
HECKE CHARACTERS CLASSICALLY AND IDÈLICALLY

Hecke’s original definition of a Größencharakter, which we will call a Hecke
character from now on, is set in the classical algebraic number theory environment.
The definition is as it must be to establish the analytic continuation and functional
equation for a general number field L-function

L(χ, s) =
∑
a

χ(a)Na−s =
∏
p

(1− χ(p)Np−s)−1

analogous to Dirichlet L-functions. But the classical generalization of a Dirich-
let character to a Hecke character is complicated because it must take units and
nonprincipal ideals into account, and it is difficult to motivate other than the fact
that it is what works. By contrast, the definition of a Hecke character in the idèlic
setting is simple and natural. This writeup explains the compatibility of the two
definitions. Most of the ideas here were made clear to me by a talk that David
Rohrlich gave at PCMI in 2009. Others were explained to me by Paul Garrett.

The following notation is in effect throughout:

• k denotes a number field.
• O denotes its ring of integers.
• J denotes the idèle group of k.
• v denotes a place of k, nonarchimedean or archimedean.
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1. A Multiplicative Group Revisited

This initial section is a warmup whose terminology and result will fit into what
follows.

By analogy to Dirichlet characters, we might think of groups of the form

(O/f)×, f an ideal of O

as the natural domains of characters associated to the number field k. This idea
is näıve, because O needn’t have unique factorization, but as a starting point we
define a group that is naturally isomorphic to the group in the previous display.
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The group that we will define is arguably an improvement over (O/f)×. It will
take the form of a quotient of multiplicative subgroups of k×,

k(f)/kf (notation to be explained soon),

rather than being the unit group of a quotient ring of O. Whereas in (O/f)× the
inverse of a coset x + f is generally not the coset x−1 + f of the inverse, because
x−1 needn’t lie in O at all, inverses in k(f)/kf will be natural because k(f) is to be
a multiplicative group.

The notion of two integral ideals of O being coprime generalizes easily to frac-
tional ideals of k. For any fractional ideal,

a =
∏
p

pep , each ep ∈ Z, ep = 0 for almost all p,

we say that the maximal ideal p appears in a if ep 6= 0. If b is a second fractional
ideal then we say that a and b are coprime if no p appears in both a and b. The
condition that a and b are coprime is written (a, b) = 1.

Let f be a nontrivial ideal of O; that is, f is neither the zero ideal nor O. The
elements of k× that generate fractional ideals coprime to f form a subgroup,

k(f) = {α ∈ k× :
(
(α), f

)
= 1}.

Thus the condition α ∈ k(f) is νp((α)) = 0 for all p that appear in f. To define a
suitable quotient of k(f), first note that the set

k(f)f = {δ ∈ k : νp((δ)) ≥ νp(f) for all p that appear in f}.

has the following properties:

• k(f)f contains 0 (even though k(f) does not, because f does).
• k(f)f is preserved under multiplication by k(f) (because k(f) is a group); in

particular, it is closed under negation.
• k(f)f is closed under addition. (To see so, take any δ, δ′ ∈ k(f)f, and fix

any maximal ideal p of O that appears in f. Then νp((δ)) ≥ νp(f) and
νp((δ′)) ≥ νp(f), so that νp((δ + δ′)) ≥ νp(f) as well. Thus δ + δ′ ∈ k(f)f.)

These three properties of k(f)f show that the following definition gives an equiva-
lence relation.

Definition 1.1 (Multiplicative Congruence). For a pair of nonzero field elements
α, β ∈ k(f), the condition

α = β mod× f

means

β − α ∈ k(f)f.

The nomenclature multiplicative congruence will be explained soon. If α, β ∈ k(f)
are integral, the condition α = β mod× f is β − α ∈ k(f)f ∩ O = f, which is to say
α = β mod f; so multiplicative congruence subsumes ordinary congruence in O
away from f.

Beyond the three equivalence relation properties, two more properties of multi-
plicative congruence follow from the fact that k(f)f is preserved under multiplication
by k(f): For any α, β, γ, δ ∈ k(f),

if α = β mod× f and γ = δ mod× f then αγ = βδ mod× f,
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and as a special case, for any α, β, γ ∈ k(f),

if α = β mod× f then αγ = βγ mod× f.

With the properties of multiplicative congruence established, we can define the
subgroup kf of k(f) that will give the desired quotient group k(f)/kf,

kf = 1 + k(f)f = {α ∈ k× : α = 1 mod× f} ⊂ k(f).

