
THE PRIME-POWER CYCLOTOMIC INTEGER RING BY

TRACES AND NORMS

Let p be prime. For each positive integer e, let ζpe = exp(2πi/pe) denote the
usual complex primitive peth root of unity, and introduce the field

Ke = Q(ζpe).

Let Oe denote the integer ring of Ke. The smallest candidate for Oe is Z[ζpe ]. We
will show that this candidate is the full integer ring:

For e ≥ 1 and Ke = Q(ζpe) we have Oe = Z[ζpe ].

In consequence, the factorization of p in Oe is

pOe = 〈1− ζpe〉φ(p
e), 〈1− ζpe〉 maximal.

The equality in the previous display is not hard to establish, but the fact that 〈1−
ζpe〉 is maximal is requires more; we will discuss this below. The maximality shows
that the equality gives the full factorization of pOe, or at least a full factorization
if we don’t want to rely on the uniqueness of ideal factorization in number rings.

To establish the boxed statement, we first lay out some results about prime-power
cyclotomic polynomials, in the process establishing the equality in the previous
display but not the maximality, and we explain how the maximality follows from the
boxed statement and a theorem. Then we prove the boxed statement by induction
on e, the base case and the inductive step requiring different arguments. The only
technical tools used here are the trace and the norm; in particular, we do not use
the discriminant.

This writeup is derived from arguments in the books by Samuel and Marcus.
Samuel proves the prime case and then writes, “The results of this section easily
extend [to the prime-power case].” However, the word easily is context-dependent,
and to extend Samuel’s argument I needed to augment its methods by what would
amount to further ideas for a beginning student. If indeed the prime-power case
can be covered by a proof that uses only the methods—narrowly construed—of
Samuel’s proof for the prime case then I would appreciate learning it. On the
other hand, Marcus does prove the prime-power case, but his argument uses the
discriminant. Notwithstanding that every student of algebraic number theory needs
to learn about the discriminant and to see it in action, my goal here is a more
self-contained presentation of this writeup’s result, aimed at students interested in
seeing it proved without having to invest in general machinery.
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1. Prime-power Cyclotomic Polynomials

The polynomial of ζp over Q is

Φp(X) =

p−1∑
i=0

Xi = 1 +X +X2 + · · ·+Xp−1,

so that in particular Φp(1) = p. This polynomial is well known to be irreducible
via Eisenstein’s criterion, and perhaps less known but more clearly shown to be
irreducible via Schönemann’s criterion; the latter will be reviewed below. The
relation

(1−X)Φp(X) = 1−Xp in Z[X]

reduces modulo p to

(1−X)Φp(X) = (1−X)p in (Z/pZ)[X],

from which

Φp(X) = (1−X)p−1 in (Z/pZ)[X].

For general e ≥ 1, the polynomial Φpe(X) of ζpe is

Φpe(X) = Φp(X
pe−1

),

with the irreducibility of this polynomial again established by Eisenstein’s crite-
rion or Schönemann’s criterion, and the previous two displays give the reduction
of Φpe(X) modulo p,

Φpe(X) = Φp(X)p
e−1

= (1−X)φ(p
e) in (Z/pZ)[X].

The polynomial Φpe(X) splits over Ke = Q(ζpe) as

Φpe(X) =
∏

j∈(Z/peZ)×
(X − ζjpe) in Ke[X],

and so the norm of 1− ζpe from Ke to Q is

NKe/Q(1− ζpe) =
∏

j∈(Z/peZ)×
(1− ζjpe) = Φpe(1) = Φp(1

pe−1

) = Φp(1) = p.

The relation p =
∏
j∈(Z/peZ)×(1 − ζjpe) in the previous display combines with the

finite geometric sum formula to give

p = (1− ζpe)φ(p
e)

∏
j∈(Z/peZ)×

j−1∑
i=0

ζipe ,

so that (1 − ζpe)φ(p
e) divides p in Oe. Further, taking norms from Ke to Q in

the previous display shows that the product of sums is a unit in Oe (in fact, that
each sum is a unit), so that p and (1− ζpe)φ(p

e) are associates in Oe; equivalently

pOe = 〈1− ζpe〉φ(p
e) in Oe.

