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FREE PRODUCTS AND BRITTON’S LEMMA

1. Free Products

I determined that the best jumping off point was to start with free products.
Free products are an extension of the notion of free groups. Recall that a free group
F of some set X is a group containing X where every function f : X → G (where
G is a group) can be extended to a homomorphism φ : F → G. The free group
is thus the “largest” group that can be generated from X, and similarly the free
product is the “largest” group generated from a collection of groups in such a way
that the groups retain their structure.

Definition. The free product P of some collection of groups {Aα} is a group
such that:

(i) For every Aα, there exists a subgroup of P that is isomorphic to Aα.
That is, there is a homomorphism ια : Aα → P that is injective.

(ii) For every group G with a collection of homomorphisms fα : Aα → G, there
exists a unique homomorphism φ : P → G such that for each α, φια = fα.

The first condition is analogous to the requirement that the free group F contains
X, and the second is almost identical to the salient feature of a free group. Indeed,
the commutative diagrams are almost identical.

F

X

⊂

6

f
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φ

-
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6
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- G

φ

-

The only differences is that the maps across the left and bottom in the first diagram
are set maps, while the ones in the second diagram are group homomorphisms.
Between the two, a little is lost, and a little is gained—while the maps that φ
must extend are now well-behaved, there are a plurality of maps, instead of just
one. The construction of a free product of some given groups is very similar to the
construction of a free group of a given set. However, before the free product can
be constructed, some notation which will be used throughout this writeup must be
introduced.

First call the set ∪Aα the alphabet. Note that it is assumed that the Aα are
pairwise disjoint; this can always be achieved by replacing some of the Aα with
isomorphic copies. The elements of the alphabet are called letters. Call the set of
all sequences of letters S. A word w in ∪Aα is a sequence

w = {a1, a2, a3, ..., ak−1, 1, 1, 1, ...} ∈ S.

That is, a sequence in S where there is some integer k such that n ≥ k ⇒ an = 1.
Note that 1 may appear in the word before ak. The sequence where k = 1 is called
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the empty word and is denoted as 1. A word in ∪Aα is called a reduced word if it
satisfies the following:

(i) ak is the first 1 to appear in the word.

(ii) ai and ai+1 are never members of the same Aα.

Words will be denoted by writing their finitely many non-1 terms. Note that
spellings of reduced words are unique by the definition of sequence equality.

Existence of the Free Product. Let {Aα} be a collection of groups, then there
is free product of those groups.

Proof. The free product is constructed out of the reduced words of ∪Aα, with the
operation being juxtaposition of the words. Let W be the set of all reduced words
in ∪Aα. For every a ∈ ∪Aα, one can define an operation |a| on W , where

|a|(a1, a2, ..., an) =

{
a, a1, a2, ..., an if a and a1 are not in the same Aα

aa1, a2, ..., an otherwise.

Note that since both |a||a−1| and |a−1||a| are the identity on W , |a| and |a−1|
must be isomorphisms that take given permutations ofW to different permutations.
Denote the set of permutations ofW as SW . Let P be the subgroup of SW generated
by {|a| : a ∈ ∪Aα}. The claim is that P is the free product of the Aα.

Note that every reduced word a1, a2, ..., an can be factored into the series of oper-
ations |a1||a2|...|an|1. Because spellings of reduced words are unique, this factoriza-
tion yields distinct permutations of W . At this point the injective homomorphisms
ια can be constructed. The map takes every a ∈ Aα to |a|. The map is injective
due to the uniqueness of the factorizations, and it is a homomorphism because

ια(aa
′) = |aa′|1
= aa′

= |a||a′|1
= ια(a)ια(a

′).

Let a group G and a collection of homomorphisms {fα : Aα → G} be given. The
desired homomorphism φ : P → G is defined as

φ(|a1||a2|...|an|) = fα(|a1|)fα′(|a2|)...fα′′(|an|)
Because factorizations of reduced words are unique, φ is well defined. Now, consider
two words β and δ ∈ P . We need to show that φ(βδ) = φ(β)φ(δ). The only concern
is the possibility of combining adjacent elements from the same Aα in one of those
terms but not the other. Since φ is defined in terms of the homomorphisms fα,
such combinations will pass right through φ, so φ is homomorphic. It is clear that
φ is unique, since it is defined by the actions of the fα on the generating elements
of P . �

Now we know that the free product can be constructed. However, its construc-
tion was quite ungainly, and I would be lying if I said that I was confident of
my treatment of its construction. It required the introduction of an entirely new
concept (words and reduced words), and the argument lacked a sense of coherency.