To see that kf is a subgroup note that if α, β = 1 mod× f then α = β mod× f, and

we may multiply through by β−1 to get αβ−1 = 1 mod× f.
Given α and β in k(f), the equivalences

β − α ∈ k(f)f ⇐⇒ β ∈ α+ k(f)f = α+ αk(f)f ⇐⇒ β/α ∈ 1 + k(f)f = kf

show that alternatively we could have defined the multiplicative congruence relation
α = β mod× f to mean β/α ∈ kf, or equivalently,

αkf = βkf in k(f).

The analogy between this and the usual condition α + f = β + f in O for ordinary
congruence modulo f (or between the conditions β/α ∈ kf in k(f) and β − α ∈ f

in O) explains why we view the relation α = β mod× f as multiplicative congruence.
Indeed, this is more than an analogy; because k(f) ∩ O = {α ∈ O : ((α), f) = 1}
and k(f)f ∩ O = f, we have:

For α, β ∈ O coprime to f, α+ f = β + f in O ⇐⇒ αkf = βkf in k(f).

This does most of the work to establish a group isomorphism that incorporates how
multiplicative congruence subsumes ordinary congruence.

Proposition 1.2. Let f be a nontrivial integral ideal of the integer ring O. There
is a natural isomorphism

(O/f)× ∼−→ k(f)/kf, α+ f 7−→ αkf.

Proof. The work carried out just before the statement of the propostion shows that
the map is a well defined monomorphism. To see that the map surjects, we need
to show that any element αkf of k(f)/kf has an integral representative αβ coprime
to f. Let the negative part of the principal ideal (α) be

(α)neg =
∏
p

pep , each ep < 0.

This is supported away from f. By the Sun-Ze theorem there exists β ∈ O satisfying
the conditions

β = 1 mod f, β = 0 mod (α)−1
neg.

So αβ lies in O and is coprime to f, and also αβkf = αkf because β ∈ 1+ f ⊂ kf. �

We end this discussion with two remarks.
First, the previous proposition extends to the ideal f = O by defining kf as

(1 + k(f)f) ∩ k× in all cases. But this spurious clutter is not worthwhile because
the case f = O is degenerate, giving k(f) = kf = k×, so that the quotient k(f)/kf is
trivial. In classical terms, (O/O)× is indeed the trivial group rather than an empty
construct if one allows the one-element ring (0 +O is invertible modulo O because
0 = 1 mod O), but the one-element quotient ring makes this case anomalous.
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Second, the proposition also applies if we replace the number field k by one of
its nonarchimedean completions kv. In this case the isomorphism works out to
(exercise)

(Ov/pevv )× ∼= O×v /(1 + pevv ), e > 0.

2. Hecke Characters Classically

Again let f be an integral ideal, i.e., an ideal of O. Define

I(f) = {fractional ideals of k coprime to f},
P (f) = {principal fractional ideals (α) of k coprime to f},
Pf = {principal fractional ideals (α) of k where α = 1 mod× f}.

Thus we have a diagram in which the vertical segments are containments and the
horizontal maps take elements α to their ideals (α),

I(f)

k(f) // P (f)

kf // Pf

Also we have a map

k× −→ (R×)r1 × (C×)r2 , α 7−→ 1⊗ α,
where we identify R ⊗ k (tensoring over Q) with Rr1 × Cr2 in the usual way. [For
example, R⊗ k = R⊗Q[X]/〈f(X)〉 = R[X]/〈f(X)〉, and f(X) factors over R as a
product of linear and quadratic terms.] We invoke the fact that

1⊗ kf is dense in (R×)r1 × (C×)r2 .

Definition 2.1 (Classical Hecke Character, first definition). Let f be a (nonzero)
ideal of O, and let

χ∞ : (R×)r1 × (C×)r2 −→ C×

be a continuous character. Then the character

χ : I(f) −→ C×

is a Hecke character with conductor f and infinity-type χ∞ if χ∞ determines
χ on Pf by the rule

χ
(
(α)
)

= χ−1
∞ (1⊗ α) for all α ∈ kf.

That is, the following diagram must commute:

Pf

χ

&&MM
MMM

MMM
MMM

MM

kf

α 7→(α)

88qqqqqqqqqqqqq

α7→1⊗α
&&MM

MMM
MMM

MMM
M C×

(R×)r1 × (C×)r2
χ−1
∞

88qqqqqqqqqqq
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In the Hecke character setting, characters need not be unitary. That is, their
outputs need not lie in the complex unit circle group T. Some authors use the
words character for the unitary case and quasicharacter for the general case, but
we do not.