The work so far doesn’t establish that the ideal 〈1 − ζpe〉 of Oe is maximal.
However, once we establish that Oe = Z[ζpe ], the maximality follows from the
theorem that factors pOe by factoring Φpe(X) modulo p; indeed, we have established

that Φpe(X) = (1 −X)φ(p
e) and we have established that 1 − ζpe divides p in Oe,

so the theorem gives

pOe = 〈1− ζpe〉φ(p
e), 〈1− ζpe〉 maximal.
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This repeats the equality at the end of the previous paragraph but also adds that the
equality gives the complete factorization of p in Oe. Alternatively, the theorem that
the ramification, residue field degree, and decomposition index multiply to φ(pe)
gives the maximality of the ideal from the equality. For that matter, because the
norm p of 〈1 − ζpe〉 doesn’t factor in Z, nor does 〈1 − ζpe〉 factor in Oe. In the
context of this writeup we emphasize the first of this paragraph’s three arguments
that 〈1−ζpe〉 is maximal, because the writeup’s goal is to establish that Oe = Z[ζpe ].

We end this section by stating, applying, and proving Schönemann’s criterion.
David Cox’s January 2011 American Mathematical Monthly article on this subject
is highly recommended.

Proposition 1.1 (Schönemann’s Criterion). Let A be a UFD, and let f(X) ∈ A[X]
be monic of positive degree n. Suppose that for some element a of A and some prime
ideal p of A,

f(X) = (X − a)n mod p[X] and f(a) 6= 0 mod p2.

Then f(X) is irreducible modulo p2[X] and hence f(X) is irreducible in A[X].

Immediately in consequence of Schönemann’s criterion, the polynomial Φpe(X)
for p prime and e ≥ 1 is irreducible, as follows. We have established that its
reduction modulo p is Φpe(X) = (X − 1)φ(p

e) (earlier we had (1 −X)φ(p
e) on the

right side, but the exponent is even unless pe = 2, and in that case X − 1 = 1−X
modulo p), and also we have computed Φpe(1) = p, which is nonzero modulo p2; so
the criterion applies.

Proof of Schönemann’s criterion. We show the contrapositive statement, arguing
that if f(X) is reducible mod p2[X] then its reduction looks enough like (X − a)n

to force f(a) = 0 mod p2. Specifically, suppose that

f(X) = f1(X)f2(X) mod p2[X].

The reduction modulo p2 agrees modulo p with the reduction modulo p,

f1(X)f2(X) = (X − a)n mod p[X],

and so, because we may take f1(X) and f2(X) to be monic, we have for i = 1, 2,

fi(X) = (X − a)ni mod p[X], ni ∈ Z+.

Specifically, from the equality f1(X)f2(X) = (X − a)n in (A/p)[X] where the
polynomials now have their coefficients reduced modulo p, the same equality holds
in k[X] where k is the quotient field of the integral domain A/p. Because k[X]
is a UFD, fi(X) = (X − a)ni in k[X] for i = 1, 2, but these equalities stand
between elements of (A/p)[X], giving the previous display. In consequence of the
display fi(a) = 0 mod p for i = 1, 2, and so the first display in the proof gives
f(a) = 0 mod p2 as desired. �

2. Base Case: the Prime Cyclotomic Field

Let K1 = Q(ζp). The cyclotomic polynomial

Φp(X) = Xp−1 +Xp−2 + · · ·+ 1

shows that [K1 : Q] = p − 1. It also shows that ζp has trace −1, and hence so do
its Galois conjugates, ζjp for j = 1, . . . , p− 1, while 1 has trace p− 1. A basis of K1
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as a vector space over Q is {1, ζp, . . . , ζp−2p }, whereas adding ζp−1p creates a linearly
dependent set. We establish that the integer ring of K1 is O1 = Z[ζp].

The first step is to show that

(1− ζp)O1 ∩ Z = pZ.

To see this, recall from above that N(1− ζp) =
∏p−1
j=1(1− ζjp) = p, and thus 1− ζp

divides p in O1, giving pZ ⊂ pO1∩Z ⊂ (1− ζp)O1∩Z; the maximality of pZ makes
the ideal-containments equalities, because otherwise 1−ζp divides 1 in O1 and then
taking norms gives the false statement that p divides 1 in Z.

Now consider any α ∈ O1. Let {αj} denote the conjugates of α in O1, recall
as noted above that 1 − ζp divides 1 − ζjp in O1 for j = 2, . . . , p − 2 by the finite
geometric sum formula, and compute that consequently,

Tr(α(1− ζp)) =

p−1∑
j=1

αj(1− ζjp) ∈ (1− ζp)O1 ∩ Z = pZ.

