AN EASY CASE OF FERMAT'S LAST THEOREM

This writeup based on chapter 1 of Cyclotomic Fields by Washington. See also chapter 1 of Number Fields by Marcus.

Let $p \geq 5$ be an odd prime. Consider the first primitive p th complex root of unity,

$$
\zeta=\zeta_{p}=e^{2 \pi i / p}
$$

and the ring $\mathbb{Z}[\zeta]$ of polynomials in ζ having integer coefficients. Suppose that the prime p is such that

$$
\mathbb{Z}[\zeta] \text { is a unique factorization domain. }
$$

We show for such p, the first case of the Fermat equation,

$$
x^{p}+y^{p}=z^{p}, \quad p \nmid x y z, \quad x, y, z \text { nonzero integers }
$$

has no solution.
Unique factorization in $\mathbb{Z}[\zeta]$ holds for $p=2,3,5,7,11,13,17,19$, but it fails for $p=23$ and it fails in general. Chapter 1 of Washington's Cyclotomic Fields proves the first case of Fermat's Last Theorem under the weaker assumption that p does not divide the class number of $\mathbb{Q}(\zeta)$. The argument is essentially similar to the unique factorization case, the crucial moment being that an ideal whose p th power is principal must itself be principal.

1. Basic facts about $\mathbb{Z}[\zeta]$

This section makes no reference to the assumption that $\mathbb{Z}[\zeta]$ is a unique factorization domain.

Because $\sum_{i=0}^{p-1} \zeta^{i}=0$ by the finite geometric sum formula, $\mathbb{Z}[\zeta]$ consists of the \mathbb{Z}-linear combinations of any $p-1$ elements of $\left\{1, \zeta, \ldots, \zeta^{p-1}\right\}$. Here are some facts about $\mathbb{Z}[\zeta]$, to be cited below.

- Every unit (invertible element) u of $Z[\zeta]$ takes the form $u=\zeta^{r} u_{o}$ where, with an overbar denoting complex conjugation, $\bar{u}_{o}=u_{o}$. Indeed, the quotient u / \bar{u} is a unit having size 1 as a complex number. As such it at least plausibly takes the form $\zeta^{2 r}$ (this point will be addressed at the end of this writeup), from which $\zeta^{r} \bar{u}=\zeta^{-r} u$. Let $u_{o}=\zeta^{-r} u$, so that indeed $u=\zeta^{r} u_{o}$ and $\bar{u}_{o}=\zeta^{r} \bar{u}=\zeta^{-r} u=u_{o}$.
- If $\alpha \in \mathbb{Z}[\zeta]$ then $\alpha^{p} \equiv_{p \mathbb{Z}[\zeta]} a$ for some $a \in \mathbb{Z}$, because $\alpha=\sum_{i=0}^{p-2} a_{i} \zeta^{i}$ where each a_{i} lies in \mathbb{Z}, and so $\alpha^{p} \equiv_{p \mathbb{Z}[\zeta]} \sum_{i=0}^{p-2} a_{i}^{p} \in \mathbb{Z}$.
- The ring structure of $\mathbb{Z}[\zeta]$ makes it a \mathbb{Z}-module. If an element $\alpha=\sum_{i=0}^{p-1} a_{i} \zeta^{i}$ of $\mathbb{Z}[\zeta]$ has at least one a_{i} equal to 0 , so that the powers of ζ that are present form a \mathbb{Z}-linearly independent set (here we use the fact that the polynomial $\sum_{i=0}^{p-1} x^{i}$ is irreducible in $\mathbb{Z}[x]$), and if some integer n divides α, then n divides each coefficient a_{i} in \mathbb{Z}.

2. The special element $1-\zeta$ of $\mathbb{Z}[\zeta]$

This section shows that $1-\zeta, 1-\zeta^{2}, \ldots, 1-\zeta^{p-1}$ are associate in $\mathbb{Z}[\zeta]$, that $1-\zeta$ is irreducible in $\mathbb{Z}[\zeta]$, and that $(1-\zeta) \mathbb{Z}[\zeta] \cap \mathbb{Z}=p \mathbb{Z}$.

