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Introduction

Intuitively, the fundamental group, π(X) of a topological space X is a group of ho-
motopy classes of closed loops on X that share a common base point. Though the
fundamental group of a topological space is independent (up to isomorphism) of the
base point chosen, the base point is necessary to define a binary operation for π(X).

Formally, we define a closed loop on a topological space X with base point x0 as a
continuous mapping f : [0, 1] 7→ X such that f(0) = x0 and f(1) = x0.

We will consider two loops f and g to be equivalent if there exists a homotopy
(that is, a continuous function) H : [0, 1] × [0, 1] 7→ X such that if x ∈ [0, 1] then
H(x, 0) = f(x) and H(x, 1) = g(x). This homotopy can be thought of as a contin-
uous deformation from the loop f to the loop g that takes place in finite time and
does not leave X.

We define the product of two loops f(t) and g(t) thus:

(f · g)(t) =
{

f(2t), 0 ≤ t ≤ 1/2
g(2t− 1), 1/2 ≤ t ≤ 1

}
This describes traversing the second loop after traversing the first. The time taken
to traverse each loop is cut in half in order to produce a loop that meets our mem-
bership criteria for π(X).

We define the inverse of a loop f(t) as the same loop, traversed backwards. That
is, f−1(t) = f(1 − t). Traversing a loop forwards then backwards is equivalent to
traversing the trivial loop, e, which is homotopic to the base point x0.

The Seifert and Van Kampen Theorem

Conceptually, the Seifert and Van Kampen Theorem describes the construction of
fundamental groups of complicated spaces from those of simpler spaces. To find
the fundamental group of a topological space X using the Seifert and Van Kampen
theorem, one covers X with a set of open, arcwise-connected subsets that is closed
under finite intersection. One then takes the free product of the fundamental groups
of the subsets in the covering to form π(X). The proofs that follow can be found in
W. S. Massey’s Algebraic Topology: An Introduction, though I have rewritten them
to include additional explanations.

LetX be an arcwise-connected topological space and x0 ∈ X. Let {Ulambda : λ ∈ Λ}
be a covering of X by arcwise-connected open sets such that for all λ ∈ Λ, x0 ∈ Uλ.
Let this covering be closed under finite intersection. That is, for any two indices
λ1, λ2 ∈ Λ there exists an index λ ∈ Λ such that Uλ1 ∩ Uλ2 = Uλ.

Theorem (Seifert and Van Kampen): Under the above hypotheses, the group π(X)
satisfies the following universal mapping condition: Let H be any group and let
ρλ : π(Uλ) 7→ H be any collection of homomorphisms defined for all λ ∈ Λ such
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that if Uλ ⊂ Uµ, the following diagram is commutative:

π(Uλ)

φλµ

��

ρλ

""EE
EE

EE
EE

H

π(Uµ)

ρµ

<<yyyyyyyy

Then, there exists a unique homomorphism σ : π(X) 7→ H such that for any λ ∈ Λ
the following diagram is commutative:

π(Uλ)

ψλ

��

ρλ

""EE
EE

EE
EE

H

π(X)

σ

<<yyyyyyyy

Moreover, this universal mapping condition characterizes π(X) up to a unique iso-
morphism.

The fact that this mapping property characterizes π(X) follows from the first iso-
morphism theorem. By forming the quotient H/ker(σ), we produce a group that
is isomorphic to π(X).

To prove this theorem, we begin with a lemma.

Lemma:The group π(X)is generated by the union of the images ψλ[π(Uλ)], λ ∈ Λ

Proof: Let α ∈ π(X) and let f be a lift of α (that is, a closed loop on X in the
homotopy class α). Choose an integer n sufficiently large so that 1/n is less than
the Lebesgue number of the open covering {f−1(Uλ) : λ ∈ Λ} of the compact metric
space I. Subdivide the interval I into the closed subintervals Ji = [i/n, i+1/n], 0 ≤
i ≤ n− 1. Because our choice of n guarantees that each Ji lies entirely in at least
one subset f−1(Uλ) of the covering, we may choose an index λi ∈ Λ such that
f(Ji) ⊂ Uλi . Choose a path gi in Uλi−1 ∩Uλi joining the base point x0 to the point
f(i/n), 1 ≤ i ≤ n − 1. We proceed to let fi : I 7→ X denote the path represented
by the composite function

I
hi // Ji

f |Ji
// X
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where hi is the unique orientation-preserving linear homomorphism. Intuitively, fi
is the image of one interval Ji through f . The path fi begins at f(i/n) and ends at
f(i+1/n). We can form closed paths of the following form: f0 ·g−1

1 , g1 ·f1 ·g−1
2 , g2 ·

f2 · g−1
3 , ..., gn−1 · fn−1. Each gi begins at x0 and ends at f(i/n). f1 begins there

and ends at f(i+ 1/n). g−1
i+1 begins there and ends back at x0. The resulting paths

are each contained in a single open set Uλ, and their product in the order given is
equivalent to f . Hence we can write