Naturally, a classical Hecke character is primitive if it is not induced from an-
other classical Hecke character with conductor f′ | f. Every classical Hecke character
is induced from a unique primitive classical Hecke character. We will see that the
issue of primitivity disappears in the idèlic environment.

Next we show that because a classical Hecke character χ has an associated
infinity-type χ∞ that determines χ on principal ideals (α) ∈ Pf, i.e., α ∈ kf, also χ
has an associated character of a finite group,

ε : (O/f)× −→ T,

such that χ∞ and ε together determine χ on the larger collection of principal ideals
(α) ∈ P (f), i.e., α ∈ k(f). The domain (O/f)× of ε was mentioned at the beginning
of this writeup as a näıve possibility for the domain of a Hecke character χ. Now we
see that because χ incorporates χ∞, one missing ingredient was the infinity-type,
and because the domain of χ is all of I(f) rather than only P (f), the other missing
ingredient was the possibility of nonprincipal ideals.

To prove the assertion in the previous paragraph, let n = |k(f)/kf|, a finite
number because k(f)/kf is isomorphic to (O/f)×. Then for any α ∈ k×,

α ∈ k(f) =⇒ αn ∈ kf
=⇒ χ((α))n = χ((αn)) = χ−1

∞ (αn) = χ−1
∞ (α)n

=⇒ χ((α)) = ε(α)χ−1
∞ (α) where ε(α)n = 1,

now letting χ−1
∞ (·) abbreviate χ−1

∞ (1 ⊗ ·). Because ε(α) = χ((α))χ∞(α) it follows
that ε : k(f) −→ T is a character. Furthermore, ε is trivial on kf because χ is
a classical Hecke character, so we may view ε as a character of k(f)/kf. Because
k(f)/kf is isomorphic to (O/f)×, this makes ε a character of (O/f)×. With this
discussion in mind, we can rephrase the definition of a classical Hecke character:

Definition 2.2 (Classical Hecke Character, second definition). Let f be a (nonzero)
ideal of O, and let

ε : (O/f)× −→ T

be a character, and let

χ∞ : (R×)r1 × (C×)r2 −→ C×

be a continuous character. Then the character

χ : I(f) −→ C×

is a Hecke character with conductor f and (O/f)×-type ε and infinity-
type χ∞ if ε (viewed as a character of k(f)/kf) and χ∞ determine χ on P (f) by
the rule

χ
(
(α)
)

= ε(αkf)χ
−1
∞ (1⊗ α) for all α ∈ k(f).
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That is, the following diagram must commute:

P (f)

χ

((QQ
QQQ

QQQ
QQQ

QQQ
QQ

k(f)

α 7→(α)

66mmmmmmmmmmmmmmmm

α 7→(αkf,1⊗α)
((QQ

QQQ
QQQ

QQQ
QQQ

Q C×

k(f)/kf × (R×)r1 × (C×)r2

ε·χ−1
∞

66mmmmmmmmmmmmmmm

We have already argued that a classical Hecke character in the sense of Def-
inition 2.1 is also a classical Hecke character in the sense of Definition 2.2. The
converse holds as well because the diagram in Definition 2.2 restricts to the diagram
in Definition 2.1.

3. Dirichlet Characters as Classical Hecke Characters

Especially, if k = Q and we are given a Dirichlet character with some period N ,

χDir : (Z/NZ)× −→ T,

then set f = NZ and note that P (f) is all of I(f). Note also that every fractional
ideal of Q has a unique positive generator α, but the condition (α) ∈ Pf does not
imply α ∈ Qf without the side condition α > 0. Define a Hecke character of ideals
to be the Dirichlet character on positive generators,

χHecke : P (f) −→ T, χHecke

(
(α)
)

= χDir(α sgn(α)).

To verify that χHecke is indeed a Hecke character with conductor f, we need to
determine its (Z/NZ)×-type and its infinity-type.

View χDir as a character of Q(f)/Qf. For any α ∈ Qf, going across the top of
the diagram

P (f)

χHecke

!!C
CC

CC
CC

C

Q(f)

<<yyyyyyyy ε·χ−1
∞ // C×

gives

α 7−→ χHecke ((α)) = χDir(α sgn(α)) = χDir(α)χDir(sgn(α)).

