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Our brief discussion of the p-adic integers earlier in the semester intrigued
me and lead me to research further into this topic. That research lead to
the main focus of this project, profinite groups. This project traces the
connections between several different algebraic ideas in group theory. It is
a culmination of old and new material. Beginning with familiar topics such
as topology and the p-adics, I approached several of these ideas in new ways
that allowed me to deepen my understanding of these areas. This provided
a secure point of departure to explore completely new algebraic topics such
as profinite groups and some introductory Galois theory (Appendix B).

Topology

Since this project is directed towards students in an abstract algebra
course with no other assumptions about background, I will begin by re-
viewing certain basic topological ideas that will be necessary as we progress
through the material. We will begin with the definition of a topological
group:

A topological group G is a group that is also a topological
space such that the product map:

p : G×G→ G

(g, g′) 7→ gg′

and the inverse map:

i : G→ G

g 7→ g−1

are continuous functions (with respect to the topology).

Throughout this paper we will take G to be a topological group, and we
will let X represent the more general topological space. A space X could be
equipped with a wide variety of topologies, including the subspace topology,
the product topology, or the quotient topology. One topology that we will
be concerned with later on is the discrete topology:

A topological space X is equipped with the discrete topology
if every subset of X is open.
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Sometimes the definition of the topological group includes that G must be
Hausdorff, but as this notion is important in later discussions, we will define
it separately here. The property of being a Hausdorff space (sometimes also
known as a T2-space) is one of the separation axioms.

A topological space X is Hausdorff if for all x, y ∈ X there
exist open sets U, V ⊆ X such that x ∈ U , y ∈ V and the
intersection of U and V is empty.

Related to the separation axioms is the idea of connectedness:

A topological space X is connected if it cannot be written as
the union of two disjoint nonempty open sets. Otherwise, X
is called disconnected.

Later on we will be most concerned with the idea of a topological space that
is totally disconnected:

X is totally disconnected if the only connected subsets of X
are the one-element sets.

The final key definition to review is compactness:

X is compact if every open cover of X has a finite subcover.

Here, we take a cover of X to refer to a collection of subsets of X whose
union is X, and an open cover requires those subsets to be open.

The p-adic Integers

Before moving on to the discussion of profinite groups, I would like to
briefly review a topic that we saw earlier in the semester, the p-adic inte-
gers. The p-adic integers, Zp for p prime, were first introduced during our
discussion of group products since an algebraic way to define these integers
is as the limit of group products:

Zp = lim
e

Z/pe

We later compared this construction of the p-adic integers with the more
classical definition as the completion of Z under the p-adic metric, a review
of which is included in the first appendix below. Under this classical con-
struction, it might be easier to think of the p-adic integers as an extension
of the integers, and so retains some of the algebraic structure of Z. It is
important to note that different metrics can give rise to the same topology.
Thus, the topology that is uniquely determined by the product topologies
on lime Z/pe is the same topology as the one that arises from the p-adic
metric.
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One of our motivations for introducing the limit construction of Zp was
that some of the properties of the p-adics are more evident from this con-
struction as compared to the set-theoretic definition. In particular, we dis-
cussed that the compactness of Zp is easily inherited from the group prod-
ucts, yet this topological property is much more difficult to tease out from
the classical construction. Certain other topological properties are inherent
in Zp as an extension of the integers or from the classical construction such
as Zp being totally disconnected. The fact that Zp is Hausdorff also follows
from the classical definition since the Hausdorff property relies on open sets,
which the metric helps to define.

Profinite Groups

With the idea of p-adic integers in mind, we now turn our focus to profinite
groups. The group of p-adic integers under addition is a profinite group, and
many of the properties of the p-adics discussed in the previous section will
be important in contributing to the group being profinite.

There are two equivalent ways to define profinite groups. The first relies
on the topology introduced in the earlier section, and so we will focus our
attention on this definition first.

A profinite group is a compact, Hausdorff, and totally dis-
connected topological group.

These topological properties that define profinite groups unsurprisingly
affect other properties of the groups and their subgroups. The product of
arbitrarily many profinite groups is again profinite, and the product topol-
ogy matches the topology inherent from the groups’ profinite properties.
Closed subgroups of profinite groups are also profinite, and similarly, the
subspace topology is consistent with the profinite topology. If a closed sub-
group is also normal, then the quotient group will be profinite with the
quotient topology consistent with the profinite topology. Profinite groups
are particularly useful for the property of being compact Hausdorff, which
is useful as a measuring property.

A profinite group can also be constructed from a finite group if the finite
group is given the discrete topology. This leads us to the other definition
for profinite groups. This second definition requires us to first define some
new algebraic objects:

A directed partially ordered set is a set I with a partial or-
der ≥ such that for any two elements i, j ∈ I there exists
a k ∈ I such that k ≥ i and k ≥ j.

A projective system is a collection of groups Gi, i ∈ I, with
group homomorphisms fi,j : Gj → Gi for i, j,∈ I and j ≥ i
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such that fi,i = idGi for all i ∈ I and fi,j ◦ fj,k = fi,k for
k ≥ j ≥ i.

