
TOPOLOGY IN INFINITE GALOIS THEORY

DAVID NIELSEN

1. Introduction

The idea of taking topology from analysis and using it in a algebraic group
structure seemed interesting to me, so I chose to look at topological groups. One
place where topology brings clarity to an algebraic topic is in Galois theory. Galois
theory provides very nice relations between groups of automorphisms and their
underlying fields so long as the fields are finite extensions of some other field.
However, if the field extensions in question are infinite then the relations break
down. By applying a topology to the groups of automorphisms the relations become
clear once again.

I will attempt to walk you through the process by which I approached learning
about this infinite Galois theory. I used ”Field Extensions and Galois Theory” by
Julio R. Bastida as my primary source for information and any references to page
numbers come from it.

2. Finite Galois Theory

My first step was to gain a basic understanding of how Galois theory worked in
the finite case. This entailed learning the definitions of concepts central to Galois
theory.

Definition 2.1 (Field Extension). Given a field K, the field F is an extension of
K iff K ⊂ F .

So an extension field is simply a larger field that the initial field is embedded
into. The examples that helped made this clear to me were the real numbers as
an extension of the rational numbers and the complex numbers as an extension of
the reals. Being able to think of extensions in terms of fields I already knew was
helpful.

Definition 2.2. Given a field F , with subfield K and subset D then the field
generated by K ∪D is denoted K(D)

This is a simple way to create field extensions of K that is used in a number of
Bastida’s examples and proofs, so it is handy to note now.

In Galois theory, we are most concerned with extensions that are both normal
and separable. If an extension has both these properties we call it Galois. I will
omit these definitions because they rely on a series of definitions that are more
clearly laid out in Bastida’s book, and the specifics did not impact my study of
infinite Galois theory. It was simply assumed that we were dealing with Galois
extensions and the properties of the fields were secondary. More often, we were
concerned with the group of automorphisms of a field, Aut(F ).
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Definition 2.3 (Invariant). For a field F, let s ∈ Aut(F ). Every α ∈ F such that
s(α) = α, α is said to be s-invarient which we notate α ∈ Inv(s), with Inv(s) being
the subset of F invariant under s

This definition clearly generalizes to groups of functions, where the invariant
subset of the field with respect to the group is the intersection of the invariant
subsets with respect to all the group elements.

Definition 2.4 (Galois Group). For a field K with extension F, we define the
Galois Group to be the group of automorphisms of F for which K is invariant.
We notate this Gal(F/K)

So the Galois group is the group of automorphisms that leave K untouched,
while doing anything to the remainder of F.

With these definitions we can state the fundamental theorem of finite Galois
theory as found on page 124 of Bastida.

Theorem 2.5 (Galois). Let K be a field, and let F be a finite Galois extension of
K.

(i): If E is an intermediate field between K and F, then Gal(F/E) is a subgroup
of Gal(F/K).

(ii): If Γ is a subgroup of Gal(F/K), then Inv(Γ) is an intermediate field
between K and F.

(iii): The mapping E 7−→ Gal(F/E) from the set of all intermediate fields
between K and F to the set of all subgroups of Gal(F/K) and the mapping
Γ 7−→ Inv(Γ) from the set of all subgroups of Gal(F/K) to the set of all in-
termediate fields between K and F are mutually inverse inclusion-reversing
bijections.

This bijective relation between the Galois group and the intermediate fields is
one of the most important results of Galois theory. These are the main topics from
finite Galois theory that I was examining in an infinite context.

3. The Problem with Infinity

When looking at a field K with infinite extension F , the intermediate groups
between F and K still relate to subgroups of Gal(F/K) by the relation
E 7−→ Gal(F/E) but not every subgroup of the Galois group relates to an inter-
mediate field.

Bastida shows this in an example on page 197. This example took me a couple
of readings to understand, but that was mostly due to having to scour the book
to completely understand the notation and the specific fields/functions being used.
This is one of the problems I had with learning from this book. The examples
which were supposed to illustrate the theorems often referenced things which were
unfamiliar to me, so they didn’t actually help me figure out what was happening,
and I was no sure how to construct simpler example that would help me see what
was going on. I will attempt to reconstruct the example and parenthetically fill in
the gaps that made gave me trouble when I was first reading it:

Example 1. Let P be a field with prime characteristic p (P is finite and isomorphic
to Z/pZ). Let F be the algebraic closure of P (this means F is infinite and a Galois
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extension of P ). Let Γ be a subgroup of the Aut(F ) defined by the Frobenius
mapping1 (α 7−→ αp)

If n is a positve integer, F contains a unique subfield of cardinality pn, and
Xpn −X from P [X] splits over F [X] (since F is an algebraic extension of P ). Let
D = {all zeros of Xpn −X in F}. This means that P (D) is the only splitting field
of Xpn −X in F which further means P (D) is the only field of cardinality pn in F
(these properties of fields are explained further in Bastida, but there is not space
here to do so).

