
PONTRJAGIN DUALITY

MICHAEL GOTTESMAN

Note we will be working only in cartesian closed categories where exponentials
and finite products exist for all objects X,Y .

1. The Exponential Object

An important construction in category theory is the exponential construc-
tion. Simply, the exponential construction generalizes the ideas of a mapping set
to a category theoretic universal structure.

Let C be a category. Let X,B, Y ∈ C. Note that if we are given any map
f : X × B

f−→ Y , then for each element x ∈ X, we can consider the following
diagram,

1×B
〈x,1B〉// X ×B

ϕ

��
B

〈,1B〉

OO

ϕx

// Y

If the diagram commutes, we must have that ϕx : B → Y be the map defined such
that,

ϕx(b) = ϕ(x, b)

Thus the simple map ϕ on the product X ×B gives rise to a family of maps from
B to Y that are parameterized by X.

If exponentials exist, one can furthur assume the following two properties,
(1) Every map B → Y occurs as ϕx for at least one x ∈ X.
(2) ϕx = ϕy only if x1 = x2.

Thus we write Y B instead of X and rename ϕ the function eval. Thus for any
map f : B → Y , let pfq : 1 → Y B be the unique element of Y B guaranteed by
properties 1. and 2. Then we know that for all f, b the following diagram commutes,

1

〈pfq,b〉
��

b // B

f

��
Y B ×B

eval
// Y

where we define eval 〈pfq, b〉 = fb. Thus we define the exponential object,

Definition 1.1 (Exponential Object). Given a category C, for any two sets B, Y ∈ C,
define the exponential of B relative to Y as the 2-tuple (Y B , eval) where Y B is a
set in C and the eval is defined as a morphism from Y B × B to Y such that for
any X and X × B f−→ Y , there is a unique morphism pfq : X → Y B such that
eval(pfq× 1B) = f .

1
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In the categories we will be working in, we can simplify this definition a little bit
and say that given two objects X,Y ∈ C the exponential Y X is the internal hom of
X,Y , i.e. the hom set HomC(X,Y ) which is gauranteed to be an object of C.

2. Functoriality of the Exponential Object

Let C be a category. Given a set V , define the contravariant dual functor (ˆ) :
C → C by,

X 7→ V X

Hom(X,Y ) 7→ Hom(V Y , V X)

for X,Y ∈ C. Note that given f : X → Y we will write (ˆ)f as V f and that given
α ∈ Hom(Y, V ),

V f (α) = α ◦ f

3. Concrete Duality

Recall the category theoretic concept of “abstract duality” or “duality”. Many
concepts in category theory are defined such that pairs or “duals” of such concepts
exist. Some examples of this include monomorphism/epimorphism, limit/colimit,
etc. But even though this duality is often times useful, since it dumbly just reverses
all arrows in the relevant diagrams, any specific interpretations of the diagrams in
terms of specific sets and mappings has been lost.

On the other hand given a specific V , we can use the contravariant dual functor
to transform any specific diagram,

X
//
Yoo

produces a specific diagram on a larger function set in which all the arrows have
been reversed,

V X // V Y
oo

but which satisifies all of the commutativites satisfied in the original diagram with
the order of composition reversed. This technique using the dualizing functor is
referred to as “conrete duality with respect to V ” or “dualizing into V ”. Some
important examples of the usage of this technique are,

(1) Stone Duality
(2) Gelfand-Naimark Duality
(3) Pontrjagin Duality

4. The Double Exponential Functor

Then we note that in certain cases we can reverse the concrete duality through
the use of the contravariant double dual functor (ˆˆ) with respect to V , which
maps,

X 7→ (ˆˆ)X

Hom(X,Y ) 7→ Hom(V X , V )

where f : X → Y is defined by,

x 7−→ pϕ 7→ ϕxq
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The map (ˆˆ), sometimes called the Fourier transform or the Dirac delta, is a

natural transformation since given any X
f−→ Y , easily the following diagram is

commutative,

X
(ˆˆ) //

f

��

V V
X

V V f

��
Y

(ˆˆ) //
V V

Y

Even though naturality follows easily, there is no generalized proof that (ˆˆ) is
a natural isomorphism. Instead it can only be proven in specific cases. In the
following we prove the Pontrjagin Duality, which is the proof the (ˆˆ) is a natural
isomorphism in the category of locally compact abelian groups.