As contrast, the proof of the uniqueness of the free product highlights the utility
of the category-theoretic approach. Whereas in the construction of the free product
one becomes bogged down in the elements of the groups in question, the uniqueness



FREE PRODUCTS AND BRITTON’S LEMMA 3

of the free product follows naturally when one considers the natures of the maps
between the objects in question.

Uniqueness of the Free Product. Let {Aα} be a family of groups. If G and H
are free products of those Aα, then G ≈ H.

Proof. Since G and H are both free products of the Aα, they have collections
of injective homomorphisms, ια and κα respectively, which take each Aα to the
respective free product. Thus we have the commutative diagram:

G H

Aα

ια

6

idα
- Aα

κα

6

.

Let fα = καidα. Since fα is a homomorphism from Aα to H, and since G is
a free product of the Aα there is a unique extension of fα to a homomorphism
φ : G → H. Now let gα = ιαidα. By the same reasoning, there exists a unique
extension of gα to a homomorphism ψ : H → G. Their compose ψφ : G→ G which
gives the diagram:

G
ψφ - G

Aα

ια

6

idα
- Aα

ια

6

This diagram does commute. This is due to the properties of φ and ψ, specifically,
that φια = fα = κα, and ψκα = gα = ια. Thus the compose of the left and top
sides of the diagram is

ψφια = ψκα

= ια.

The definition of the free product states that the homomorphism which extends
the fα is unique. Note that the identity on G also has the property IGια = ια,
so ψφ = IG. Similarly, φψ = IH , so the homomorphisms φ and ψ must be
isomorphisms. �

Free products with amalgamated subgroups are a slight variation on free prod-
ucts, which figure centrally in Britton’s Lemma to the Novikov-Boone Theorem.

Definition. Let B be a group and let {Aα} be a collection of groups. For each Aα,
let there be a subgroup Bα of Aα, and an isomorphism φα : B → Bα. The free
product of the Aα with amalgamated subgroup B is the group

((∗Aα) ∗B)/N,

where N is the normal subgroup of the free product generated by all elements of the
form bφα(b

−1) where b ∈ B.
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This is in rough terms the “largest” group where all the subgroups Bα of the
Aα remain identified through the isomorphisms φα. Note that if the subgroup B is
trivial, the free product with amalgamated subgroup reduces to simply being the
free product.

2. Turing Machines, the Novikov-Boone Theorem,
and Britton’s Lemma

The Novikov-Boone Theorem is more or less the group-theory analogue of the
proof of the endecidability of the halting problem. It states that there are groups
that have an unsolvable word problem, which means that there are simple questions
about these groups that no decidable algorithm can answer.

This writeup will not address the Novikov-Boone Theorem in particular, but it
will lay down some of the groundwork, in particular, Britton’s Lemma.

In this section groups will often be referred to by their presentations, that is,
their sets of generators and relations, denoted

G = (X|∆),

where X is the set of generators and ∆ the set of relations. The groups we will be
concerned with are those that have a finite presentation.

Definition. A group has a finite presentation if its presentation contains a finite
number of generators and a finite number of relations.

It has been proven that there exist finitely generated groups that have an infinite
number of relations. Some classes of groups are easily shown to be finitely presented:

• Every finite group is finitely presented, since if the group has rank n, there
are at most n2 relations (write out the multiplication table).

• Every free group of a finite set is finitely presented, since free groups have
no relations.

• Every free product of finitely presented groups is also finitely presented,
since the free product does not introduce any further relations into the
group.

Suppose we have some group G with finite presentation

G = (x1, x2, ..., xn|∆).

The word problem for G is solvable if there exists an algorithm to decide all
questions of the form “is the word w in the xi the identity element of G?” An
algorithm is said to decide a question if it can be guaranteed to return an answer
in a finite number of steps.

Note that these words are not necessarily reduced. The length of a word w in
some xi is the number of xi and x

−1
i which appear in the spelling of the word. Thus,

the empty word has length 0, while the word x1x
−1
1 has length 2 (even though these

words are equivalent after cancellation).
As an example of a group with a solvable word problem, we will show that every

free group’s word problem is solvable. A free group has presentation

F = (x1, x2, ..., xn|ϕ).
Let a word w in the generators of F be given. The following is an algorithm that
decides F ’s word problem:
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(1) if w has length 0 or 1, go to step 4.
(2) Underline the first consecutive pair xix

−1
i which appears in the word. If

no such pair appears in the word, go to step 4.
(3) Remove the two underlined letters from the word w. Go to step 1.
(4) If w has length 0, it is the identity element of F . Otherwise, it’s not.

