
AN EASY CASE OF FERMAT’S LAST THEOREM

This writeup based on chapter 1 of Cyclotomic Fields by Washington. See also
chapter 1 of Number Fields by Marcus.

Let p ≥ 5 be an odd prime. Consider the first primitive pth complex root of
unity,

ζ = ζp = e2πi/p,

and the ring Z[ζ] of polynomials in ζ having integer coefficients. Suppose that the
prime p is such that

Z[ζ] is a unique factorization domain.

We show for such p, the first case of the Fermat equation,

xp + yp = zp, p - xyz, x, y, z nonzero integers,

has no solution.
Unique factorization in Z[ζ] holds for p = 2, 3, 5, 7, 11, 13, 17, 19, but it fails for

p = 23 and it fails in general. Chapter 1 of Washington’s Cyclotomic Fields proves
the first case of Fermat’s Last Theorem under the weaker assumption that p does
not divide the class number of Q(ζ). The argument is essentially similar to the
unique factorization case, the crucial moment being that an ideal whose pth power
is principal must itself be principal.

1. Basic facts about Z[ζ]

This section makes no reference to the assumption that Z[ζ] is a unique factor-
ization domain.

Because
∑p−1
i=0 ζ

i = 0 by the finite geometric sum formula, Z[ζ] consists of the
Z-linear combinations of any p−1 elements of {1, ζ, . . . , ζp−1}. Here are some facts
about Z[ζ], to be cited below.

• Every unit (invertible element) u of Z[ζ] takes the form u = ζruo where,
with an overbar denoting complex conjugation, uo = uo. Indeed, the quo-
tient u/u is a unit having size 1 as a complex number. As such it at least
plausibly takes the form ζ2r (this point will be addressed at the end of this
writeup), from which ζru = ζ−ru. Let uo = ζ−ru, so that indeed u = ζruo
and uo = ζru = ζ−ru = uo.
• If α ∈ Z[ζ] then αp ≡pZ[ζ] a for some a ∈ Z, because α =

∑p−2
i=0 aiζ

i where

each ai lies in Z, and so αp ≡pZ[ζ]
∑p−2
i=0 a

p
i ∈ Z.

• The ring structure of Z[ζ] makes it a Z-module. If an element α =
∑p−1
i=0 aiζ

i

of Z[ζ] has at least one ai equal to 0, so that the powers of ζ that are present
form a Z-linearly independent set (here we use the fact that the polynomial∑p−1
i=0 x

i is irreducible in Z[x]), and if some integer n divides α, then n
divides each coefficient ai in Z.
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2. The special element 1− ζ of Z[ζ]

This section shows that 1−ζ, 1−ζ2, . . . , 1−ζp−1 are associate in Z[ζ], that 1−ζ
is irreducible in Z[ζ], and that (1− ζ)Z[ζ] ∩ Z = pZ.

To show that they are associate, consider any i ∈ {1, . . . , p − 1}. The relation

1 − ζi = (1 − ζ)
∑i−1
k=0 ζ

k shows that 1 − ζ divides 1 − ζi in Z[ζ]; but also, with
i′ ∈ {1, . . . , p− 1} such that ii′ ≡ 1 (p), the relation

1− ζ = (1− ζi)
i′−1∑
k=0

ζki

shows that 1− ζi divides 1− ζ in Z[ζ] as well. Thus all of 1− ζ, 1− ζ2, . . . , 1− ζp−1
are associate in Z[ζ], because each is associate with 1− ζ.

To show that that 1 − ζ is irreducible in Z[ζ], first note that in the general

equality
∏p−1
i=1 (x− ζi) =

∑p−1
j=0 x

j (both equal (xp−1)/(x−1)), setting x to 1 gives

p−1∏
i=1

(1− ζi) = p.

Now suppose that 1 − ζ = f(ζ)g(ζ) where f and g are polynomials over Z. Then
1− ζi = f(ζi)g(ζi) for i = i, . . . , p−1, and multiplying over i gives, by the previous
display,

p−1∏
i=1

f(ζi)

p−1∏
i=1

g(ζi) = p.

Because the symmetrizations
∏p−1
i=1 f(ζi) and

∏p−1
i=1 g(ζi) lie in Z (here we use some

basics of Galois theory and algebraic number theory), they are ±1 and ±p without
loss of generality and so f(ζ) is a unit and g(ζ) is associate to 1− ζ in Z[ζ].

The relation
∏p−1
i=1 (1−ζi) = p shows that the ideal (1−ζ)Z[ζ]∩Z of Z contains pZ,

so it equals one of pZ or Z. It does not equal Z because 1− ζ is not a unit of Z[ζ],
and so (1− ζ)Z[ζ] ∩ Z = pZ.

