WHENCE GAUSS SUMS?

Let p be an odd prime, let (-/p) be the Legendre symbol, and let ¢, = >7/P.
Typically in a first number theory course the quadratic Gauss sum
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is pulled out of thin air, and its properties established by elementary calculations
that appear to work for no discernible reason. More generally, for any Dirichlet
character modulo p,

x: (Z/pZ)* — C*,

the corresponding Gauss sum

p—1
() =>_ x(a)¢

satisfies many of the same properties. A person might wonder just what is going
on and how anybody might conceive of such a thing. This writeup shows that
the Gauss sum is a special case of a general symmetrizing device, the Lagrange
resolvent, that has built-in equivariance and equation-solving properties that are
easier to understand in general than in the confusingly overly-specific context of
Gauss sums alone.

First we place the Gauss sum in the context of appropriate fields. The pth
cyclotomic field is

K=Q@), ¢=ein
Also introduce the auxiliary field
F =Q), w=e>/®-1

and the composite field

L=FK =Q(w,().
Thus any Dirichlet character modulo p in fact maps into F'*,

X: (Z/pZ)* — F*.
and so the corresponding Gauss sum lies in the composite field,

)= Y, x@)(*eL.

a€(Z/pL)*

Next we work quite generally. Let L/F be a Galois field extension with cyclic
Galois group G. If the characteristic is nonzero then assume that the order of G is
coprime to it. Consider two data, an element of the larger field and a character of
the Galois group into the multiplicative group of the smaller one,

0elL, x:G— F*.
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The Lagrange resolvent associated to 6 and x is the y-weighted average over the
Galois orbit of 6,

R=R(®,x) =) _ x(g)g(0) € L.
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Since R is a weighted average and since the character-outputs are fixed by the
Galois group, the equivariance property of the Lagrange resolvent is immediate:
for any g € G,

g(R) = g(z X(9)3(0)) = Z X(9)(99)(0) = x(g7") Z x(99)(99)(0)) = x(g~ "R

Consequently, letting d = |Gal(L/F)],
g(R?) = (9(R))* = (x(97")R)" = R? since x* =1,

showing that R? lies in the smaller field F. Indeed, letting m denote the order of x,
this argument shows that R(6, x)™ € F. However, the matter of finding a method
to express R(6,x)™ as an element of F' is context-specific.

As for the equation-solving properties of the Lagrange resolvent, begin by noting
that the group of characters y of the finite cyclic Galois group G is again finite cyclic
of the same order. Assume now that F' is large enough to contain the range of all
such characters. Fix generators g of the Galois group and x of the character group.
The expression of each Lagrange resolvent as a linear combination of the Galois
orbit of § encodes as an equality of column vectors in L¢ (with d = |G| as before),

R(0,X°) 9°(0)
R(9,x") 9'(0)
. =V . )
R(0,x") 9771 (0)
where the matrix relating the vectors is the Vandermonde matrix,
X)X X?(gj‘i)
X" X)Xt
Vy = , ) . , € Fixd,
X% x e x TN,

The top row and the left column of V, are all 1’s. As a very small case of Fourier
analysis, orthogonality shows that the inverse of the Vandermonde matrix is essen-
tially the transpose of another one,

VIV =dl.

Thus we can invert the equality of column vectors in L? to solve for # and its
conjugates in terms of the resolvents,
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Especially, equate the top entries to see that 6 itself is the average of its resolvents,
=
==Y R(6,x.
g ; (0.x")

Since each resolvent is a dth root over F', this expresses 6 in radicals.

Finally, to see that the Lagrange resolvent subsumes Gauss sums, specialize the
environment back to F' = Q(w) (with w = €2™/®=1) and L = FK where K = Q(()
(with ¢ = €2™¥/P). Then Gal(L/F) ~ (Z/pZ)*, the automorphisms being

9a: G+ (% a€(Z/pL)".
Also specializing the top-field element 6 to (, the Lagrange resolvent is indeed the
Gauss sum if we view any character x : G — F* as a character of (Z/pZ)* as
well,

RGX) =Y x(@9(Q) = D x(@]* =700

geaG a€(Z/pZ)*
The general reasoning has shown that if x has order d then 7(x)? lies in F, and that
¢ can be expressed as an average of Gauss sums 7(x). Since the order of each y
divides p — 1, this constructs ¢ from numbers whose (p — 1)st powers are rational
numbers. While ¢ has the rational power (P = 1, this power is higher than p — 1.
And while ( satisfies a polynomial of degree p — 1, that polynomial does not take
the form XP~1 — a.

In particular, if p is a Fermat prime p = 2™ 4+ 1 (where n = 2¢ in turn) then the
Gauss sums all satisfy 72" = 1 and so plausibly they can be constructed in turn by
successions of square roots.