Since any word in the xi has finite length, this algorithm can be guaranteed to
finish in a finite number of steps (because steps 2 and 3 either reduce the length
of w or halt).

To bring the question of decidability into the algebraic sphere, an algebraic
description of Turing Machines is defined. This writeup assumes the reader is
familiar with the operations of a Turing Machine.

Let s1, s2, ... and q1, q2, ... be infinite lists which will be used for the tape alphabet
and states of the tape head, respectively. A Turing Machine is then a collection
of 4-tuples over these two lists and two additional symbols L and R, where each
4-tuple is of one of the following forms:

1. qisjskql

2. qisjRql

3. qisjLql,

and no two 4-tuples have the same qi and sj . The first type of 4-tuple is interpreted
as replacing the current tape symbol, the second as moving the tape head right,
and the third as moving the tape head left.

Note that the state of a Turing Machine can be described as a word on the si
and qj with exactly one qj (which is not at the end of the word). This means that,
at that moment, the tape consists of the si in the order that they appear in the
word, the tape head’s state is that of the qj which appears in the word, and it is
currently scanning the si which appears after the qj in the word. Such a word is
called an instantaneous description.

Now suppose we have a Turing Machine T , and two instantaneous descriptions
α and β. If there are tuples ∈ T that allow the Turing Machine to start in the
description α, and then (in one move) end in the description β. If this is the case,
then we say that α→ β.

If we consider the symbols si and qj which appear in the tuples of T to be
generators, and all moves α → β of T to be relations α = β, then T gives the
presentation of a semigroup π(T ).

If the reader has some familiarity with Computer Science, then they may sus-
pect that there must exist a semigroup with an unsolvable word problem, since if
one wishes to determine whether a particular word in a semigroup is the identity
element, one may not perform cancellations (since there are no inverses), but only
substitutions according to the relations. Since these relations can be interpreted
as moves of a Turing Machine, and there exist Turing Machines with undecidable
halting problems, one would expect that this means there are semigroups with
undecidable word problems. Indeed, this is was proven by Post [1].

The basic idea of Boone’s proof of the Novikov-Boone theorem is to generate a
group G from si, qj , t, and k, where the si and qj are the tape and state symbols
of a Turing Machine T . He then uses a lemma which states that if Σ ∈ G is an
instantaneous description, then (Σ−1tΣ)k = k(Σ−1tΣ) in G if and only if Σ = q0 in
π(T ). This means that if there were a decidable algorithm to determine whether any
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two words in G are equal, then there would be a decidable algorithm to determine
whether a Turing Machine halted in the state Σ (that is, if the semigroup π(T )
had a solvable word problem). Boone proved the lemma with a combinatorial
argument; subsequently J.L. Britton developed a proof which uses free product
with amalgamated subgroups to argue that certain kinds of elementary operations
(that is, canceling inverses, inserting inverses in place of 1, and substituting) can
be performed inside a semigroup (where one can only substitute). This writeup
presents a partial writeup of Britton’s lemma.

First, a few more definitions.

Definition. A word of the free product of {Aα} with amalgamated subgroup B is
said to be a normal form if it has the form

a1, a2, ..., an, b

where b ∈ B,n ≥ 0, and every adjacent ai lies in a distinct Aα.

Definition. Let X and Y be words which may not be reduced. We say that X ≡ Y
if X and Y have exactly the same spelling (without performing insertions, cancel-
lations, or substitutions).

Remember that X = Y in the case where X and Y determine the same element of
a group.

Definition. Let W be a word on some generators x1, ..., xn. Y is a subword of W
if W ≡ XY Z. W involves xi if xi is a subword of W .

Definition. Let H = (S|D) and H∗ = (S∗|D∗) be group presentations. H ≤ H∗

if S ⊂ S∗, D ⊂ D∗, and for every word W on S, W = 1 in H if and only if
W = 1 in H∗.

Lemma. Let H = (S,D) and H∗ = (S, t|D, t−1Xit = Xi ∀i ∈ I), where the Xi

are words on the S alone. Let W be a word on the generators of H∗ involving t. If
W = 1 in H∗, then W contains a subword of the form t−1Ct or tCt−1, where

(i) C is a word on the S alone.
(ii) The element of H determined by C lies in the subgroup of H generated by

the Xi.