To show that they are associate, consider any $i \in\{1, \ldots, p-1\}$. The relation $1-\zeta^{i}=(1-\zeta) \sum_{k=0}^{i-1} \zeta^{k}$ shows that $1-\zeta$ divides $1-\zeta^{i}$ in $\mathbb{Z}[\zeta]$; but also, with $i^{\prime} \in\{1, \ldots, p-1\}$ such that $i i^{\prime} \equiv 1(p)$, the relation

$$
1-\zeta=\left(1-\zeta^{i}\right) \sum_{k=0}^{i^{\prime}-1} \zeta^{k i}
$$

shows that $1-\zeta^{i}$ divides $1-\zeta$ in $\mathbb{Z}[\zeta]$ as well. Thus all of $1-\zeta, 1-\zeta^{2}, \ldots, 1-\zeta^{p-1}$ are associate in $\mathbb{Z}[\zeta]$, because each is associate with $1-\zeta$.

To show that that $1-\zeta$ is irreducible in $\mathbb{Z}[\zeta]$, first note that in the general equality $\prod_{i=1}^{p-1}\left(x-\zeta^{i}\right)=\sum_{j=0}^{p-1} x^{j}$ (both equal $\left(x^{p}-1\right) /(x-1)$), setting x to 1 gives

$$
\prod_{i=1}^{p-1}\left(1-\zeta^{i}\right)=p
$$

Now suppose that $1-\zeta=f(\zeta) g(\zeta)$ where f and g are polynomials over \mathbb{Z}. Then $1-\zeta^{i}=f\left(\zeta^{i}\right) g\left(\zeta^{i}\right)$ for $i=i, \ldots, p-1$, and multiplying over i gives, by the previous display,

$$
\prod_{i=1}^{p-1} f\left(\zeta^{i}\right) \prod_{i=1}^{p-1} g\left(\zeta^{i}\right)=p
$$

Because the symmetrizations $\prod_{i=1}^{p-1} f\left(\zeta^{i}\right)$ and $\prod_{i=1}^{p-1} g\left(\zeta^{i}\right)$ lie in \mathbb{Z} (here we use some basics of Galois theory and algebraic number theory), they are ± 1 and $\pm p$ without loss of generality and so $f(\zeta)$ is a unit and $g(\zeta)$ is associate to $1-\zeta$ in $\mathbb{Z}[\zeta]$.

The relation $\prod_{i=1}^{p-1}\left(1-\zeta^{i}\right)=p$ shows that the ideal $(1-\zeta) \mathbb{Z}[\zeta] \cap \mathbb{Z}$ of \mathbb{Z} contains $p \mathbb{Z}$, so it equals one of $p \mathbb{Z}$ or \mathbb{Z}. It does not equal \mathbb{Z} because $1-\zeta$ is not a unit of $\mathbb{Z}[\zeta]$, and so $(1-\zeta) \mathbb{Z}[\zeta] \cap \mathbb{Z}=p \mathbb{Z}$.

3. Main Proof

Again, assume that p is such that $\mathbb{Z}[\zeta]$ is a unique factorization domain. We show that consequently there exist no nonzero integers x, y, z such that

$$
x^{p}+y^{p}=z^{p}, \quad p \nmid x y z .
$$

The Fermat equation lets us assume that $\operatorname{gcd}(x, y, z)=1$, and then that x, y, z are pairwise coprime. Further, the conditions $x \equiv_{p} y \equiv_{p}-z$ cannot both hold because they would give $-z^{p}-z^{p} \equiv_{p} z^{p}$ and so $p \mid 3 z$, impossible because $p \geq 5$ and $p \nmid z$. So either $p \nmid x-y$ or $p \nmid x+z$, but in the second case we may replace (y, z) by $(-z,-y)$ and now $p \nmid x-y$; in sum, we may assume that $p \nmid x-y$. We may also note that because $p \nmid z^{p}=x^{p}+y^{p}$ it follows that $p \nmid x+y$. Now the argument is to posit a solution (x, y, z) satisfying all these conditions and derive a contradiction. Again, the conditions are that x, y, z are pairwise coprime and that p divides none of $x y z, x \pm y$.