Thus the diagram commutes if we choose{
ε(α) = χDir(α),

χ−1
∞ (α) = χDir(sgn(α))

}
α ∈ Q(f).

Unsurprisingly, ε is simply the original Dirichlet character. To look more closely
at χ∞,

χ−1
∞ (α) = χDir(sgn(α)) =

{
1 if χDir is even,

sgn(α) if χDir is odd,
for α ∈ Qf.

That is, the infinity-type is the trivial character χ∞(x) = 1 for x ∈ R× if χDir is
even, and the infinity-type is the sign character χ∞(x) = sgn(x) for x ∈ R× if χDir

is odd. The equality χDir(α) = χ((α))χ∞(α) for α ∈ Q(f) shows how the Hecke
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ideal-character cannot see the sign of α but its infinity-type suitably reproduces
any sign-sensitive behavior that the original Dirichlet character may have.

4. A Non-Dirichlet Classical Rational Hecke Character

Let I denote the multiplicative group of fractional ideals of Q. For any complex
number s ∈ C, the character

χs : I −→ C×, χn((α)) = |α|s

is well defined. In fact, χs is a Hecke character with trivial conductor f = Z, with
trivial ε-type (the only possible ε-type because Q(Z)/QZ = Q×/Q× is trivial), and
with infinity-type

χ∞,s : R× −→ C×, χ∞,s(α) = |α|−s.
Indeed, we have P (f) = I and (r1, r2) = (1, 0), and so we need only to check that
the following diagram commutes:

I
χs

!!C
CC

CC
CC

C

Q×

α7→(α)
=={{{{{{{{

α7→1⊗α
!!C

CC
CC

CC
C C×

R×
χ−1
∞,s

=={{{{{{{{

Because both paths across the diamond take α to |α|s, the diagram commutes as
desired. Later in this writeup we will see a sense in which this Hecke character and
many others like it are not particularly interesting.

5. A Family of Non-Dirichlet Classical Hecke Characters

Let k = Q(i), and let I denote the multiplicative group of fractional ideals of k.
For any integer n, the character

χn : I −→ C×, χn((α)) = (α/|α|)4n

is well defined. In fact, χn is a Hecke character with trivial conductor f = O, with
trivial ε-type (the only possible ε-type because k(f)/kf = k×/k× is trivial when
f = O), and with infinity-type

χ∞,n : C× −→ C×, χ∞,n(α) = (α/|α|)−4n.

Indeed, we have P (f) = I and (r1, r2) = (0, 1), and so we need only to check that
the following diagram commutes:

I
χn

!!D
DD

DD
DD

D

k×

α7→(α)
=={{{{{{{{

α 7→1⊗α
!!C

CC
CC

CC
C C×

C×
χ−1
∞,n

=={{{{{{{{

Because both paths across the diamond take α to (α/|α|)4n, the diagram commutes
as desired. Unlike the Hecke character in the previous section, the Hecke characters
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χn are interesting: they help to establish a density result for Gaussian primes in a
sector, the Gaussian integer counterpart to Dirichlet’s theorem on rational primes
in an arithmetic progression.

6. Hecke Characters Idèlically

The idèle topology is a colimit topology. For each finite set S of places of k that
contains all the infinite places, form the topological product

JS =
∏
v∈S

k×v ×
∏
v/∈S

O×v .

Then the definition of the idèles as a topological space is

J = colimSJS .

(Alternatively, the adèle ring is a colimit as well,

A = colimSAS , AS =
∏
v∈S

kv ×
∏
v/∈S

Ov,

and the adèlic unit group topology is inevitably the idèle topology. However, this
is not the restriction of the adèle topology to the idèles.) By the nature of the idèle
topology, the kernel of any continuous group homomorphism from J to C× contains
almost all the local unit groups O×v .

The idèlic definition of a Hecke character is decisively simpler and more natural
than the classical definition:

Definition 6.1 (Idèlic Hecke Character). A Hecke character of k is a continuous
character of the idèle group of k that is trivial on k×,

χ : J −→ C×, χ(k×) = 1.

The continuity in the definition really should be understood without being men-
tioned, because we view J and C× as topological groups. From now on we freely
omit reference to topology and continuity.

A Hecke character χ : J −→ C× has a conductor intrinsically built in, a product
of local conductors at the finite places, even though its definition makes no direct
reference to a conductor. We discuss this next.