Given a projective system (Gi, fi,j), the projective limit is a
particular subgroup of the direct product of Gi’s:

lim←−Gi = {(gi) ∈
∏

Gi | gi = fi,j(gi) ∀j ≥ i}.

With these terms in place, the equivalent definition for a profinite group
follows:

A profinite group is a topological group that is isomorphic to
the inverse (or projective) limit of finite groups.

Returning again to the example of the p-adic integers, since Z/pnZ is a finite
group for n ∈ N, it clearly follows that Zp is the projective limit of these
groups. As examined earlier, Zp is a topological group, and thus we find that
the p-adic integers also satisfy this definition of the profinite group. In fact,
since this definition of profinite groups is algebraic in structure, the algebraic
construction of the p-adic integers complements this definition well.

With the p-adic integers as a motivation, we can create other profinite
groups with constructions similar to those of the p-adics. The best way to
do so is by generalizing the projective limit for any a ∈ Z≥1:

Za = lim←−Z/anZ.

We refer to Za as the a-adic integers. From this definition, the following
isomorphism holds:

Za ≈
∏
p|a

Zp.

Since a ∈ Z and p | a, let a = pib, where b ∈ Z such that p does not divide b,

Za = lim←−Z/anZ

= lim←−Z/(pib)nZ

= lim←−Z/pinbnZ

Then by the Sun-Ze Theorem, lim←−Z/pinbnZ = lim←−(Z/pinZ×Z/bnZ) ≈ ZpZb.
With induction on b we reach the desired relation.
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Appendix A: The Classical Analytic Construction of the
p-adic Integers

Let p be prime and let x ∈ Z such that x = pna, a ∈ Z/pZ and n ∈ Z.
Then we define the p-adic norm to be:

|x|p = p−n.

For all x, y ∈ Z, the p-adic norm has the following properties:

|0|p = 0,
|x · y|p = |x|p · |y|p,
|x + y|p ≤ max{|x|p, |y|p}, equality if |x|p 6= |y|p.

This allows us to define a metric dp:

dp(x, y) = |x− y|p.

This metric does satisfy the following three properties as necessary:

dp(x, y) ≥ 0 with equality iff x = y,
dp(x, y) = dp(y, x),
dp(x, y) ≤ dp(x, z) + dp(y, z), ∀x, y, z ∈ Z.

Then the p-adic integers Zp are defined as the completion of the metric
space (Z, dp).

Appendix B: Profinite Groups in Relation to Galois Theory

We ended the semester with a brief glimpse into Galois theory. As it
turns out, the research on profinite groups is also related to Galois theory.
However, since the ideas needed to discuss profinite groups in Galois theory
are not directly related to the main body of this project, I am including the
topic in a fairly brief overview, similar to how we ended the semester.

When we saw Galois theory briefly at the end of the semester, we were
constructing the 17th-root of unity by introducing the roots of quadratics.
In fact, what we were doing was creating extension fields:

A field E is an extension field of a field F if F ⊆ E and the
operations of F are those of E restricted to F .

We’ve seen other examples of field extensions before, although we may
not have recognized them. One example is the complex number field, which
is isomorphic to the extension field of the reals, R[x]/ < x2 + 1 >.

Field extensions are particularly helpful for creating finite fields of specific
orders since an extension field E will have a degree:

Let E be an extension field of a field F . Then E has degree
n over F and write [E : F ] = n if E has dimension n as a
vector space over F . If [E : F ] is finite, E is called a finite
extension of F . Otherwise, E is an infinite extension of F .
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This extension field is sometimes referred to as algebraic, which can then
be related to the Galois extension:

An algebraic field extension E/F is a Galois extension if it
is normal and separable.

Normal and separable are two properties of extension fields:

A field extension E/F is normal if E is the splitting field of
a family of polynomials in F [x], i.e. for f(x) ∈ F [X], f(x)
can be factored as a product of linear factors in E[x], but in
no proper subfield of E[x].

An extension field E of F is separable if and only if for every
e ∈ E the minimal polynomial of e over F is a separable poly-
nomial (i.e., has distinct roots). Otherwise, the extension is
called inseparable.

This leads to the definition of the Galois group:

Let E be an extension field of the field F such that E/F is a
Galois extension. The Galois group of E over F , Gal(E/F ),
is the set of all automorphisms of E that take every element
of F to itself, where an automorphism of E is understood to
be a ring automorphism from E onto E.

Consider the collection of Galois groups, Gal(Ei/F ), such that each Ei/F
is a finite extension field. Then taking the projective limit of these finite
groups, we have:

lim←−Gal(Ei/F ) = Gal(E/F )
where the group homomorphisms are the mappings

Gal(Ei/F )→ Gal(Ej/F ), Ej ⊆ Ei.

Thus, the resulting Galois group Gal(E/F ) over the infinite extension field E/F
is profinite.