In coordinates we have

α =

p−2∑
j=0

ajζ
j
p, a0, . . . , ap−2 ∈ Q,

and so also, because Tr ζjp = −1 for j = 1, . . . , p− 1 while Tr 1 = p− 1,

Tr(α(1− ζp)) =

p−2∑
j=0

ajTr(ζjp − ζj+1
p ) = pa0.

That is, pa0 lies in pZ, giving a0 ∈ Z. Continuing, we now have ζ−1p (α− a0) ∈ O1

and the same argument shows that a1 ∈ Z, and so on, so that α ∈ Z[ζp]. This
completes the proof that O1 = Z[ζp].

3. Induction Step: Incrementing the Power of the Prime

Again let p be prime, and let e ≥ 2 be a positive integer. We assume that

for Ke−1 = Q(ζpe−1) we have Oe−1 = Z[ζpe−1 ],

and we show that consequently

for Ke = Q(ζpe) we have Oe = Z[ζpe ].

To set up the inductive argument, note that [Ke : Ke−1] = φ(pe)/φ(pe−1) = p.
(This differs from [K1 : K0] = p − 1, where K0 naturally denotes Q.) The Galois
group of Ke over Ke−1 is naturally viewed as

{1 + ipe−1 + peZ} ⊂ (Z/peZ)×,

and the minimal polynomial of ζpe over Ke−1 is

fe(X) = Xp − ζpe−1 .

This polynomial shows that TrKe/Ke−1
ζpe = 0, and TrKe/Ke−1

1 = p. The isomor-
phism from Ke−1[X]/〈fe(X)〉 to Ke, taking X + 〈fe(X)〉 to ζpe , shows that a basis
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of Ke over Ke−1 is {ζipe : i = 0, . . . , p− 1}. Generalizing the two traces just noted,
compute for any integer k that

TrKe/Ke−1
ζkpe =

p−1∑
i=0

ζ
(1+ipe−1)k
pe = ζkpe

p−1∑
i=0

(ζkp )i =

{
pζ
k/p
pe−1 if p | k

0 if p - k.

Now we establish that Oe = Z[ζpe ], assuming that Oe−1 = Z[ζpe−1 ]. Consider
any element of Oe, taking the form

α =

p−1∑
i=0

aiζ
i
pe , ai ∈ Ke−1 for i = 0, . . . , p− 1.

Multiply by various units and then take traces to get

TrKe/Ke−1
(αζ−jpe ) = paj , j = 0, 1, . . . , p− 1.

That is, paj lies in Oe−1 for each j, and so Oe ⊂ 1
pOe−1[ζpe ]. Our inductive

assumption that Oe−1 = Z[ζpe−1 ] makes this containment Oe ⊂ 1
pZ[ζpe ]. Because

Z[ζpe ] = Z[1− ζpe ], we can rewrite the general element of Oe as

α =
1

p

φ(pe)−1∑
i=0

bi(1− ζpe)i, b0, . . . , bφ(pe)−1 ∈ Z.

We want to show that p divides each bi.
Let π = 1 − ζpe . From the beginning of this writeup, p is associate to πφ(p

e)

in Oe, i.e., p = uπφ(p
e) for some unit u ∈ O×e , and also NKe/Q(π) = p. Thus

uπφ(p
e)α = b0 +

φ(pe)−1∑
i=1

biπ
i, b0, . . . , bφ(pe)−1 ∈ Z,

and this shows that π divides b0 in Oe. Take norms to Q to see that p divides b
φ(pe)
0

in Z, and because p is prime this says that p divides b0 in Z.
Now we have

α = c0 +
1

p

φ(pe)−1∑
i=1

biπ
i, c0, b1, . . . , bφ(pe)−1 ∈ Z,

or, letting α1 = α− c0, an element of Oe,

uπφ(p
e)−1α1 = b1 +

φ(pe)−1∑
i=2

biπ
i−1, b1, . . . , bφ(pe)−1 ∈ Z,

and this shows that π divides b1 in Oe, so that p divides b1 in Z.
And so on. This completes the proof that Oe = Z[ζpe ] if Oe−1 = Z[ζpe−1 ].