5. Definitions and Planning

We begin by defining a locally compact topological set,

Definition 5.1 (Locally Compact Topological Set). Given a topological set S, S
is locally compact if and only if every point x of S has a neighborhood U such that
U is compact. Any such U is called a compact neighborhood of x.

Let LCA be the cartesian closed category of locally compact abelian groups.
Since LCA is a cartesian closed category, we know that XY is defined for any
X,Y ∈ LCA.

Let T be the compact quotient group R/Z. Easily one can see that T is a
member of LCA with the topology it inherits from R. Thus given any G ∈ LCA
we can consider the exponential of G relative to T, TG. To ease our notation a
little we will notate TG as G∗.

Since T is an element of LCA one can see that G∗ must remain inside LCA due
to the properties of the exponential. Thus we can consider the double exponential
of G relative to T, TTG

, which of course again is an element of LCA. Again for
ease of notation we will write TTG

as G∗∗.

As mentioned in the previous section, easily, (ˆˆ) is a natural transformation,
i.e. the following diagram commutes,

G
(ˆˆ) //

f

��

G∗∗

f∗∗

��
G

(ˆˆ) // G∗∗

But is (ˆˆ) a natural isomorphism inbetween G and G∗∗? We prove this by proving
Pontrjagin Duality for full subcategories of LCA and then using methods from
category theory and homological algebra to extend the concrete duality to larger
categories and then eventually to LCA. Our path is described by the following
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diagram,

LCA

Compactly Generated

exactness

iiSSSSSSSSSSSSSSS

Discrete

exactness

;;xxxxxxxxxxxxxxxxxxxxxx
Compact

exactness

OO

Elementary

))SSSSSSSSSSSSSS

uullllllllllllll

exactness

;;wwwwwwwwwwwwwwwwwwwww

Discrete Elementary

lim→

OO

Compact Elementary

lim←

OO

T,Z,R,Zn

L
OO

6. Duality for T,Z,R,Zn.

Thus we begin at the bottom of our diagram by showing that T, Z, R, and Zn
obey Pontrjagin Duality. Thus note the following,

(1) T ∼= Z∗ with x ∈ T corresponding to the mapping n 7→ nx.
(2) Z ∼= T∗ with n ∈ Z corresponding to the mapping x 7→ nx of T.
(3) R ∼= R∗ with x ∈ R corresponding to the mapping y 7→ xy + Z of R.
(4) Zn ∼= Z∗n with x ∈ Zn corresponding to the mapping y 7→ xy.

For proofs of all four of these isomorphisms see the appendix. Thus one can see
that G ∼= G∗∗ holds in a natural way for G = T,Z,R,Zn.

7. Duality for Elementary Groups in LCA.

Now we define the elementary groups.

Definition 7.1 (Elementary Groups). An elementary group G ∈ LCA is a group
isomorphic to Ti ⊕ Zh ⊕ Rk ⊕ F , where F is a finite abelian group. The full
subcategory of elementary groups in LCA will be denoted by E.

To show duality for the elementary groups, all we need to do is lift the duality
among the components of the direct sum to the entire direct sum. This can occur
if and only if (ˆ) (and thus (ˆˆ)) preserves direct sums,

Lemma 7.1. (ˆ) preserves direct sums.

Proof. See appendix. �

Theorem 7.2. (ˆˆ) restricted to E is an isomorphism.

Proof. Given G ∈ E, due to the previous lemma G∗∗ must still be a direct sum
implying through easy manipulations that G∗∗ obeys Pontrjagin Duality since all
of it’s constituant parts Pontrjagin Duality. �
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8. Duality for Compact Groups in LCA.

We define a morphism f ∈ HomLCA(G,H) to be proper if f is an open function.

Proposition 8.1. If f : G→ H is proper and f(G) is open then f∗ is proper.

Proof. Given a compact neighborhood M of 0 in G ∈ LCA and W a closed neigh-
borhood of 0 in T such that W contains no proper subgroups, define KM,W as the
set of mappings,

KM,W = {α ∈ G∗ : α(M) ⊂W}
Note that KM,W forms a basis of compact neighborhoods of 0 in G∗.

