k) mod 5°.

This is 0 mod 52 if 1 +4k = 0 mod 5, or 1 = k mod 5, so take k = 1. Now .
Thus

f(z2) = 50, f(z2) = 14.

So x5 = x; mod 5! and

f(z2) = 0 mod 5%, f'(z2) = 0 mod p°, f'(x2) # 0 mod p'.
Now we have n =2, k = 0, and still 2k <n — 1.
Let x3 = 2o + 5%k = 7 + 25k, with k to be determined. Compute
flxs) =147 4+2-7-5%k + 5** = 5%(2 4+ 14k) mod 5°.

This is 0 mod 5% if 2+4k = 0 mod 5, or 2 = k mod 5, so take k = 2. Now .
Thus

f(z3) = 3250 = 26 - 5,

f(z2) = 114.
So x3 = x» mod 5% and
f(z3) = 0 mod 5%, f'(x3) =0 mod p°, f'(x3) # 0 mod p'.
Now we have n = 3, k = 0, and still 2k <n — 1.

Let x4 = w3 + 5%k = 57 + 125k, with k to be determined. Compute
f(x4) =1+57*+2-57-5% + 5%%* = 5%(26 + 2 - 57k) mod 5*.

This is 0 mod 5* if 1 + 4k = 0 mod 5, or 1 = k mod 5, so take k = 1. Now
. So 24 = 3 mod 52, and we can confirm that

fza) =0mod 5%, f'(z) = 0mod p°, f'(zs) # 0 mod p'.
And now we have n =4, k =0, and still 2k <n — 1.
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We can continue indefinitely in this fashion. At each step, no matter how large n
is, the congruence to solve for k will take the form a+4k = 0 mod 5, or a = k£ mod 5,
so we take k = a and then z,4+1 = x, + 5"k.

2. p-ADIC VALUATION AND ABSOLUTE VALUE
Fix a prime p. Every nonzero rational number x uniquely takes the form

x:pe%, e€Z, myneZ—{0}, ptmn, n>0, gcd(m,n) =1.

Here we crucially use unique factorization in Z*. The p-adic valuation function
on Q is
vp: Q — ZU{—o0}

given by
e ifxz=p°m/n
vp(w) = {_ /

oo ifx=0.

For « = p®m/n and x’ = p¢ m’/n’, compute

o) =y (1

And if at least one of x and x’ is 0 then, again,

o mm’

! > =e+e =vp(@) + ().

vp(aa') = 1(0) = —00 = vy (x) + vy (a).

(Here —oo + € = —oc for all ¢/ € ZU {—o0}.) That is, for all 2,2’ € Q,

vp(@a') = vy (@) + ().

As an application, if » € Q squares to 2 then
2w (r) = 1p(r?) = 1n(2) = 1,

giving vo(r) = 1/2 ¢ Z, impossible. So no rational number can square to 2.
Again for x = p®m/n and 2/ = p®m’/n’, now take ¢’ > e so that ¢/ = e+ §
where § > 0. Because p{ mn’ + p’m’n we have

l S/
cmn’ +p'm'n

, )=e=me@mwf»

But if instead e’ = e, so that now § = 0 and possibly p | mn’ + m/n, we have only

o +2') = vy (2

.mn’ +m'n

: > > ¢ = min{u, (), vy (')}

If x # 0 as above but now ' = 0 then

vz +12') =1, <p -
Vol + ') = vyl) = € > —00 = min{wy(a), (')},
and if x = 2’ = 0 then
(i +2) = 1y(0) = —00 = min{y(z), (&)}

That is, overall, for all z, 2’ € Q,

vp(z + 2') > min{v,(z),vp(z')}, with equality if v,(z) # v, (2'). ‘
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As an application, for any integer n > 2 let 2° be the biggest power of 2 that lies
in {1,...,n}; thus 257! > n and so no proper integer multiple of 2 lies in {1,...,n}.
Consequently

va(1/2°) = —s
vo(l/k) > —s forall k #2°in {1,...,n}.
It follows that

and therefore that
Y (TESU F
Thus 1+1/24 ---+ 1/n is not an integer.
The p-adic absolute value on Q is
|- 1p : Q@ — Rxo
given by

O
This formula is understood to connote that |0, = p~°° = 0; for all nonzero z € Q
the absolute value |z|, is positive. The two boxed formulas above give for all

z, 2 €Q,

22/} = Jalple’l, |

and

’ |z + 2’|, < max{|z|,, |2'|,}, with equality if v,(z) # v,(z'). ‘

This last relation is called the ultrametric inequality because it is stronger than
the usual metric inequality |z + 2’| < |z| + |z’|. Because the ultrametric inequality
applies with —z’ in place of 2/, and because | — 2’|, = | — 1|,|2'|, = |2/|p, this says
that p-adically all triangles are isosceles.



