
Mathematics 361: Number Theory
Assignment C

Reading: Ireland and Rosen, Chapter 3 (including the exercises)
and into Chapter 4

Problems:

The pigeonhole principle and congruences.
1. Let m be a positive integer and a1, . . . , am be any integers,

possibly repeating. Show that for some nonempty subset S of the in-
dices {1, . . . ,m},

∑
i∈S ai ≡ 0 (mod m). (Hint: pigeonhole the partial

sums.)

The fifth Fermat number is composite.
2. Fermat defined the numbers Fn = 22n + 1 for n ≥ 0. Thus

F0 = 3, F1 = 5, F2 = 17, F3 = 257,

F4 = 65537, F5 = 4294967297, etc.

He conjectured that all the Fn are prime, as indeed F0 through F4

are. Euler showed that F5 is composite, using techniques that were
actually available to Fermat and applied by him in similar situations.
André Weil, in his book Number Theory: An Approach Through
History, conjectures that Fermat tried these techniques on F5, made
an arithmetic error (as he apparently often did), and never rechecked
them. Following Euler, investigate whether F5 is composite. To search
for candidate prime factors p of F5, reason as follows: p | 232 + 1
is equivalent to 232 ≡ −1 (mod p), showing that 2 has order 64 in
(Z/pZ)×. It follows that 64 | φ(p) = p − 1, so p must take the form
p = 64k + 1. Thus candidates for p are

193, 257, 449, 577, 641, etc.

Testing whether each of these primes p divides F5 is easy. As above,
we need to check whether 232 ≡ −1 (mod p), so simply compute 2, 22,
24, 28, etc. modulo p up to 232. Use this method to show that 193 does
not divide F5. Neither do 257, 449 or 577, but don’t bother showing
this. Use this method to show that 641 does divide F5.

Note that this shows F5 to be composite without ever computing it.

Using algebra rather than arithmetic.
3. The Fibonacci numbers are u0 = 0, u1 = 1, un = un−1 + un−2 for

n ≥ 2 (this is slightly different indexing from earlier). Read through
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the following method to compute a closed form expression for un via
linear algebra:

Let A =

[
1 1
1 0

]
. Induction quickly shows that An =

[
un+1 un
un un−1

]
for n ≥ 1. So to find un in closed form it suffices to compute either
off-diagonal entry of An.

To diagonalize A with no mess, one easily computes that its charac-
teristic polynomial is χA(λ) = λ2 − tr(A)λ+ det(A) = λ2 − λ− 1. We
let τ and τ̃ denote the roots of χA but we don’t compute them yet—the
numerical values only muddy the calculation. The coefficients of the
characteristic polynomial show that

(1) τ + τ̃ = 1, τ τ̃ = −1.

Note that the second relation in (1) tells us that one root—say, τ—
is positive and the other negative. Thus the roots are distinct and
each corresponding eigenspace of A has dimension 1. In particular, the
matrix

A− τI =

[
1− τ 1

1 −τ

]
must have nullity 1 and therefore rank 1, meaning its two rows are
linearly dependent so that any vector orthogonal to the second row

spans the matrix’s nullspace. For example,

[
τ
1

]
works. Continuing this

argument shows that

An = PJnP−1 where J =

[
τ 0
0 τ̃

]
and P =

[
τ τ̃
1 1

]
,

so P−1 =
1

τ̃ − τ

[
1 −τ̃
−1 τ

]
.

To obtain a closed form expression for un, compute that (τ̃ − τ)An is[
τ τ̃
1 1

] [
τn 0
0 τ̃n

] [
1 −τ̃
−1 τ

]
=

[
∗ ∗
1 1

] [
τn ∗
−τ̃n ∗

]
=

[
∗ ∗

τn − τ̃n ∗

]
,

and so

(2) un =
τn − τ̃n

τ − τ̃
.

Finally, since τ, τ̃ = (1±
√

5)/2, we have Binet’s formula

un =
((1 +

√
5)/2)n − ((1−

√
5)/2)n√

5
.

Note how clean the calculation is when one ignores the numerical value
of τ until the end.
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(a) Use relations (1) and the convention τ > 0 to show that |τ̃ | < τ .
(b) Now use (2) to show that limn→∞(un+1/un) = τ . (None of (a)

or (b) requires the numerical value of τ .)

4. Ireland and Rosen exercises 3.24, 3.25, 3.26. Note: 3.25 is tech-
nical; roughly λ is a square root of 3 and therefore a fourth root of 9,
and so the condition α = 1 (λ) suggests that α3 = 1 (λ3), but the issue
is to finagle one more power of λ to get to α3 = 1 (λ4); and problem
3.24 can tell us that one of three elements must be a multiple of λ.

5. Work a selection from Ireland and Rosen exercises 3.1, 3.4, 3.8–
3.10, 3.12–3.13, 3.16, 3.17, 3.18, 3.23.

Optional alternate problems.
6. Use Hensel’s Lemma to show that for distinct odd primes p and q,

the 2-adic equation

px2 + qy2 = z2, x, y, z ∈ Z2

has a nonzero solution if at least one of p and q is 1 modulo 4 but not
if both are 3 modulo 4.

7. Let a, b ∈ Q be nonzero. Show that the inhomogeneous condition

aX2 + bY 2 = 1 has a solution in Q2

and the homogeneous condition

aX2 + bY 2 = Z2 has a nonzero solution in Z3

are equivalent.


