
EXPONENTIAL AND LOGARITHMIC POWER SERIES

FORMAL PROPERTIES

This writeup shows, purely formally, with no reference to analysis, that the power
series definitions

exp(x) =

∞∑
n=0

1

n!
xn and ln(1− x) = −

∞∑
n=1

1

n
xn

satisfy the properties (noting that 1− (x+ y − xy) = (1− x)(1− y) for the second
and that 1− (1− exp(x)) = exp(x) for the fourth)

exp(x+ y) = exp(x) exp(y)

ln
(
1− (x+ y − xy)

)
= ln(1− x) + ln(1− y)

exp(ln(1− x)) = 1− x
ln
(
1− (1− exp(x))

)
= x

so long as we assume that we are working in characteristic 0.
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1. Exponential property

Immediately from the binomial theorem,

exp(x) exp(y) =

∞∑
j=0

1

j!
xj
∞∑
k=0

1

k!
yk

=

∞∑
n=0

1

n!

∑
j,k≥0
j+k=n

n!

j! k!
xjyk

=

∞∑
n=0

1

n!
(x+ y)n

= exp(x+ y).
1
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2. Logarithmic property

Granting that the exponential and the logarithm are inverses, as will be shown
below, compute, using exp ◦ ln = 1 at the first step, exp(z) exp(w) = exp(z +w) at
the second, and ln ◦ exp = 1 at the third,

ln
(
(1− x)(1− y)

)
= ln

(
exp(ln(1− x)) exp(ln(1− y))

)
= ln(exp

(
ln(1− x) + ln(1− y)

)
)

= ln(1− x) + ln(1− y).

However, we also show this result directly. The sum of two logarithmic power
series is

ln(1− x) + ln(1− y) = −
∞∑
n=1

1

n
(xn + yn).

And the logarithmic power series of the product is

ln((1− x)(1− y)) = ln(1− (x+ y − xy)) = −
∞∑
n=1

1

n
(x+ y − xy)n.

By the trinomial theorem, this is

ln((1− x)(1− y)) = −
∞∑
n=1

1

n

∑
j,k,`≥0
j+k+`=n

(
n

j, k, `

)
(−1)`xj+`yk+`

= −
∞∑
n=1

1

n

∑
j,k≥0
j+k≤n

(−1)n−j−k
n!

j! k! (n− j − k)!
xn−kyn−j .

The terms where (j, k) = (n, 0) or (j, k) = (0, n) give −
∑∞
n=1

1
n (xn + yn), which

we recognize from above as ln(1−x) + ln(1−y). So what needs to be shown is that
the rest of ln((1− x)(1− y)) is 0. This is the condition that for every pair (α, β) of
positive integers, the coefficient of xαyβ vanishes, and we may take α ≤ β because
the whole situation is symmetric in x and y,

∞∑
n=1

∑
0≤j,k<n
j+k≤n
n−k=α
n−j=β

(−1)n−j−k
(n− 1)!

j! k! (n− j − k)!
= 0, 0 < α ≤ β.

We see that j = n − β and k = n − α, so that 0 ≤ n − α and 0 ≤ n − β, i.e.,
n ≥ α and n ≥ β (and the second of these implies the first because α ≤ β) and the
summation condition j + k ≤ n is n ≤ α+ β. So now the needed condition is that
infinitely many finite alternating sums vanish as follows,

α+β∑
n=β

(−1)α+β−n
(n− 1)!

(n− α)! (n− β)! (α+ β − n)!
= 0, 0 < α ≤ β.

Let k = α+ β − n, which varies from 0 to α, and the needed condition becomes

α∑
k=0

(−1)k
(α− 1 + β − k)!

(β − k)! (α− k)! k!
= 0, 0 < α ≤ β.
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The unsigned summand is

(α− 1)!

α!
· α!

k! (α− k)!
· (α− 1 + β − k)!

(α− 1)! (β − k)!
=

1

α

(
α

k

)(
α− 1 + β − k

α− 1

)
.

And so, because 1/α is constant as k varies, the needed condition is combinatorial,

α∑
k=0

(−1)k
(
α

k

)(
α− 1 + β − k

α− 1

)
= 0, 0 < α ≤ β.

We argue combinatorially that indeed the sum in the previous display is 0. For any
k ∈ {0, . . . , α} and any size-k subset Ak of {1, . . . , α}, let SAk

denote the set of
(α−1)-combinations (unordered (α−1)-element sets) from {1, . . . , α−1+β}−Ak.
Thus

• SAo = S∅ consists of the (α− 1)-combinations from {1, . . . , α− 1 + β} that
needn’t omit any element of {1, . . . , α} but may do so
• each SA1

consists of the (α − 1)-combinations that omit the lone element
of A1 and possibly omit other elements of {1, . . . , α} as well
• each SA2

consists of the (α − 1)-combinations that omit the two elements
of A2 and possibly other elements of {1, . . . , α} as well

and so on. Inclusion-exclusion counting says that the sum of (−1)|Ak||SAk
| over all

such k and Ak counts the (α− 1)-combinations from {1, . . . , α− 1 + β} that omit
none of {1, . . . , α}, i.e., contain them all. Because α > α − 1 there are no such
combinations and so the sum vanishes,

α∑
k=0

(−1)k
∑
Ak

|SAk
| = 0, 0 < α ≤ β.

For each k there are
(
α
k

)
sets Ak, for each of which |SAk

| =
(
α−1+β−k

α−1
)
, and so the

previous display is exactly what we need,

α∑
k=0

(−1)k
(
α

k

)(
α− 1 + β − k

α− 1

)
= 0, 0 < α ≤ β.

This completes the proof that the power series of ln(1 − x) + ln(1 − y) and of
ln(1− (x+ y − xy)) are formally equal.

