THE EXPONENTIAL AND LOGARITHMIC POWER SERIES ARE FORMAL INVERSES

1. Formal composition of power series

Consider two power series, both having constant term 0 ,

$$
a(x)=\sum_{n \geq 1} a_{n} x^{n} \quad b(x)=\sum_{m \geq 1} b_{m} x^{m}
$$

In what follows, indices named n or m are understood to be at least 1 . For any n,

$$
(b(x))^{n}=\sum_{m_{1}, \ldots, m_{n}} b_{m_{1}} \cdots b_{m_{n}} x^{m_{1}+\cdots+m_{n}}
$$

Introduce notation for the length and the size of any vector $\vec{m}=\left(m_{1}, \ldots, m_{n}\right)$,

$$
\ell(\vec{m})=n \quad|\vec{m}|=m_{1}+\cdots+m_{n}
$$

and introduce an abbreviation of a product,

$$
b_{\vec{m}}=b_{m_{1}} \cdots b_{m_{\ell(\vec{m})}} .
$$

So now, concisely,

$$
(b(x))^{n}=\sum_{\vec{m}: \ell(\vec{m})=n} b_{\vec{m}} x^{|\vec{m}|},
$$

and so $a(b(x))=\sum_{n \geq 1} a_{n} \sum_{\vec{m}: \ell(\vec{m})=n} b_{\vec{m}} x^{|\vec{m}|}=\sum_{\vec{m}} a_{\ell(\vec{m})} b_{\vec{m}} x^{|\vec{m}|}$ is therefore

$$
\left.a(b(x))=\sum_{k \geq 1} c_{k} x^{k} \quad \text { where } c_{k}=\sum_{|\vec{m}|=k} a_{\ell(\vec{m})}\right) b_{\vec{m}}
$$

More handily,

$$
\begin{equation*}
a(b(x))=\sum_{k \geq 1} c_{k} x^{k} \quad \text { where } c_{k}=\sum_{n=1}^{k} a_{n} \sum_{\substack{(\overrightarrow{\vec{~}})=n \\|\vec{m}|=k}} b_{\vec{m}} . \tag{1}
\end{equation*}
$$

For example, $c_{1}=a_{1} b_{(1)}=a_{1} b_{1} ; c_{2}=a_{1} b_{(2)}+a_{2} b_{(1,1)}=a_{1} b_{2}+a_{2} b_{1}^{2} ; c_{3}=$ $a_{1} b_{(3)}+a_{2}\left(b_{(1,2)}+b_{(2,1)}\right)+a_{3} b_{(1,1,1)}=a_{1} b_{3}+2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{3}$.

2. The exponential inverts the logarithm

For $a(x)=\exp (x)-1$ and $b(x)=\ln (1-x)$, so that $a(b(x))=-x$, we have $a_{n}=1 / n!$ and $b_{m}=-1 / m$ and so (1) gives $\exp (\ln (1-x))-1=\sum_{k \geq 1} c_{k} x^{k}$ where

$$
c_{k}=\sum_{n=1}^{k} \frac{(-1)^{n}}{n!} \sum_{m_{1}+\cdots+m_{n}=k} \frac{1}{m_{1} \cdots m_{k}} .
$$

So $c_{1}=-1 / 1!\cdot 1 / 1=-1$ and $c_{2}=-1 / 1!\cdot 1 / 2+1 / 2!\cdot 1 /(1 \cdot 1)=0$. To show that $\exp (\ln (1-x))-1=-x$ at the level of formal power series, i.e., that $c_{k}=0$ for $k \geq 2$, it suffices to show that

$$
\sum_{n=1}^{k}(-1)^{n} \frac{k!}{n!} \sum_{m_{1}+\cdots+m_{n}=k} \frac{1}{m_{1} \cdots m_{n}}=0, \quad k \geq 2
$$

The unsigned summand $k!/ n!\sum_{\vec{m}} 1 /\left(m_{1} \cdots m_{n}\right)$ counts how many permutations in S_{k} decompose into n cycles, including trivial cycles of one element. Indeed, there are k ! ways to write 1 through k left to right, and then for each of them, $\sum_{m_{1}+\cdots+m_{n}=k} 1$ ways to parenthesize to create n cycles, and for each $\left(m_{1}, \ldots, m_{n}\right)$ we must divide by $m_{1} \cdots m_{k}$ to avoid writing the same permutation more than once. Further, left multiplication by (12) has the effect

$$
\left(1 a_{2} \ldots a_{c-1} 2 a_{c+1} \ldots a_{d}\right) \longleftrightarrow\left(1 a_{2} \ldots a_{c-1}\right)\left(2 a_{c+1} \ldots a_{d}\right)
$$

so it bijects between the elements of S_{k} that have an odd number of cycles and those that have an even number. Hence the alternating sum is 0 .

3. The logarithm inverts the exponential

Similarly, with $a(x)=\ln (1-x)$ and $b(x)=1-\exp (x)$, so that $a(b(x))=$ $\ln (\exp (x))$, now $a_{n}=-1 / n$ for $n \geq 1$ and $b_{n}=1 / n!$ for $n \geq 1$. This time (1) gives $\ln (\exp (x))=\sum_{k \geq 1} c_{k} x^{k}$ where

$$
c_{k}=\sum_{n=1}^{k} \frac{(-1)^{n}}{n} \sum_{m_{1}+\cdots+m_{n}=k} \frac{1}{m_{1}!\cdots m_{k}!}
$$

So $c_{1}=1 / 1 \cdot 1 / 1!=1$ and $c_{2}=1 / 1 \cdot 1 / 2!-1 / 2 \cdot 1 /(1!\cdot 1!)=0$. To show that $\ln (\exp (x))=x$ at the level of formal power series, i.e,. that $c_{k}=0$ for $k \geq 2$, it suffices to show that

$$
\sum_{n=1}^{k}(-1)^{n} \frac{k!}{n} \sum_{m_{1}+\cdots+m_{n}=k} \frac{1}{m_{1}!\cdots m_{n}!}=0, \quad k \geq 2
$$

The unsigned summand $k!/ n \sum_{\vec{m}} 1 /\left(m_{1}!\ldots m_{m}!\right)$ counts how many ways $\{1, \ldots, k\}$ can be broken into a cycle of n nonempty subsets. The map

$$
\{1\}\{\ldots\} \cdots \longleftrightarrow\{1, \ldots\} \ldots
$$

bijects the even such cycles and the odd such cycles. Hence the alternating sum is 0 .