The Fermat equation $x^{p}+y^{p}=z^{p}$ is

$$
\prod_{i=0}^{p-1}\left(x+y \zeta^{i}\right)=z^{p}
$$

The multiplicands $x+y \zeta, x+y \zeta^{2}, \ldots, x+y \zeta^{p-1}$ on the left side are coprime in $\mathbb{Z}[\zeta]$, as follows. If

$$
\pi \mid x+y \zeta^{i}, x+y \zeta^{j} \quad(\pi \text { a nonunit })
$$

then noting that $\zeta^{i}-\zeta^{j}=\zeta^{i}\left(1-\zeta^{j-i}\right)=u(1-\zeta)$ where u is a unit,

$$
\pi \mid\left(x+y \zeta^{i}\right)-\left(x+y \zeta^{j}\right)=y\left(\zeta^{i}-\zeta^{j}\right)=u y(1-\zeta)
$$

and with a possibly different unit u,

$$
\pi \mid \zeta^{j}\left(x+y \zeta^{i}\right)-\zeta^{i}\left(x-y \zeta^{j}\right)=\left(\zeta^{j}-\zeta^{i}\right) x=u(1-\zeta) x .
$$

Thus $\pi \mid 1-\zeta$, because otherwise $\pi \mid x, y$ and so $\pi \mid \operatorname{gcd}(x, y)=1$. Consequently $\pi=1-\zeta$ after scaling π by a unit. Now

$$
1-\zeta \mid x+y \zeta^{i}+y(1-\zeta)=x+y
$$

and so $x+y$ lies in $(1-\zeta) \mathbb{Z}[\zeta] \cap \mathbb{Z}=p \mathbb{Z}$, but we have noted that this does not hold. So no nonunit π divides $x+y \zeta^{i}$ and $x+y \zeta^{j}$ for distinct $i, j \in 0, \ldots, p-1$.

The relation $x^{p}+y^{p}=z^{p}$ is now $\prod_{i=0}^{p-1}\left(x+y \zeta^{i}\right)=z^{p}$ with $x+y \zeta, \ldots, x+y \zeta^{p-1}$ coprime in $\mathbb{Z}[\zeta]$. By the assumed unique factorization of $\mathbb{Z}[\zeta]$, each multiplicand is a unit times a p th power, and in particular

$$
x+y \zeta=u \alpha^{p}, \quad u \in \mathbb{Z}[\zeta]^{\times}, \alpha \in \mathbb{Z}[\zeta] .
$$

From the first bullet of section $1, u=\zeta^{r} u_{o}$ where r is an integer and $\bar{u}_{o}=u_{o}$. From the second bullet, $\alpha^{p} \equiv_{{ }_{p \mathbb{Z}[\zeta]}} a$ where $a \in \mathbb{Z}$. So now,

$$
(x+y \zeta) \zeta^{-r} \equiv_{p \mathbb{Z}[\zeta]} u_{o} a,
$$

and similarly with complex conjugates, because $\bar{u}_{o}=u_{o}$ and $a \in \mathbb{Z}$,

$$
\left(x+y \zeta^{-1}\right) \zeta^{r} \equiv_{p \mathbb{Z}[\zeta]} u_{o} a
$$

Together these two congruences give

$$
(x+y \zeta) \zeta^{-r} \equiv_{p \mathbb{Z}[\zeta]}\left(x+y \zeta^{-1}\right) \zeta^{r}
$$

and it follows that

$$
p \mid x+y \zeta-x \zeta^{2 r}-y \zeta^{2 r-1} \text { in } \mathbb{Z}[\zeta] .
$$