(A slightly variant proof uses a more set theoretic statement of the inclusion-
exclusion principle, as follows. For any finite collection of finite sets, {Si : i ∈ I},
and with the empty intersection

⋂
j∈∅ Sj understood to be

⋃
i∈I Si,∑

J⊂I
(−1)|J|

∣∣∣∣ ⋂
j∈J

Sj

∣∣∣∣ = 0.

This equality holds by induction on |I|, as the reader is invited to show. Especially,

if
∣∣∣⋂j∈J Sj∣∣∣ depends only on |J |—call it f(|J |)—then the previous display simplifies

to
|I|∑
k=0

(−1)k
(
|I|
k

)
f(k) = 0.

Now let I = {1, . . . , α}, and for each i ∈ I let Si be the set of (α− 1)-combinations

of {1, . . . , α − 1 + β} that omit i. Thus |I| = α and f(k) =
(
α−1+β−k

α−1
)
, and so as
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above,
α∑
k=0

(−1)k
(
α

k

)(
α− 1 + β − k

α− 1

)
= 0.

Whereas the previous paragraph counted out the solution to the specific problem at
hand, this paragraph has counted out a general inclusion-exclusion principle that
is broadly useful and then specialized it to solve the problem.)

3. Composition of formal power series

To show that the exponential and logarithmic power series are inverses, we first
discuss composition of power series in general.

Consider two power series, both having constant term 0,

a(x) =
∑
n≥1

anx
n b(x) =

∑
m≥1

bmx
m.

In what follows, indices named n or m are understood to be at least 1. For any n,
the nth power of b(x) is

(b(x))n =
∑

m1,...,mn

bm1
· · · bmn

xm1+···+mn

Introduce notation for the length and the size of any vector ~m = (m1, . . . ,mn),

`(~m) = n |~m| = m1 + · · ·+mn,

and introduce an abbreviation of a product,

b~m = bm1
· · · bm`(~m)

.

So now, concisely,

(b(x))n =
∑

~m:`(~m)=n

b~mx
|~m|,

and so a(b(x)) =
∑
n≥1 an

∑
~m:`(~m)=n b~mx

|~m| =
∑

~m a`(~m)b~mx
|~m| is therefore

a(b(x)) =
∑
k≥1

ckx
k where ck =

∑
|~m|=k

a`(~m)b~m.

More handily,

a(b(x)) =
∑
k≥1

ckx
k where ck =

k∑
n=1

an
∑

`(~m)=n
|~m|=k

b~m.(1)

For example,

c1 = a1b(1) = a1b1

c2 = a1b(2) + a2b(1,1) = a1b2 + a2b
2
1

c3 = a1b(3) + a2(b(1,2) + b(2,1)) + a3b(1,1,1) = a1b3 + 2a2b1b2 + a3b
3
1.
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4. The exponential inverts the logarithm

For a(x) = exp(x)− 1 and b(x) = ln(1−x), so that a(b(x)) = exp(ln(1−x))− 1,
which we want to be −x, we have an = 1/n! and bm = −1/m and so (1) gives
exp(ln(1− x))− 1 =

∑
k≥1 ckx

k where

ck =

k∑
n=1

(−1)n

n!

∑
m1+···+mn=k

1

m1 · · ·mk
.

So c1 = −1/1! · 1/1 = −1 and c2 = −1/1! · 1/2 + 1/2! · 1/(1 · 1) = 0. To show that
exp(ln(1−x))−1 = −x as formal power series, i.e., that ck = 0 for k ≥ 2, it suffices
to show that

k∑
n=1

(−1)n
k!

n!

∑
m1+···+mn=k

1

m1 · · ·mn
= 0, k ≥ 2.

The unsigned summand k!/n!
∑

~m 1/(m1 · · ·mn) counts how many permutations
in Sk decompose into n cycles, including trivial cycles of one element. Indeed,
there are k! ways to write 1 through k left to right, and then for each of them,∑
m1+···+mn=k

1 ways to parenthesize in order to create n cycles, and for each

(m1, . . . ,mn) we must divide by m1 · · ·mn to account for rewriting the cycles,
and we must divide by n! to account for rewriting their product. Further, left
multiplication by (1 2) has the effect

(1 a2 . . . ac−1 2 ac+1 . . . ad)←→ (1 a2 . . . ac−1)(2 ac+1 . . . ad),

so it bijects between the elements of Sk that have an odd number of cycles and
those that have an even number. Hence the alternating sum is 0.

5. The logarithm inverts the exponential

Similarly, with a(x) = ln(1 − x) and b(x) = 1 − exp(x), so that a(b(x)) =
ln(exp(x)), which we want to be x, now an = −1/n for n ≥ 1 and bn = 1/n!
for n ≥ 1. This time (1) gives ln(exp(x)) =

∑
k≥1 ckx

k where

ck =

k∑
n=1

(−1)n

n

∑
m1+···+mn=k

1

m1! · · ·mk!
.

So c1 = 1/1 · 1/1! = 1 and c2 = 1/1 · 1/2! − 1/2 · 1/(1! · 1!) = 0. To show that
ln(exp(x)) = x as formal power series, i.e., that ck = 0 for k ≥ 2, it suffices to show
that

k∑
n=1

(−1)n
k!

n

∑
m1+···+mn=k

1

m1! · · ·mn!
= 0, k ≥ 2.

This time the unsigned summand k!/n
∑

~m 1/(m1!...mn!) counts how many ways
{1, . . . , k} can be written as a cycle of n nonempty subsets. The map

{1}{. . . } · · · ←→ {1, . . . } · · ·
bijects the even such cycles and the odd such cycles. Hence the alternating sum
is 0.