3. Main Proof

Again, assume that p is such that Z[ζ] is a unique factorization domain. We
show that consequently there exist no nonzero integers x, y, z such that

xp + yp = zp, p - xyz.
The Fermat equation lets us assume that gcd(x, y, z) = 1, and then that x, y, z are
pairwise coprime. Further, the conditions x ≡p y ≡p −z cannot both hold because
they would give −zp − zp ≡p zp and so p | 3z, impossible because p ≥ 5 and
p - z. So either p - x− y or p - x+ z, but in the second case we may replace (y, z)
by (−z,−y) and now p - x− y; in sum, we may assume that p - x− y. We may also
note that because p - zp = xp + yp it follows that p - x+ y. Now the argument is to
posit a solution (x, y, z) satisfying all these conditions and derive a contradiction.
Again, the conditions are that x, y, z are pairwise coprime and that p divides none
of xyz, x± y.

The Fermat equation xp + yp = zp is

p−1∏
i=0

(x+ yζi) = zp.
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The multiplicands x+yζ, x+yζ2, . . . , x+yζp−1 on the left side are coprime in Z[ζ],
as follows. If

π | x+ yζi, x+ yζj (π a nonunit)

then noting that ζi − ζj = ζi(1− ζj−i) = u(1− ζ) where u is a unit,

π | (x+ yζi)− (x+ yζj) = y(ζi − ζj) = uy(1− ζ)

and with a possibly different unit u,

π | ζj(x+ yζi)− ζi(x− yζj) = (ζj − ζi)x = u(1− ζ)x.

Thus π | 1 − ζ, because otherwise π | x, y and so π | gcd(x, y) = 1. Consequently
π = 1− ζ after scaling π by a unit. Now

1− ζ | x+ yζi + y(1− ζ) = x+ y

and so x+y lies in (1− ζ)Z[ζ]∩Z = pZ, but we have noted that this does not hold.
So no nonunit π divides x+ yζi and x+ yζj for distinct i, j ∈ 0, . . . , p− 1.

The relation xp + yp = zp is now
∏p−1
i=0 (x+ yζi) = zp with x+ yζ, . . . , x+ yζp−1

coprime in Z[ζ]. By the assumed unique factorization of Z[ζ], each multiplicand is
a unit times a pth power, and in particular

x+ yζ = uαp, u ∈ Z[ζ]×, α ∈ Z[ζ].

From the first bullet of section 1, u = ζruo where r is an integer and uo = uo. From
the second bullet, αp ≡pZ[ζ] a where a ∈ Z. So now,

(x+ yζ)ζ−r ≡pZ[ζ] uoa,

and similarly with complex conjugates, because uo = uo and a ∈ Z,

(x+ yζ−1)ζr ≡pZ[ζ] uoa.

Together these two congruences give

(x+ yζ)ζ−r ≡pZ[ζ] (x+ yζ−1)ζr,

and it follows that

p | x+ yζ − xζ2r − yζ2r−1 in Z[ζ].

Because p ≥ 5 the sum in the previous display has at most p − 1 terms. If
1, ζ, ζ2r, ζ2r−1 are distinct then from the third bullet in section 1, because the sum
is divisible by p in Z[ζ] each of its coefficients is divisible by p in Z. This contradicts
the assumption that x and y are coprime. The cases where 1, ζ, ζ2r, ζ2r−1 are not
all distinct are also handled by the third bullet in section 1 as follows, noting that
1 6= ζ and ζ2r 6= ζ2r−1.

• If ζ2r = 1 then p | yζ − yζ−1 and so p | y, contradiction.
• If ζ2r−1 = 1 then p | x− y + (y − x)ζ and so p | x− y, contradiction.
• If ζ2r = ζ then ζ2r−1 = 1, so this case is already done.
• If ζ2r−1 = ζ then p | x− xζ2 and so p | x, contradiction.

Altogether, the first case of the pth Fermat equation is impossible if Z[ζ] is a unique
factorization domain.
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4. Resolution of a technical point

The first bullet in section 1 says

[T]he quotient u/u is a unit having size 1 as a complex number. As
such it at least plausibly takes the form ζ2r. . .

We now show that indeed u/u = ζ2r for some r.
Let α = u/u, an element of Z[ζ] such that αα = 1. Here α = σp−1(α) where

for i = 1, . . . , p − 1 the Z[ζ] automorphism σi fixes Z and takes ζ to ζi. The

automorphisms σi commute because (ζi)i
′

= (ζi
′
)i, and so in particular, σi(α) =

σi(α). Compute for any such i,

σi(α)σi(α) = σi(α)σi(α) = σi(αα) = σi(1) = 1.

That is, not only does α have size 1 as a complex number, but so do all of its
conjugates σi(α).

Now α is a root of unity by a well known argument, as follows. Each power
αn of α satisfies a monic polynomial fαn [x] ∈ Z[x]. Because αn lies in Z[α], the
degree of fαn is at most the degree of fα, independently of n. Also, the coefficients
of fαn are the elementary symmetric functions of the conjugates of αn and these
conjugates all have absolute value 1, so the coefficients of fαn satisfy bounds that
are independent of n. Altogether there are only finitely many polynomials fαn , so
only finitely many values αn, and so α is a root of unity.

As a root of unity in Z[ζ], α takes the form ζs for some s. Let r be such that
s ≡p 2r and recall that α = u/u to get the desired result u/u = ζ2r.