At any nonarchimedean place v the local character χv : k×v −→ C× is determined
by its values on the local units O×v and by its value on a uniformizer $v. By the
observation at the end of the first paragraph of this section, χv therefore takes the
unramified form χv(x) = |x|sv (where s ∈ C) for almost all nonarchimedean v.

If χv is unramified then the local conductor of χ is Ov. If χv is ramified then
the local conductor of χ is pevv for the smallest ev > 0 such that χv is defined
on O×v /(1 + pevv ) ∼= (Ov/pevv )× (this isomorphism was discussed at the beginning
of the writeup). The reason that any such ev exists is that although there is a
neighborhood of 1 in C× that contains no nontrivial subgroup, its inverse image
under χv in the profinite unit group

O×v = lim
ev
O×v /(1 + pevv ),

must contain a nontrivial subgroup 1+pevv . Because the subgroup is mapped by χv
to a subgroup, it lies in the kernel.
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Fujisaki’s Lemma states that the diagonal embedding of k× in J is discrete, and
the quotient of the unit idèles J1 by k× is compact. Thus an idèlic Hecke character
is a periodic function with discrete period. As such, it is amenable to Fourier
analysis. In classical terms, the discreteness and compactness encode the structure
theorem of the integer unit group O× and the finiteness of the class number of k.

Given an idèlic Hecke character, we show how to produce a corresponding clas-
sical Hecke character. Let the idèlic Hecke character be

χ =
⊗
v

χv

and let its conductor be

f =
∏
v

pevv .

Define a character of fractional ideals coprime to f,

χ̃ : I(f) −→ C×,

by the conditions

χ̃(pv) = χv(O×v $v), nonarchimedean v - f.

The conditions are sensible because the local characters are unramified away from
the conductor. In order that χ̃ be a classical Hecke character, the composition

kf //I(f)
χ̃
//C×

needs to take the form a 7→ χ̃−1
∞ (1⊗ a) for some character χ̃∞ on (R×)r1 × (C×)r2 .

Compute that for any a ∈ kf, with (a) =
∏

pαv
v , the composite is in fact (using the

fact that χ is trivial on k× at the last step)

a 7−→
∏

χ̃(pv)
αv =

∏
χv(O×v $v)

αv = χ(afin) = χ−1(ainf).

The natural identification of J∞ and (R×)r1 × (C×)r2 takes ainf to 1 ⊗ a. Thus,
given an idèlic Hecke character χ, the corresponding character χ̃ of I(f) is a classical
Hecke character whose infinite type matches that of the idèlic character,

χ̃∞ = χ∞.

The formula in the classical definition uses χ̃−1
∞ rather than χ̃ to produce this

compatibility.

Conversely, given a classical Hecke character χ̃ of k having conductor f and
(O/f)×-type ε and infinity-type χ̃∞, we want a corresponding idèlic Hecke charac-
ter χ.

• Because 1 ⊗ kf is dense in R ⊗ k, the infinite part χ∞ of χ is determined
by χ̃∞.

• For v - f, define χv by the condition

χv(O×v $v) = χ̃(pv).

• Any x ∈
∏
v|f k

×
v is closely approximated by some α ∈ k×, and so the desired

value χ(x) is closely approximated by
∏
v-f χ

−1
v (αv) (including infinite v).

Here we are using the requirement that χ = 1 on k×.
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If the classical Hecke character is imprimitive then the conductor of the result-
ing idèlic Hecke character is the conductor of the corresponding primitive classical
Hecke character. Thus, as mentioned earlier, there is no such thing as an imprimi-
tive idèlic Hecke character.

7. Dirichlet Characters as Idèlic Hecke Characters

In idèlic terms, a Hecke character of Q is a continuous character

χ : JQ −→ C×, χ factors through JQ/Q×.
The rational idèles decompose as

JQ = Q× · Ẑ× · R×+.
Indeed, given any rational idèle,

x =
(
(upp

ep)p prime , r
)
,

where each up ∈ Z×p , each ep ∈ Z, ep = 0 for almost all p, and r ∈ R×, there exists
a unique nonzero rational number

α = ±
∏

p−ep ∈ Q×

such that
αx = (u′p)× r′, each u′p ∈ Z×p and r ∈ R×+.

