
FUJISAKI’S LEMMA, AFTER WEIL

This writeup is modeled closely on a writeup by Paul Garrett.
Let k be a number field. Let A be the adele ring of k, let J = A× be the idele

group, and let J1 = {a ∈ J : |a| = 1} be the group of norm-1 ideles.

Fujisaki’s Lemma. The quotient k×\J1 is compact.

The first section to follow will give the main proof of Fujisaki’s Lemma. However,
the main proof relies on a description of the idele topology that may be unfamiliar,
and so the second section will explain the natural topology on the unit subgroup
of a topological ring, encompassing the idele topology.

1. Proof of Fujisaki’s Lemma

Give A a measure µ. Take a compact set

Co ⊂ A, µ(Co) > µ(k\A).

We show the Minkowski-like result that the natural quotient map

A −→ k\A, x 7−→ k + x

is not injective on Co. Indeed, suppose instead that the quotient map is injective
on Co. Then for any x ∈ k\A and for any distinct γ, γ′ ∈ k, γ + x and γ′ + x can
not both lie in Co. Let f be the characteristic function of Co, and compute that
consequently

µ(Co) =
∫

A
f(x) dx =

∫
k\A

∑
γ∈k

f(γ + x) dx ≤
∫
k\A

dx = µ(k\A).

The display contradicts the fact that µ(Co) > µ(k\A), and so injectivity on Co is
untenable.

Consider any norm-1 k-idele
a ∈ J1.

The associated change of measure on A is trivial, d(ax) = |a| dx = dx. It follows
that µ(aCo) > µ(k\A), and µ(a−1Co) > µ(k\A) similarly. By the previous para-
graph, there exist distinct x, y ∈ Co such that ax−ay ∈ k, and the same statement
holds with a−1 in place of a. With this in mind, define the set

C = Co − Co = {x− y : x, y ∈ Co}.

We have just argued that aC ∩ k× and a−1C ∩ k× are nonempty. Elementwise,
there exist c̃, c ∈ C and α̃, α ∈ k× such that

ac̃ = α̃−1, a−1c = α−1.

It follows that the quantity α−1α̃−1 = cc̃ lies in the set

S = k× ∩ (C · C).
1



2 FUJISAKI’S LEMMA, AFTER WEIL

The set S is the intersection of discrete set and a compact set, making it finite. Also,
S is independent of a. Since cc̃ ∈ S it follows that c−1 ∈ C · S−1. To summarize so
far, we have shown that given a ∈ J1, there exist α and c such that

a = αc, α ∈ k×, (c, c−1) ∈ C × C · S−1.

Let H denote the adelic hyperbola,

H = {(x, x−1) : x ∈ A×},
endowed with the subspace topology from A × A. Since the set C × C · S−1 is
compact in A × A, the intersection Ko = (C × C · S−1) ∩H is compact in H. By
the nature of the idele topology (to be explained in the next section), this means
precisely that the set of first coordinates of Ko-points,

K = {c ∈ A× : (c, c−1) ∈ Ko},
is compact in A×, Now the summary at the end of the previous paragraph says
that given a ∈ J1, there exist α and c such that

a = αc, α ∈ k×, c ∈ K.
So the continuous map

K −→ k×\J1, c 7−→ k×c

surjects, showing that the quotient is compact.

2. The Unit Topology

To justify the description of the idele topology from a moment ago, we work in
slightly more generality. The ideles are the unit group of the adeles, a topological
ring.

Let R be an associative ring with identity, and let U denote its unit group, i.e.,
the multiplicative group of the multiplicatively invertible elements of R. Suppose
further that R is a topological ring, meaning that its underlying set is endowed
with a topology, and that addition and multiplication are continuous on R under
the topology. This makes additive inversion continuous as well. The multiplicative
subgroup U inherits a topology from R. Under this topology, the restriction of
multiplication to U is automatically continuous, but multiplicative inversion on U
need not be. So the question is:

Given the topology on R, what topology naturally should be put on U
to make multiplicaton and inversion continuous?

Again, the answer is not the subspace topology that U inherits from R.
To answer the question, define

P = R×R (P stands for product),

H = {(u, u−1) : u ∈ U} ⊂ P (H stands for hyperbola).

Identify the unit group U and the hyperbola H as follows,

u←→ (u, u−1).

Since R has a topology, the product P = R×R carries the product topology. The
hyperbola H inherits a topology from P . The unit group thus acquires a topology
from H via their identification. This topology on U is the unit group topology. We
next discuss it.
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The unit topology on U is at least as fine as the subspace topology. Indeed,
letting π1 : P −→ R be π1(x, y) = x, the composition

Uunit −→ H
π1−→ Usubspace

is the identity as a set-map and is continuous.
Any topology on U that is at least as fine as the subspace topology and makes

inversion continuous is at least as fine as the unit topology. To see this, let Ũ
denote the set U with a topology that is at least as fine as the subspace topology
and makes inversion continuous. Then the map

Ũ −→ H, u 7−→ (u, u−1)

is continuous, giving the desired result.
Summarizing so far: The unit topology is the unique candidate topology to refine

the subspace topology just enough to make inversion on U continuous while keeping
multiplication on U continuous as well.

Inversion is continuous on U under the unit topology. This fact is essentially
instant from the definition. Inversion on U is the map

u 7−→ u−1.

So on the copy H of U , inversion is the map

(u, u−1) 7−→ (u−1, u).

But this map is the restriction to H of the coordinate-exchange map on P ,

(r, r̃) 7−→ (r̃, r).

The coordinate-exchange map on P is certainly continuous. Hence so is the inver-
sion map on U .

Finally, multiplication is continuous on U under the unit topology. Because the
unit topology refines the subspace topology, this fact is not automatic. To see that
it is true nonetheless, first note that the product H ×H can be identified with the
subspace H×H of P ×P . (It is best to forget for the moment that P itself is again
a product.) This is easily seen by checking that the two spaces have the same basis.

Now, since multiplication on P ,

P × P −→ P,
(
(x, y), (z, w)

)
7−→ (xz, yw),

is continuous, so is its restriction to H,

H ×H −→ H,
(
(u, u−1), (ũ, ũ−1)

)
7−→ (uũ, u−1ũ−1),

viewing H ×H as a subspace of P ×P . But also we may view H ×H as a product
in the previous display, and then it follows that the restriction to first coordinates,

U × U −→ U, (u, ũ) 7−→ uũ,

is again continuous.


