1. Introduction

As a provisional definition, view number theory as the study of the properties of the positive integers,
\[ \mathbb{Z}^+ = \{1, 2, 3, \cdots \}. \]
Of particular interest, consider the prime numbers, the noninvertible positive integers divisible only by 1 and by themselves,
\[ \mathcal{P} = \{2, 3, 5, 7, 11, \cdots \}. \]
Euclid (c.300 B.C.) and Diophantus (c.250 A.D.) posed and solved number theory problems, as did Archimedes. In the middle ages the Indians and perhaps the Chinese knew further results. Fermat (early 1600’s) got a copy of Diophantus and revived the subject. Euler (mid-1700’s), Lagrange, Legendre, and others took it seriously. Gauss wrote *Disquisitiones Arithmeticae* in 1799.

Example questions:

- *(The perfect number problem.)* The numbers 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect numbers, the sum of their proper divisors. Are there others? Which numbers are perfect? This problem is not completely solved.

- *(The congruent number problem.)* Consider a positive integer \( n \). Is there a rational right triangle of area \( n \)? That is, is there a right triangle all three of whose sides are rational, that has area \( n \)? This problem is not completely solved, but very technical 20th century mathematics has reduced it to a problem called the *Birch and Swinnerton-Dyer Conjecture*, one of the so-called Clay Institute Millennium Problems, each of which carries a million dollar prize. The book *Introduction to Elliptic Curves and Modular forms* by Neal Koblitz uses the congruent number problem to introduce the relevant 20th century mathematics.

- *(A representation problem.)* Let \( n \) be a positive integer. Which primes \( p \) take the form
  \[ p = x^2 + ny^2 \]
for some \( x, y \in \mathbb{Z} \)? This problem is solved by modern mathematical ideas, specifically complex multiplication and class field theory. The book *Primes of the Form \( x^2 + ny^2 \)* by David Cox uses the representation problem in its title to introduce these subjects.

- *(Questions about the distribution of primes.)* Are there infinitely many primes? Infinitely many \( 4k + 1 \) primes? Infinitely many \( 28k + 9 \) primes? If so, can we say more than *infinitely many*? If \( \pi(x) \) denotes the number of primes \( p \leq x \) then how does \( \pi(x) \) grow as \( x \) grows? Questions like this lead quickly into analytic number theory, where, for example, ideas from
complex analysis or Fourier analysis are brought to bear on number theory. It is known that asymptotically
\[
\pi(x) \sim \frac{x}{\ln(x)}
\]
but the rate of asymptotic convergence depends on the famous Riemann hypothesis, another unsolved problem.

- (The Goldbach Conjecture.) Is every even integer \( n \geq 4 \) the sum of two primes? This problem is unsolved.

For all of these problems, the answer is either unknown or requires mathematical structures larger than \( \mathbb{Z}^+ \) and its arithmetic. On the other hand, plenty can be done working entirely inside \( \mathbb{Z}^+ \) as well.

So, loosely speaking, there are two options for a first course in number theory, elementary or nonelementary. (Here elementary doesn’t mean easy, but rather refers to a course set entirely in \( \mathbb{Z} \).) And again speaking loosely, a nonelementary course can be algebraic or analytic. This course will be nonelementary, with more emphasis on algebra than on analysis, although I hope to introduce some analytical ideas near the end of the semester to demonstrate their interaction with the algebra. Despite the emphasis on algebra in this class, the abstract algebra course is not prerequisite. This course is equally a good venue for practicing with algebra or for beginning to learn it.

Our text, by Ireland and Rosen, is well-suited to the emphasis of the course. We will cover its first nine chapters and a selection of its later material.

Many books are on reserve for this course as well, e.g., Cox, Hardy and Wright, Koblitz, Marcus, Silverman and Tate, Niven and Zuckerman and Montgomery, and so on. Many of these books are mostly about subjects that we will only touch on. Feel welcome to come see me for guidance about reading beyond the course.