Because $p \geq 5$ the sum in the previous display has at most $p-1$ terms. If $1, \zeta, \zeta^{2 r}, \zeta^{2 r-1}$ are distinct then from the third bullet in section 1, because the sum is divisible by p in $\mathbb{Z}[\zeta]$ each of its coefficients is divisible by p in \mathbb{Z}. This contradicts the assumption that x and y are coprime. The cases where $1, \zeta, \zeta^{2 r}, \zeta^{2 r-1}$ are not all distinct are also handled by the third bullet in section 1 as follows, noting that $1 \neq \zeta$ and $\zeta^{2 r} \neq \zeta^{2 r-1}$.

- If $\zeta^{2 r}=1$ then $p \mid y \zeta-y \zeta^{-1}$ and so $p \mid y$, contradiction.
- If $\zeta^{2 r-1}=1$ then $p \mid x-y+(y-x) \zeta$ and so $p \mid x-y$, contradiction.
- If $\zeta^{2 r}=\zeta$ then $\zeta^{2 r-1}=1$, so this case is already done.
- If $\zeta^{2 r-1}=\zeta$ then $p \mid x-x \zeta^{2}$ and so $p \mid x$, contradiction.

Altogether, the first case of the p th Fermat equation is impossible if $\mathbb{Z}[\zeta]$ is a unique factorization domain.

4. Resolution of a technical point

The first bullet in section 1 says
[T]he quotient u / \bar{u} is a unit having size 1 as a complex number. As such it at least plausibly takes the form $\zeta^{2 r} \ldots$
We now show that indeed $u / \bar{u}=\zeta^{2 r}$ for some r.
Let $\alpha=u / \bar{u}$, an element of $\mathbb{Z}[\zeta]$ such that $\alpha \bar{\alpha}=1$. Here $\bar{\alpha}=\sigma_{p-1}(\alpha)$ where for $i=1, \ldots, p-1$ the $\mathbb{Z}[\zeta]$ automorphism σ_{i} fixes \mathbb{Z} and takes ζ to ζ^{i}. The automorphisms σ_{i} commute because $\left(\zeta^{i}\right)^{i^{\prime}}=\left(\zeta^{i^{\prime}}\right)^{i}$, and so in particular, $\overline{\sigma_{i}(\alpha)}=$ $\sigma_{i}(\bar{\alpha})$. Compute for any such i,

$$
\sigma_{i}(\alpha) \overline{\sigma_{i}(\alpha)}=\sigma_{i}(\alpha) \sigma_{i}(\bar{\alpha})=\sigma_{i}(\alpha \bar{\alpha})=\sigma_{i}(1)=1
$$

That is, not only does α have size 1 as a complex number, but so do all of its conjugates $\sigma_{i}(\alpha)$.

Now α is a root of unity by a well known argument, as follows. Each power α^{n} of α satisfies a monic polynomial $f_{\alpha^{n}}[x] \in \mathbb{Z}[x]$. Because α^{n} lies in $\mathbb{Z}[\alpha]$, the degree of $f_{\alpha^{n}}$ is at most the degree of f_{α}, independently of n. Also, the coefficients of $f_{\alpha^{n}}$ are the elementary symmetric functions of the conjugates of α^{n} and these conjugates all have absolute value 1 , so the coefficients of $f_{\alpha^{n}}$ satisfy bounds that are independent of n. Altogether there are only finitely many polynomials $f_{\alpha^{n}}$, so only finitely many values α^{n}, and so α is a root of unity.

As a root of unity in $\mathbb{Z}[\zeta], \alpha$ takes the form ζ^{s} for some s. Let r be such that $s \equiv_{p} 2 r$ and recall that $\alpha=u / \bar{u}$ to get the desired result $u / \bar{u}=\zeta^{2 r}$.