For every positive integer n let En denote the subfield of F of cardinality p2n

.
Note that 2n|2n+1 for n ≥ 1 so we have a strictly increase sequence of subfields of
F . Let E = ∪∞n=1En. This E is an infinite proper subfield of F since it has no
subfield of cardinality p3 which F does have.

Since F is Galois over P , it is Galois over E (Proposition 3.3.1 page 116). This
means E = Inv(Gal(F/E)) and since E is a proper subfield, this is a nontrivial
group. If s ∈ Gal(F/E), s 6= IF there cannot be a positive integer n such that
for all α ∈ F, s(α) = αp

n

because that would make each point of E a zero of
Xpn −X which is a finite set, while E is infinite. This restriction on s means that
Gal(F/E) * Γ which further tells us Γ 6= Aut(F ).

We know that P is the set fixed points under the Frobenius mapping, which is
also fixed under Aut(F ) which is its Galois group (page 99) so we have the following:

Inv(Γ) = P = Inv(Gal(F/P )) = Inv(Aut(F ))

Now we have two distinct groups that both have P invariant. This means that Γ is
a subgroup of the Galois group that does not correspond to an intermediate field.
So this example has show that the fundamental theorem of finite Galois theory
breaks down when we attempt to transition to infinite fields.

Topology comes into infinite Galois theory to solve this problem. By applying
an appropriate topology to a Galois group, a bijective relation can once again be
found. Krull pioneered this, but I will first look at the finite topology described by
Bastida

4. Finite Topology

To create the finite topology, we first must describe the basic sets from which all
the open sets are made.

Definition 4.1 (Basic Set in Finite Topology). 2 Let F be a field and let s be
an automorphism of F. For every finite subset A of F, we denote the set of all
automorphism that agree with s on A, Ωs(A)

These basic sets along with the empty set make up the finite topology, which we
will now assume is applied to any group of automorphisms. The first proposition
that I was able to understand and reconstruct about this topology is the following:

Proposition 4.2. 3 Let F be a field, Γ a group of automorphisms of F with closure
Γ̄. Then Inv(Γ) = Inv(Γ̄)

1Bastida 8
2Bastida 197-198
3Proposition 3.12.3Bastida 198
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Proof. Since Γ ⊂ Γ̄ it is clear that everything that is invariant under Γ̄ is also
invariant under Γ so Inv(Γ̄) ⊆ Inv(Γ). To show that Inv(Γ) ⊆ Inv(Γ̄) we look
at any α ∈ Inv(Γ). If s ∈ Γ̄ then from properties of closure we know that there
is a t ∈ Γ ∩ Ωs(α). This gives us the following relations for t, s(α) = t(α) = α so
α ∈ Inv(Γ̄) �

The only tricky part of the proposition is that s being in the closure of Γ gives
us such a t. Once you have that fact, it is very simple to see how things follow.
This same idea can then be used to show that the Galois group is closed under the
finite topology.

Proposition 4.3. 4 Let K be a field, and let F be an extension field of K. then
Gal(F/K) is closed in Aut(F)

Proof. We must show that Gal(F/K) contains all the points in its closure, that
is for any s ∈ Gal(F/K), s(α) = α for all α ∈ K. The same closure property
used in 4.2 gives us a t ∈ Gal(F/K) ∩Ωs(α) from which follows the same relation:
s(α) = t(α) = α �

These two propositions helped me see how the finite topology worked. It became
clearer what being in a specific ’open set’ meant, because that property was used
to show agreement between the s and t in both propositions.

5. Finite Topology and Krull Topology

Krull’s initial topology was not stated in the same language as the finite topology,
but the Krull topology agrees with the finite topology on Galois groups of algebraic
extensions. We will show this by stating the description Krull gave of the basis for
the open sets in his topology, and showing how it reduces to the open sets defined
by the finite topology.