2. The Gaussian Integers

As an example of an algebraic structure larger than the integers, the ring of Gaussian integers is
\[
\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\},
\]
with its rules of addition and multiplication inherited from the field of complex numbers. The Gaussian integers form a ring rather than a field, meaning that addition, subtraction, and multiplication are well-behaved, but inversion is not: the reciprocal of a Gaussian integer in general need not exist within the Gaussian integers.

As a ring, the Gaussian integers behave similarly to the rational integers \( \mathbb{Z} \). The units (multiplicatively invertible elements) of the Gaussian integers are
\[
\mathbb{Z}[i]^\times = \{\pm 1, \pm i\},
\]
a multiplicative group. Every nonzero Gaussian integer factors uniquely (up to units) into prime Gaussian integers. And so on.

Prime numbers in \( \mathbb{Z} \) are called rational primes to distinguish them from prime numbers in the Gaussian integers. The somewhat awkward phrase odd prime means any prime \( p \) other than 2.
3. **Prime Sums of Two Squares via the Gaussian Integers**

**Theorem 3.1** (Prime Sums of Two Squares). An odd rational prime $p$ takes the form $p = a^2 + b^2$ (where $a, b \in \mathbb{Z}$) if and only if $p \equiv 1 \text{ mod } 4$.

(Note: The notation $p \equiv 1 \text{ mod } 4$ means that $p = 4k + 1$ for some $k$. In general, the language $x$ is $y$ modulo $n$ means that $x$ and $y$ have the same remainder upon division by $n$, or equivalently, that $n$ divides $y - x$.)

**Proof.** ($\implies$) This direction is elementary. An odd rational prime $p$ is 1 or 3 modulo 4. If $p = a^2 + b^2$ then $p \equiv 1 \text{ mod } 4$ because each of $a^2$ and $b^2$ is 0 or 1 modulo 4.

($\impliedby$) This direction uses the Gaussian integers. For now, take for granted a fact about their arithmetic:

$p \equiv 1 \text{ mod } 4 \implies p$ factors in $\mathbb{Z}[i]$.

Granting the fact, we have

$$p \equiv 1 \text{ mod } 4 \implies p = (a + ib)(c + id), \quad a + ib, c + id \notin \mathbb{Z}[i]^*$$

$$\implies p^2 = pp = (a^2 + b^2)(c^2 + d^2)$$

$$\implies p = a^2 + b^2 = c^2 + d^2.$$ 

So the arithmetic of the Gaussian integers has made the problem easy, but now we need to establish their arithmetic property that $p$ factors in $\mathbb{Z}[i]$ if $p \equiv 1 \text{ mod } 4$.

To do so structurally, we quote a fact to be shown later in this course,

$$\{1, 2, 3, \ldots, p - 1\} = \{1, g, g^2, \ldots, g^{p-2}\} \quad \text{for some } g, \text{ working modulo } p.$$ 

That is, some element $g$ of the multiplicative group $\{1, 2, 3, \ldots, p - 1\}$ (again, working modulo $p$) generates the group. Equivalently, the group is cyclic. The generator $g$ need not be unique, but choose some $g$ that generates the group, and let

$$h = g^{(p-1)/4}.$$ 

The definition of $h$ is sensible since $p \equiv 1 \text{ mod } 4$. Then $h^2 = -1$, still working modulo $p$. That is, in the mod $p$ world, $-1$ has a square root. Now work in the ordinary integers again, where we have $h^2 \equiv -1 \text{ mod } p$. That is, letting the symbol “|” mean *divides* (and then moving back up to the Gaussian integers),

$$p | h^2 + 1 = (h + i)(h - i)$$

But if $p | h + i$ then also $p = \overline{p} | h - i$, so $p | 2i$, so $p | 2$ in $\mathbb{Z}[i]$, so $p | 2$ in $\mathbb{Z}$, contradicting the fact that $p$ is odd. Similarly, $p \nmid h - i$. We conclude that $p$ is not prime in $\mathbb{Z}[i]$, because when a prime divides a product, it divides at least one of the factors. Thus $p$ factors in $\mathbb{Z}[i]$ as desired.