Proof. Let X be the subgroup of H generated by the Xi of H
∗ (this is valid because

the Xi ofH
∗ are words on the generators ofH). Let X ′ be isomorphic to X through

the isomorphism ψ : X → X ′. Note that there is a presentation of X ′

X ′ = xi ∀i ∈ I|rj ∀j ∈ J),

where each xi = ψ(Xi), and the rj are words on the xi alone. This is because X
′ is

isomorphic to X, so its generators must be the image of the generators of X. We
don’t know anything specific about rj except that they are determined by the set
of relations D of H.

Now let [t] be the infinite cyclic group of powers of t. Set Y = X ′×[t]. Then take
the free product of Y and H in which the subgroups X and X ′ are amalgamated
through ψ. Because free products with amalgamated subgroups do not add any
new generators or relations, while preserving the isomorphism of the amalgamated
subgroups, one presentation of A must be

A = (S, t, xi ∀i ∈ I|D, rj = 1 ∀j ∈ J, t−1xit = xi, xi = Xi ∀i ∈ I).
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However, due to the isomorphism between X and X ′, another presentation is

A = (S, t, xi ∀i ∈ I|D,Rj = 1 ∀j ∈ J, t−1Xit = Xi ∀i ∈ I),

where ψ(Rj) = rj for each j. Now the Xi are words on X, which is a subgroup
of H, therefore each Rj = 1 in H. Now, because the generators of H are a subset
of the generators of A, and the relations of H are a subset of the relations of A,
there is a homorphism φ which takes any word in H to “itself” in A. Since all the
relations in H are also relations of A, and each Rj = 1 in H, each Rj = 1 in A.

Note: Rotman’s treatment claims that this shows that the Rj are thus “super-
fluous” in the second presentation of A, but I am not entirely sure why this is so.
It seems that it must be because the relations D of H supercede the Rj (which
makes sense, because the Rj are isomorphic to the rj , which are relations of an
isomorphic copy of a subgroup of H), but in that case why did we have to argue
that the Rj are 1 in A, as well as in H? There must be a subtlety I am missing.

Once the superfluity of the Rj in the second presentation of A is granted, we
have a third presentation

A = (S, t|D, t−1Xit = Xi ∀i ∈ I),

which is identical to the presentation of H∗ given at the beginning of the lemma.
Therefore, A ≈ H∗. Because of the properties of the free product with amalgamated
subgroup, H∗ contains H as a subgroup (up to isomorphism). This means that if
a word on the S is 1 in H, it is 1 in H∗ as well, and vice versa, so H ≤ H∗.

Now to prove the lemma. LetW be a word on {S, t} involving t such thatW = 1
inH∗. IfW contains tt−1 or t−1t as a subword, then we are done. Therefore, assume
W takes the form

W ≡W0t
e1W1...t

enWn,

where n ≥ 1, each ej is a nonzero integer, each Wj is a word on the S alone, and
only W0 and Wn may be empty. The proof will proceed by induction on n.

If n = 1, then W ≡ W0t
e1W1. Because W = 1 in H∗, W = 1 in both H and

Y , so te1 =W−1
0 W−1

1 in H ∩ Y . We know from the properties of the amalgamated
free product that the intersection of H and Y must be the amalgamated group X,
so from this one can conclude that te1 ∈ X. However, X is generated by the S, so
this is a contradiction.

The inductive step uses as justification the normal form theorem, which I did
not cover here. It states that every element of the amalgamated free product has
a unique representative which is of normal form. If P is the free product of some
Aα with amalgamated subgroup B, and the letters of the word a1, a2, ..., an are
elements of P where each a1 lies in a distinct Aα, then the element determined by
that word cannot live in B, because of the normal form theorem (particularly, the
word cannot be 1). In this instance, because W is 1 in H∗, one of the Wj where
0 < j < n must lie in the amalgamated group X (remember that W0 and Wn are
allowed to be empty). If ej and ej+1 have opposite signs, the lemma is satisfied.
Suppose they have the same sign. That means that, in H∗,

W ≡ ...tejWjt
ej+1Wj+1 = ...tej+ej+1WjWj+1...

since H∗ is the free product of H and Y with amalgamated X ′, and Y contains the
infinite cyclic (and therefore commutative) [t] as a normal subgroup. Note that the
second word in the display has n− 1 occurrences of a power of t, so it satisfies the
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inductive hypotheses. Therefore, the second word contains the desired subword, so
W must contain that subword as well.

�
Note: I used Rotman’s ”The Theory of Groups” [2] most heavily, especially with

regards to the word problem. Robinson’s [3] ”A Course in the Theory of Groups”
was also helpful.
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