Proposition 5.1 (Krull). 5 Let K be field, and let F be an algebraic extension of
K. Then the Galois groups of F over its subfields that are finite extensions of K
make up a fundamental system of neighborhoods of the elements in Gal(F/K)

Proof. If D is a finite subset of F, K(D) is a finite extension of K as Krull described.
We then look at Gal(F/K(D)) We note that K is invariant under this mapping,
as is D and any combination of elements of K and D This leads to the relation

Gal(F/K(D)) = Gal(F/K) ∩ ΩIF
(D)

We also note that for any s ∈ Gal(F/K), Ωs(∅) = Gal(F/K). This means that
the Galois group of F over the the finite extensions of K can be described as the
intersection of open sets from the finite topology �

Now that we have these two ways of describing the same sets on a Galois group,
we consider why there was no topoloy necessary if the extension field was finite. If
F is an finite Galois extension of K then the Krull topology tell us that Gal(F/F )
is a basis element for the set of open sets. However Gal(F/F ) = IF which clearly
leads to a discrete topology since the identity returns each automorphism in the
Galois group as an open set. Once we have an discrete topology there isn’t anything
interesting to be learned by examining the properites of open or closed sets since

4Proposition 3.12.4, Bastida 199
5Proposition 3.12.6, Bastida 199
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all sets are open and closed. We now follow Bastida as he turns to examine sets
that are compact under the finite topology.

6. Product Topology Aside

Bastida began his discussion of compactness by introducing a product topology.
This was initially quite confusing to me since I had forgotten about product topolo-
gies and was not sure how to construct examples for myself so that I could begin
to figure things out. This is the proposition that introduced product topology:

Proposition 6.1. 6 Let F be a field. For every α ∈ F , let Dα denote the discrete
topological space having F as its set of points. Then Aut(F)⊆ ×α∈FDα, and the
finite topology on Aut(f) coincides with the topology on Aut(F) induced that that on
the product space ×α∈FDα

The proof as written in the book did little to help me understand why this was
true. However, I talked to Jerry about my confusion and he was able to clarify
things. By drawing rough sketches of what the proposition was claiming I was
able to begin to understand what was going on. I will attach my recreations of
these drawings along with a brief explanation. Being able to simply draw a picture
of the situation was very enlightening to me, and I will hopefully be able to do
this in the future when I get stuck while reading through theorems. It helped make
concrete examples of abstract ideas that I knew I had heard about but who’s details
I couldn’t remember. This also highlighted the importance of getting someone else’s
viewpoint while studying math. Someone else was able to propose looking at the
problem in a different manner that I would not have thought of or known how to
create and things were greatly clarified. I have found this outside input to be very
helpful in the past and hopefully will be able to continue to use it in my study of
mathematics.

This product topology doesn’t really bear on the rest of infinite Galois theory,
it is simply a tool Bastida used in a few proofs to show things simiply. I include
it hear because I wanted to understand it so I could parse the proofs that Bastida
was providing. He goes on to prove a number of properties about compactness of
Galois groups which allow him to state the fundemental theorem of infinite Galois
Theory

7. Fundemental theorem of Infinite Galois Theory

Bastida provides two slightly different flavors of the fundamental theorem, but
I will include the one that most closely relates to the finite theorem I already
included:

Theorem 7.1. 7 Let K be a field and let F be a Galois extension of K.
(i): If E is an intermediate field between K and F, then Gal(F/E) is a closed

subgroup of Gal(F/K).
(ii): If Γ is a closed subgroup of Gal(F/K) then Inv(Γ) is a intermediate field

between K and F.

6Proposition 3.12.9, Bastida 200
7Theorem 3.12.19, Bastida 204
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(iii): The mapping E 7−→Gal(F/E) from the set of all intermediate fields
between K and F to the set of all closed subgroups of Gal(F/K) and the
mapping Γ 7−→ Inv(Γ) from the set of all closed subgroups of Gal(F/K)
to the set of all intermediate fields between K and F are mutually inverse
inclusion-reversing bijections.

The proof for this theorem comes very directly from the properties of compact
sets and closed sets that Bastida relates following his introduction of the product
topology. In my project I read over them and gained a basic understanding of what
they said so that they made sense when referenced in this final proof. I am not
going to simple copy the proof since I do not have anything meaningful to add to
it.

This theorem once again gives us a bijective relation. Instead of the simple
bijective relation in the finite case, we now must have a topological description of
our Galois group before we can create this bijective relation. We also note that
this also sadly does not tell us anything about how the open subsets of the Galois
group relate to the underlying field. So in the infinite case we are left with a much
rougher description of the Galois group, but at least we have found a way to make
some sense of the relation between a field and its Galois groups.

8. Conclusion

This study of infinite Galois theory illustrates a useful combination of the tech-
niques of analysis with algebra. The group structures from algebra give strong
relations when Galois theory is applied to finite groups. In the finite case the
fundament theorem provides a bijective relationship, which is extremely powerful.
However, once the field extensions move into the realm of the infinite, the algebraic
structure no longer gives clear relationships. Analysis often concerns itself with the
infinite so applying the ideas of analysis appropriately brings clarity to the subject.
The ability to classify subsets as open or closed provides a way to pick out the
parts of the Galois group that behave even in the infinite case. This allows for the
creation of a new fundamental theorem with a bijective relation between fields and
their Galois groups.