However, this argument leaves us with a loose end. Does *prime* mean *doesn’t decompose as a product* (i.e., *divisible only by itself, up to units*), or does *prime* mean *doesn’t decompose as a factor* (i.e., *if it divides a product then it must divide at least one multiplicand*)? We will discuss this issue soon. □
4. Pythagorean Triples via the Gaussian Integers

Suppose that we have a primitive Pythagorean triple,
\[ x^2 + y^2 = z^2, \quad x, y, z \in \mathbb{Z}^+, \quad \gcd(x, y, z) = 1. \]
It follows that in fact \( x, y, \) and \( z \) are pairwise coprime. We normalize the triple by taking \( x \) odd, \( y \) even, and \( z \) odd. (Inspection modulo 4, as in the beginning of the proof just given, shows that the case where \( x \) and \( y \) are odd and \( z \) is even can not arise.)

Working in the Gaussian integers, the sum of squares factors,
\[ z^2 = (x + iy)(x - iy). \]
For now, take for granted the fact that consequently \( x + iy \) is a perfect square in \( \mathbb{Z}[i] \).
Granting the fact, we have
\[ x + iy = (r + is)^2 = r^2 - s^2 + i2rs, \]
so that the primitive normalized Pythagorean triple takes the form
\[ x = r^2 - s^2, \quad y = 2rs, \quad z = r^2 + s^2, \]
where
\[ 0 < s < r, \quad \gcd(r, s) = 1, \quad \text{one of } r, s \text{ is even}. \]
Thus we can systematically write down all primitive normalized Pythagorean triples in a table. The table begins as follows.

<table>
<thead>
<tr>
<th>( r )</th>
<th>( s = 1 )</th>
<th>( s = 2 )</th>
<th>( s = 3 )</th>
<th>( s = 4 )</th>
<th>( s = 5 )</th>
<th>( s = 6 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r = 2 )</td>
<td>( (3, 4, 5) )</td>
<td>( (5, 12, 13) )</td>
<td>( (7, 24, 25) )</td>
<td>( (9, 40, 41) )</td>
<td>( (11, 60, 61) )</td>
<td>( (13, 84, 85) )</td>
</tr>
<tr>
<td>( r = 3 )</td>
<td>( (15, 8, 17) )</td>
<td>( (21, 20, 29) )</td>
<td>( (27, 36, 45) )</td>
<td>( (33, 56, 65) )</td>
<td>( )</td>
<td>( )</td>
</tr>
<tr>
<td>( r = 4 )</td>
<td>( )</td>
<td>( (35, 12, 37) )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
</tr>
<tr>
<td>( r = 5 )</td>
<td>( )</td>
<td>( )</td>
<td>( (45, 28, 53) )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
</tr>
<tr>
<td>( r = 6 )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
<td>( (51, 40, 59) )</td>
<td>( )</td>
<td>( )</td>
</tr>
<tr>
<td>( r = 7 )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
<td>( )</td>
</tr>
</tbody>
</table>

So the question is why \( x + iy \) is a perfect square in \( \mathbb{Z}[i] \). For any prime \( \pi \in \mathbb{Z}[i] \) we have the implications
\[ \pi \mid x + iy \implies \pi \mid (x + iy)(x - iy) = z^2 \]
\[ \implies \pi^2 \mid z^2 \quad \text{(by unique factorization)} \]
\[ \implies \pi^2 \mid x + iy \text{ or } \pi \mid x - iy \quad \text{(since already } \pi \mid x + iy). \]
If \( \pi^2 \mid x + iy \) then the prime \( \pi \) occurs at least twice in \( x + iy \), so divide \( x + iy \) by \( \pi^2 \) and repeat the argument. The only other scenario is \( \pi \mid x + iy \) and \( \pi \mid x - iy \). But
\[ \{ \pi \mid x + iy \} \implies \{ \pi \mid 2x \} \implies \{ \pi \pi \mid 4x^2 \} \]
\[ \{ \pi \mid x - iy \} \implies \{ \pi \mid z \} \implies \{ \pi \pi \mid z^2 \} \]
The last two paired conditions hold in \( \mathbb{Z}[i] \) if and only if they hold in \( \mathbb{Z} \). They fail in \( \mathbb{Z} \) because of the conditions on the primitive normalized Pythagorean triple \( (x, y, z) \). So the condition \( \pi \mid x - iy \) is impossible, and the argument is complete.
It is natural to wonder whether the same idea of factoring in a suitable ring might help with Fermat’s Last Theorem. Let \( p \) be an odd prime, and suppose that we have a Fermat triple

\[ x^p + y^p = z^p. \]