Let M be a compact neighborhood of 0 in f(G). Since f is proper and G
is locally compact, we can find a compact neighborhood N of 0 in G such that
f(N) = M . Then we know that KN,W is a neighborhood of 0 in G∗ and that
f∗(KM,W ) = KN,W ∩ f∗(H∗) is a compact neighborhood of 0 in f∗(H∗). Thus we
can conclude that f∗ is proper by considering f∗ upon the open subgroup of H∗

generated by KM,W and then apply the open mapping theorem1. �

Proposition 8.2. (ˆ) takes a short proper exact sequence,

0→ K
i→ G

j→ H → 0

to a sequence,

0← K∗
i∗← G∗

j∗← H∗ ← 0

in which j∗ is proper and exactness holds at G∗ and H∗. If in addition K is an
open subgroup of G, then the sequence induced by (ˆ) is also proper exact.

Proof. First note that ker i∗ must be ϕ ∈ Hom(G,T ) which are trivial on K.
Furthur since i∗j∗ = ji, any im i = ker j, we can see that i∗j∗(H∗) consists of
mappings in G∗ which are trivial on K. Thus im j∗ = ker i∗.

Then remembering that surjections are epimorphisms in LCA, we know that j∗

must be injective since given ϕ1, ϕ2 ∈ Hom(H,T ),

j∗(ϕ1) = j∗(ϕ2)
ϕ1j = ϕ2j

ϕ1 = ϕ2

Thus we have exactness at G∗ and H∗. Now, because T is a divisible group2,
any ϕ ∈ Hom(H,T) extends to a not necessarily continuous homomorphism in
Hom(G,T). If H is an open subgroup, then any such extension will be continuous
on G, implying that i∗ will be a surjection. �

Remembering the KM,W notation of the proof of Proposition 8.1, we see that if
G is discrete and M = {0} in G, then KM,W = G∗, so G∗ must be compact. On
the other hand, if G is compact and M = G, then KM,W = {0}, so G∗ must be
discrete.

1Theorem 5.29, p. 42 Hewitt and Ross [1963]
2i.e. an abelian group G such that for any n ∈ N and every g ∈ G, there exists y ∈ G such

that ny = g.
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We now let A be the subcategory of discrete groups in LCA and A0 be the
subcategory of discrete elementary groups3. C is the subcategory of compact groups
and C0 the subcategory of compact elementary groups 4 in LCA.

Then we define a directed set, directed system, and direct limit,

Definition 8.1 (Directed Set). A directed set is a two tuple (A,≤) where A is a
nonempty set and ≤ is a reflexive and transitive binary relation ≤ such that every
x, y ∈ A has an upper bound. Another name for ≤ is a pre-order.

Definition 8.2 (Directed System). Let (I,≤) be a directed set. Define a direct
system over I to be a two tuple (A, fij) where A = {Ai : i ∈ I} and fij : Ai → Aj
is a homomorphism for all i ≤ J such that fii is the identity on Ai and fik =
fjk ◦ fij ,∀i ≤ j ≤ k.

Definition 8.3 (Direct Limit). Let S = (Xi, fij) be a direct system of objects and
morphisms in C. Then a direct limit of S is a 2-tuple (X,ϕi) where X is an object
in C and ϕi consists of a family of morphisms ϕi : Xi → X satisfying ϕi = ϕj ◦fij.

This property must be universal i.e. for any other pair (Y, φi, there must exist a
unique morphism u : X → Y such that the following diagram commutes for all i, j,

Xi

ψi

��0
0000000000000

φi

  AAAAAAAA
fij // Xj

φj

~~}}}}}}}}

ψj

����������������

X

u

��
Y

Usually if the direct system (Xi, fij) is understood, the direct limit is denoted,

X = lim
→
Xi

Note that a directed set I can be viewed as a category by declaring for i, j ∈ I
that Hom(i, j) consists of exactly one element if i ≤ j and is empty otherwise. In
terms of our above definitions, we then can see that a direct system in A0 is a
covariant functor U from a directed set to A0. We will write Ui for U(i) and uij
for U(Hom(i, j)) = Hom(Ui, Uj).

Let DA0 be the collection of direct systems in A0 whose morphisms are all
injective. DA0 becomes a category by considering as its objects the covariant
functor mappings U : I → A0 and as the morphisms, mappings from U : I → A0

to V : J → A0 where I, J are directed sets to be a pair (m,ϕ) where m : I → J is
a functor in the category of directed sets5 and ϕ is natural transformation from U
to V ◦m.