A Dirichlet character
χDir : (Z/NZ)× −→ T

can also be viewed as a continuous character

χDir : Ẑ× −→ T

because (Z/NZ)× is a quotient of Ẑ×, and because the topology of Ẑ = limN Z/NZ
makes the pulled-back χDir continuous. Thus the Dirichlet character gives rise to
a Hecke character of the rational idèles,

χHecke(αut) = χDir(u), α ∈ Q×, u ∈ Ẑ×, t ∈ R×+.
More specifically, if N =

∏
pep then the Dirichlet character decomposes corre-

spondingly via the Sun-Ze theorem as

χDir =
⊗

χDir,p, each χDir,p : (Z/pepZ)× −→ C×,

and because each (Z/pepZ)× is a quotient of Z×p we may view the character instead
as

χDir =
⊗

χDir,p, each χDir,p : Z×p −→ C×,

8. Discretely Parametrized Hecke Characters

The Hecke characters form the dual group of the quotient of the idèle group by
the multiplicative group of the field,

{Hecke characters} = (J/k×)∗,

a topological group under the compact-open topology. (For any compact K ⊂ J/k×
and any open V ⊂ C×, let

OK,V = {χ : χ(K) ⊂ V }.
The compact-open topology of (J/k×)∗ is the topology generated by all such sets.)
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Let J1 denote the group of norm-1 idèles. The short exact sequence

1 −→ J1/k× −→ J/k× | · |−→ R+ −→ 1,

has dual sequence

1 −→ (R+)∗ −→ (J/k×)∗ −→ (J1/k×)∗ −→ 1,

showing that (J/k×)∗ is the product of a discrete group (J1/k×)∗ of unitary char-
acters (the group is discrete and the characters unitary because J1/k× is compact)
and the group (R+)∗, isomorphic to C (because its elements are x 7→ xs for s ∈ C).

To describe the decomposition specifically, split the sequences in a fairly (but
not completely) natural way. Let r = r1 + 2r2 where r1 is the number of real
archimedean places and r2 the number of complex ones, and use r to map R+ to J
by a suitably-normalized infinite diagonal embedding,

ι : R+ −→ J, ι(x) = (x1/r
v )v|∞.

Because |ι(x)| = x, indeed ι (with its outputs viewed as cosets) splits the first
sequence. Now, given an idèle α, the decomposition

α = α1 · ι(|α|), α1 = α/ι(|α|) ∈ J1

descends to cosets. Correspondingly there is a unique decomposition of any Hecke
character, suppressing cosets from the formula,

χ(α) = χ1(α1)|α|s, χ1 ∈ (J1/k×)∗, s ∈ C.

The C-parametrized part α 7→ |α|s of the character is not particularly interesting,
and so sometimes it is the discretely parametrized unitary characters

χ1 : J1/k× −→ C×

that are referred to as Hecke characters.

If k = Q then the discretely parametrized unitary characters are simply the
Dirichlet characters.

To argue this, we first show that any continuous character

χ : Ẑ× −→ C×

is a Dirichlet character. The point here, as discussed earlier in connection with the
conductor, is that there is a neighborhood of 1 in C× that contains no nontrivial

subgroup, but its inverse image is a neighborhood of 1 in Ẑ×, which necessarily
contains a subgroup

K =
∏
p∈S

(1 + pepZp)
∏
p/∈S

Z×p , S a finite set of primes.

The subgroup must map to 1C, and so χ factors through the corresponding quotient,

Ẑ×/K =
∏
p∈S

Z×p /(1 + pep) ≈
∏
p∈S

(Zp/pepZp)× ≈
∏
p∈S

(Z/pepZ)×.

That is, χ can be viewed as a character of (Z/NZ)× where N =
∏
p∈S p

ep .
Now, any discretely parametrized unitary character of the rational idèles takes

the form

χ(αut) = χ1(αu · t/|αut|) = χ1(u · 1/|u|), α ∈ Q×, u ∈ Ẑ×, t ∈ R×+.



12 HECKE CHARACTERS CLASSICALLY AND IDÈLICALLY

(The calculation can eliminate t because there is only one infinite place, i.e., it is
particular to k = Q.) That is, if we define

χD : Ẑ× −→ C×, χD(u) = χ1(u · 1/|u|),
then any discretely parametrized unitary character takes the form

χ(αut) = χD(u), α ∈ Q×, u ∈ Ẑ×, t ∈ R×+.
By the previous paragraph, χD is a Dirichlet character.

The Z-indexed family of Hecke characters that we saw earlier,

χn : {fractional ideals of Q(i)} −→ C×, χn((α)) = (α/|α|)4n,

are the simplest non-Dirichlet unitary Hecke characters.