Then

\[ z^p = x^p + y^p = \prod_{j=0}^{p-1} (x + \zeta_p^j y), \quad \zeta_p = e^{2\pi i / p}. \]

(The factorization just given is perhaps most easily seen by noting that \( x^p + y^p = x^p - (-y)^p \) since \( p \) is odd, and so \( x^p + y^p \) is 0 exactly when \( x = \zeta_p^j (-y) = -\zeta_p^j y \) for some \( j \in \{0, 1, \cdots, p-1\} \).

For the argument to continue along the lines of the argument for Pythagorean triples, we need to know that elements factor uniquely into primes (up to units) in the ring \( \mathbb{Z}[\zeta_p] \). Unique factorization holds for \( p = 2, 3, 5, 7, 11, 13, 17, 19 \). But unique factorization fails for \( p = 23 \), and it fails in general.

5. Rational Parametrization of Conic Curves

Let \( k \) denote any field, and let \( K \) be any extension field of \( k \), possibly \( K = k \). A line defined over \( k \) is an equation

\[ \mathcal{L} : Ax + By = C, \quad A, B, C \in k, \]

where at least one of \( A, B \) is nonzero. A \( K \)-rational point of \( \mathcal{L} \) is a solution \((x, y) \in K^2 \) of \( \mathcal{L} \). The set of \( K \)-rational points of \( \mathcal{L} \) is denoted \( \mathcal{L}_K \).

Similarly, a conic curve defined over \( k \) is an equation

\[ \mathcal{C} : ax^2 + bxy + cy^2 + dx + ey + f = 0, \quad a, b, c, d, e, f \in k, \]

where at least one of \( a, b, c \) nonzero. A \( K \)-rational point of \( \mathcal{C} \) is a solution \((x, y) \in K^2 \) of \( \mathcal{C} \), and the set of \( K \)-rational points of \( \mathcal{C} \) is denoted \( \mathcal{C}_K \). (Note: \( \mathcal{C}_K \) may not contain any points at all. For example, let \( k = K = \mathbb{R} \) and consider the conic curve \( \mathcal{C} : x^2 + y^2 = -1 \).

**Proposition 5.1.** Suppose that \( \mathcal{C}_K \) contains a point \( P = (x_P, y_P) \) not in \( \mathcal{L}_K \). Then the points of \( \mathcal{C}_K \) other than \( P \) are in bijective correspondence with the points of \( \mathcal{L}_K \).

**Proof.** First note that after a coordinate translation, we may let \( P = (0, 0) \), although now the coefficients of \( \mathcal{L} \) and \( \mathcal{C} \) could lie in \( K \) rather than \( k \).

For any given point \( Q = (x_Q, y_Q) \in \mathcal{C}_K \) such that \( Q \neq P \), let \( t = y_Q / x_Q \in K \) and then solve the equation \( \mathcal{L}(x, tx) \) for a unique \( x_R \in K \). Let \( y_R = tx_R \). The point \( R = (x_R, y_R) \in \mathcal{L}_K \) is collinear with \( P \) and \( Q \).

Conversely, for any given point \( R = (x_R, y_R) \in \mathcal{L}_K \) such that \( R \neq P \), let \( t = y_R / x_R \in K \) and then consider the equation \( \mathcal{C}(x, tx) \). This quadratic equation has \( x = 0 \) as a solution, but after dividing the equation through by \( x \) there is a unique second solution \( x_Q \in K \). (Possibly \( x_Q = 0 \) as well.) Let \( y_Q = tx_Q \). The point \( Q = (x_Q, y_Q) \in \mathcal{C}_K \) is collinear with \( P \) and \( R \).