Some well known properties of abelian groups include the fact that each element
U of DA0 has a direct limit lim

→
Ui which will be an object of A. In fact, a necessary

and sufficient condition for a discrete group G to be isomorphic to lim
→
Ui is the

existence of injective morphisms gi : Ui → G, one for each i, such that gj ◦ uij = gi

3i.e. groups isomorphic to Zj ⊕ F
4groups isomorphic to Ti ◦ F
5i.e. an order preserving map.
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whenever i ≤ j, and the union of the images gi(Ui) is all of G. The result is
that lim

→
: DA0 → A can be regarded as a covariant functor, since if (m,ϕ) is a

functor from U to V in DA0, the universal property of lim
→
Ui guarantees existence

of a unique morphism lim
→

(m,ϕ) : lim
→
Ui → lim

→
Vi making the following diagram

commute for every i ∈ I,

Ui

ϕi

��

// lim
→
Ui

lim
→

(m,ϕ)

��
Vm(i) // lim

→
Vi

Similarly, an inverse system in C0 is a contravariant functor U from a directed
set to C0. The category of all inverse systems in C0 all of whose morphisms are
surjective is denoted by IC0. A morphism from U : I → C0 to V : J → C0 in IC0

is a pair (m,ϕ) where m : J → I is a functor and ϕ : U ◦ m → V is a natural
transformation.

Also, any inverse system in IC0 has a projection limit lim
←
Ui which will be an

object of C. Further, any object G of C is isomorphic to lim
←
Ui if and only if

there exists a surjective morphism gi : G → Ui for each i such that uij ◦ gj = gi
whenever i ≤ j and the intersection of the kernels of the gi is {0} in G6. Again in
this situation lim

←
(m,ϕ) for a morphism (m,ϕ) in IC0 is defined by the universal

property, and lim
←

becomes a covariant functor. We call DA0 and IC0 convergence
structures on A and C, respectively.

By Proposition 8.2, if U ∈ DA0 then (ˆ) ◦ U ∈ IC0. This correspondence
U 7→ (ˆ) ◦ U gives us a functor which we donate by D(ˆ) : DA0 → IC0. Similarly,
(ˆ) induces the functor I(ˆ) : IC0 → DA0.

Proposition 8.3. (ˆ)lim
→
, lim
←
◦D(ˆ) : DA0 → C are naturally isomorphic.

Proof. Let U ∈ DA0 and G = lim
→
Ui with gi : Ui → G the associated injections.

We must show that G∗ ∼= lim
←

(U∗i ). It is clear that each g∗i : G∗ → U∗i is surjective.

Let 0 6= α ∈ G∗. We shall show the existence of an index i with g∗i (α) 6= 0. We
know that α(x) 6= 0 for some x ∈ G and thus x = gi(y) for some i and y ∈ Gi.
Then for this i,

g∗i (α)(y) = α(gi(y)) 6= 0.

So,
(lim
→
Ui)∗ ∼= lim

←
(U∗i ).

The fact that we have a natural isomorphism follows from the universal property.
�

Proposition 8.4. (ˆ) ◦ lim
←
, lim
→
◦ I(ˆ) : IC0 → A are naturally isomorphic.

6the usual condition is that every neighborhood of 0 in G contain ker gi for some i but if the

intersection of the ker gi is {0} and N is any open neighborhood of 0 in G, then by compactness
we can find a finite number of gi whose kernels when intersected is contained in N . Picking an

index j greater than these i gives us ker gj ⊂ N .
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Proof. Let U ∈ IC0 and G = lim
←
Ui with gi : G → Ui the associated surjections.

Clearly each g∗i is injective. To show that G∗ is isomorphic with lim
→

(U∗i ), we must

show that every α ∈ G∗ is equal to g∗i (β) for some i and some β ∈ U∗i . Let W
be a neighborhood of 0 in T containing no proper subgroups of T. Let M be a
neighborhood of 0 in G with α(M) ⊂ W . Then we may find Ui with ker gi ⊂ M .
Then α(ker gi) = 0, so α factors over gi for some β ∈ U∗i . But β ◦ gi = g∗i (β) so we
are done. �

Proposition 8.5. The category C0 is dense in C, i.e. there exists a functor S :
C → IC0 such that the functor lim

←
◦ S and the identity functor on C are naturally

isomorphic.