The argument here has left out the case where all the \( x \)-coordinates agree. This situation can be handled as a special case. \( \square \)

Note that the fields \( k \) and \( K \) in this discussion are completely general. For example, \( k \) could be the field of \( p \) elements for some prime \( p \), and \( K \) could be the field of \( q = p^e \) elements for some positive integer \( e \).
6. Rational Parametrization of the Circle

Now define
\[ L : x = 0, \]
\[ C : x^2 + y^2 = 1, \]
and let \( P = (-1, 0) \), an element of \( C_k \) for any field \( k \).

Given a point \( Q = (x_Q, y_Q) \in C_K \), the corresponding point on \( L_K \) is
\[ R = \left( 0, \frac{y_Q}{x_Q + 1} \right). \]
Conversely, given a point \( R = (0, y_R) \in L_K \), let \( t = y_R \). We seek a point \( Q = (x, t(x + 1)) \in C_K \). But
\[ x^2 + y^2 = ((x + 1) - 1)^2 + t^2(x + 1)^2 = (1 + t^2)(x + 1)^2 - 2(x + 1) + 1, \]
so we want
\[ (1 + t^2)(x + 1)^2 - 2(x + 1) = 0, \]
or \( (1 + t^2)(x + 1) = 2, \) or \( x + 1 = 2/(1 + t^2) \). Since \( y = t(x + 1) \) it follows that \( y = 2t/(1 + t^2) \), so that finally,
\[ Q = \left( 1 - \frac{t^2}{1 + t^2}, \frac{2t}{1 + t^2} \right). \]

7. An Application From Calculus

Let \( \theta \) denote the angle to a point \((x, y)\) ∈ \(C_K\). Then the quantity \( t \) in the previous discussion is
\[ t = \tan(\theta/2). \]
Thus \( \theta = 2 \arctan(t) \), giving the third of the equalities
\[ \cos(\theta) = \frac{1 - t^2}{1 + t^2}, \quad \sin(\theta) = \frac{2t}{1 + t^2}, \quad d\theta = \frac{2dt}{1 + t^2}. \]
The rational parametrization of the circle gives rise to the substitution in elementary calculus that reduces any integral of a rational function of the transcendental functions \(\cos(\theta)\) and \(\sin(\theta)\) of the variable of integration \(\theta\) to the integral of a rational function of the variable of integration \(t\),
\[ \int R(\cos(\theta), \sin(\theta)) \, d\theta = \int \tilde{R}(t) \, dt. \]
In the abstract, this last integral can be evaluated by the method of partial fractions, but doing so in practice requires factoring the denominator of the integrand.

8. Pythagorean Triples Again

Again consider a primitive Pythagorean triple,
\[ (x, y, z) \in \mathbb{Z}^3, \quad x^2 + y^2 = z^2, \quad x, y, z \in \mathbb{Z}^+, \quad \gcd(x, y, z) = 1, \quad x \text{ odd}, \quad y \text{ even}. \]
Let \( \bar{x} = x/z \) and \( \bar{y} = y/z \). Then \((\bar{x}, \bar{y})\) is a point of \(C_\mathbb{Q}\),
\[ (\bar{x}, \bar{y}) = \left( \frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2} \right), \quad t = s/r \in \mathbb{Q}. \]
It follows that
\[(\tilde{x}, \tilde{y}) = \left( \frac{r^2 - s^2}{r^2 + s^2}, \frac{2rs}{r^2 + s^2} \right), \quad s, r \in \mathbb{Z}.\]
Here we take \(0 < s < r, \gcd(r, s) = 1\). If in addition, \(r\) and \(s\) have opposite parities then the quotients will be in lowest terms, so that as before,
\[x = r^2 - s^2, \quad y = 2rs, \quad z = r^2 + s^2.\]

9. Cubic Curves

Rather than a conic curve, we could consider a cubic curve, e.g.,
\[E : y^2 = x^3 - g_2x - g_3 \quad \text{where } g_2 \text{ and } g_3 \text{ are constants.}\]
If the curve \(E\) has a rational point \((x, y)\) then one of the magical phenomena of mathematics arises: the curve carries the structure of an abelian group. The subtleties of the group give rise to applications in connection with number theory (Fermat’s Last Theorem in particular) and cryptography. Relevant references here are the book by Silverman and Tate, and the book by Washington.