Proof. This follows from the Peter-Weyl theorem, which says that for our abelian
case that any g ∈ Hom(G,T) for G in C separate the points of G. Let G ∈ C
and define S(G) ∈ IC0 to be the collection of quotient groups G/K of G which
are in C0. We order them by G/K ≤ G/N if N ⊂ K. Note that G/(K ∩ N)
is isomorphic to a subgroup of (G/K) ⊕ (G/N), so we have a directed set. We
can define gKN : G/N → G/K to be the natural projection when N ⊂ K. For a
morphism f : G→ H in C, S(f) is defined as follows: H/K in S(H) corresponds to
G/f−1(K) in S(G), and the map G/F−1(K) → H/K is the natural map induced
by f . Then if x ∈ G, let α ∈ G∗ with α(x) 6= 0. Then G/K is in S(G), where
K = kerα, and gK(x) 6= 0, where gK : G → G/K is the canonical map. The
collection gK exhibits G as lim

←
S(G). �

Now we again consider our two covariant functors id and (ˆˆ).

Theorem 8.6. Pontrjagin Duality holds in C.

Proof. (ˆˆ)C0
is already an isomorphism since C0 consists of elementary groups. By

Proposition 1.18 in Hofmann [1968], (ˆˆ)C0
extends uniquely to a natural transfor-

mation between idC and (ˆˆ)C . This extension must also be an isomorphism. But
(ˆˆ)C already extends (ˆˆ)C0

so (ˆˆ)C must be an isomorphism. �

9. Duality of Compactly Generated Groups in LCA.

Define CG as the full subcategory of compactly generated groups in LCA.

Lemma 9.1. Suppose G ∈ CG is generated by the compact neighborhood M of 0 in
G. Then there is a subgroup K of G, K ∼= Zn for some n, such that K ∩M = {0}
and G/K is compact.

Proof. This is Lemma 2.42 in Rudin [1962]. �

Proposition 9.2. If G ∈ CG then (ˆˆ)G is injective.

Proof. Let x ∈ G such that x 6= 0. Apply the lemma to M ∪ {x}, which is
also a compact neighborhood of 0 which generates G. The coset x + K is not
the identity element in the compact group G/K. Therefore, there is a mapping
α ∈ Hom(G/K,T) such that α(x + K) 6= 0. Composing α with the canonical
projection G → G/K gives us an element of Hom(G,T) which is not trivial on x.
Therefore (ˆˆ)G(x) 6= 0. �

Theorem 9.3. Pontrjagin duality holds in CG.
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Proof. Let G ∈ CG. Let M be a compact neighborhood of 0 in G and let S ∼= Zn

be a subgroup of G such that S ∩M = {0} and G/S is compact as gauranteed
by the lemma above. Let Q = G/S and p : G → Q the canonical map. Let N
be a compact symmetric neighborhood of 0 in G such that N + N + N ⊂ M .
Then p maps N homeomorphically onto p(N). Since Q is compact and p is proper,
there is a comapct subgroup Q1 of Q such that Q1 ⊂ p(N) and Q/Q1 is compact
elementary by Proposition 8.5. Then p−1(Q1) is a closed subgroup of G contained
in S + N . Letting K = p−1(Q1) ∩ N , we have by the choice of N that K is a
compact subgroup of G satisfying p(K) = Q1.

Let H = G/K. We shall show that H is an elementary group. First p gives rise
to the proper surjection H → Q/Q1 with kernel S + K which is discrete in H by
the construction of K. Therefore H is locally isomorphic with Q/Q1, which in turn
is locally isomorphic with Rn for some n. This means we have an isomorphism
f : B → V where B is an open ball about 0 in Rn and V is a neighborhood of 0
in H. Then we can extend f to a proper surjective homomorphism g : Rn → H1,
where H1 is the open subgroup of H generated by V by defining g(x) = nf(x/n)
for x ∈ Rn and n large enough such that x/n ∈ B. Thus H1

∼= Ra ⊕ Tb for
some integers a and b (a quotient group of Rn). Since H1 is a divisible open
subgroup of H, we can obtain a morphism H → H1 which is the identity on H1

such that H ∼= H1⊕ (H/H1). But H/H1 is an elementary group since it is discrete
and compactly generated. Therefore H is also elementary. Consider the following
commutative diagram:

(1) 0 //

��

K
i //

(ˆˆ)K

��

G
j //

(ˆˆ)G

��

H //

(ˆˆ)H

��

0

��
0 // K∗∗

i∗∗ // G∗∗
j∗∗ // H∗∗ // 0

Now K ∈ C and H ∈ E so (ˆˆ)H and (ˆˆ)K are isomorphisms, while (ˆˆ)G is
injective by Propositon 9.2. Since i is injective, we conclude that i∗∗ is injective.
Now briefly consider i∗ : G∗ → K∗. If i∗ were not surjective, then there would
be a nontrivial mapping on K∗/i∗(G∗). Composing with the canonical projection
K∗ → K∗/i∗(G∗), we get a mapping on K∗ which is trivial on i∗(G∗). This
character would then be in the kernel of i∗∗, contradicting the injectivity of i∗∗.
Therefore, i∗ is surjective and thus Propositon 8.2 tells us that the induced sequence,

0← K∗
i∗← G∗

j∗← H∗ ← 0

is a proper exact sequence since K∗ is discrete. Thus H∗ can be regarded as an
open subgroup of G∗, and so the lower sequence in the diagram (1) is also proper
exact. Thus the 5-lemma and the open mapping theorem show that (ˆˆ)G is an
isomorphism and we are done. �

10. Duality for Locally Compact Groups.

We begin with discrete groups.

Proposition 10.1. There exists a functor T : A→ DA0 such that lim
→
◦T and the

identity functor on A are naturally isomorphic.

Proof. Every abelian group is the direct limit of its finitely generated subgroups.
The functor T assigns to each G in A the direct system (Ui) of finitely generated



10 MICHAEL GOTTESMAN

subgroups of G ordered by the relation i ≤ j if Ui ⊂ Uj . A morphism f : G → H
in A is carried by T to T (f) which maps each finitely generated subgroup of G via
f ’s restriction to the subgroups image in H. �

Theorem 10.2. Pontrjagin Duality holds in A.

Proof. This is Symmetric to Theorem 8.6. �

Theorem 10.3 (Pontrjagin Duality). (ˆˆ) is a natural equivalence.

Proof. Let G ∈ LCA. Let M be a compact neighborhood of 0 in G and let K be
the subgroup of G generated by M . Let H = G/K. Since K is open, the induced
sequence,

0← K∗ ← G∗ ← H∗ ← 0
is proper exact via Proposition 8.2. Consider again the diagram (1) for this specific
K,G,H. We have exactness at K∗∗ and G∗∗ in the bottom row. H is discrete since
K is open, so (ˆˆ)H is an isomophrism, and so j∗∗ is surjective. Both rows of the
diagram are proper exact and (ˆˆ)K is also an isomorphism. Thus again using the
5-lemma, (ˆˆ)G is an isomorphism. �
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11. Appendix

Lemma 11.1. (ˆ) preserves direct sums.

Proof. Let G,H ∈ LCA and let G ⊕ H be the ordinary group theoretic “direct
sum” of G and H. Let iG, iH be the canonical embeddings of G and H into G⊕H
and let pG and pH be the canonical projections of G⊕H onto G and H, respectively.
G⊕H can be characterzied by the following commutative diagram,

G
1G

##FFFFFFFFF

iG

��
H

1H ##GGGGGGGGG
iH // G⊕H

pH

��

pG // G

H

with the additional requirement that,

iG ◦ pG ⊕ iH ◦ pH = 1G⊕H
Since (ˆ) is an additive contravariant functor, applying (ˆ) to the diagram results
in the following,

G∗

H∗ G∗ ⊕H∗
i∗H

oo

i∗G

OO

G∗

1∗G

ddIIIIIIIII
p∗Goo

H∗
1∗H

ddJJJJJJJJJ
p∗H

OO

(ˆ) will preserve the direct sum if and only if the diagram still commutes and the
dual requirement is fullfilled. First we note that the commutativity of the diagram
is preserved since commutativity is preserved in each of the triangles. This can be
seen since without losing generality, given ϕ ∈ H∗,

i∗H(p∗H(ϕ)) = i∗H(ϕpH)
= ϕpH iH

= ϕ

Then we finish by noting that the dual requirement is fulfilled as follows, let ϕ ∈
G∗ ⊕H∗

(p∗G(i∗G)⊕ p∗H(i∗H))(ϕ) = 1∗G ⊕ 1∗H
= 1G∗⊕H∗

�
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