α = α0 · α1 · α2 · ... · αn−1,

where

αi ∈ ψλi [π(Uλi)], 0 ≤ i ≤ n− 1.
Since we have shown that any α ∈ π(X) can be expressed as the product of some
{αi}, images of elements of π(Uλ), we have shown that the group π(X)is indeed
generated by the union of the images ψλ[π(Uλ)], λ ∈ Λ

Proof (of Seifert and Van Kampen): Let H be any group and let
{ρλ : π(Uλ) 7→ H,λ ∈ Λ} be a set of homomorphisms satisfying the hypotheses
of the theorem. We must demonstrate the existence of a unique homomorphism
σ : π(X) 7→ H such that the following diagram is commutative for any λ ∈ Λ:

π(Uλ)

ψλ

��

ρλ

""EE
EE

EE
EE

H

π(X)

σ

<<yyyyyyyy

Following the lemma just proved, the homomorphism σ, if it exists, must be defined
as follows. Let α ∈ π(X). Using the lemma,

α = ψλ1(α1) · ψλ2(α2) · ... · ψλn(αn)
where αi ∈ π(X), i = 1, 2, ..., n. Tracing the diagram and using the fact that σ, if
it exists, is supposed to be a homomorphism, we must have:

σ(α) = ρλ1(α1) · ρλ2(α2) · ... · ρλn(αn)
.
The fact that our diagram must commute gives us the uniqueness of σ. What we do
not yet have is certainty that σ is independent of the representation chosen for α.
For the purposes of this exposition, we will assume this fact. Defining σ as above
allows us to produce σ and thereby prove its existence.

Applications

Torus: To see the Seifert and Van Kampen Theorem in action, we shall construct
the fundamental group of the torus T . Let us choose the covering consisting of the
punctured torus, soit U , an open disk that covers the puncture, soit V , and their
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intersection (a punctured disk). The Seifert and Van Kampen Theorem gives us
the following diagram where φi denotes the inclusion map:

π(U)

##FFFFFFFF

π(U ∩ V ) //

φ1

99ttttttttt

φ2 %%JJJJJJJJJ
π(T )

π(V )

;;xxxxxxxx

We know that π(V ) is trivial since V is simply connected. Imagining the punctured
torus as its fundamental polygon minus a point makes it clear that the punctured
torus retracts to just the edge of that square with edges identified, and thus to
a figure eight. Since U retracts to a figure eight, we know that π(V ) is the free
group on two generators, α and β (these generators being the equivalences classes
of single loops around either leaf of the figure eight). U ∩ V is a punctured disk,
and therefore retracts to a circle. Thus, π(U ∩V ) is infinite cyclic on one generator
γ. Visualizing the punctured torus once again as its fundamental polygon, any lift
of φ1(γ) is a loop around the puncture. Deforming this loop to the edge of the
square, it can be seen that φ1(γ) = αβα−1β−1.

Considering that π(V ) is trivial, it must map to the trivial element of π(T ). This
allows us to further label our diagram.

〈α, β〉
f

##GGGGGGGG

〈γ〉 0 //

φ1

<<yyyyyyyy

φ2
""EEEEEEEE

π(T )

〈e〉
0

;;wwwwwwwww

Because this diagram commutes, we know that π(U) = 〈α, β〉 must map into π(T )
such that φ1(γ) = 〈αβα−1β−1〉 is in the kernel of that map. If the kernel were any
bigger, f would not surject, π(T ) would have more generators than our covering
lends it, and our lemma would be contradicted. Therefore, we know that π(T ) is
the free group on two generators, mod its commutator subgroup. This tells us that
π(T ) is the free abelian group on two generators and is isomorphic to Z⊕ Z.

Klein Bottle: We proceed with the Klein bottle much like we did with the torus.
Let us construct our open covering of the Klein bottle K consisting of K minus a
point (call it U), an open patch that includes the missing point (call it V ), and the
intersection of the two.

Consider U as the fundamental polygon of K minus a point. Retracting this to
the edges of the square and identifying edges appropriately, we obtain a figure
eight again and learn that the fundamental group of U is the free group on two
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generators α and β. Once again, the fundamental group of V is trivial. As before,
the fundamental group of U ∩ V is infinite cyclic with generator γ, whose lifts are
single loops around the puncture in U ∩ V . Considering the image of one of these
loops on the fundamental polygon of K, we can deform it to the edge and see that
it is equivalent to αβαβ−1. We label our diagram as before:

〈α, β〉
f

##GG
GG

GG
GG

G

〈γ〉 0 //

φ1

<<yyyyyyyy

φ2
""EEEEEEEE

π(K)

〈e〉
0

;;wwwwwwwww

And find, by the reasoning previously presented, that ker(f) = 〈αβαβ−1〉. This
makes π(K) isomorphic to Z× Z/〈αβαβ−1〉.

It’s interesting that even though the fundamental groups of the open sets in cover-
ing of the torus are the same as those of the Klein bottle, the way that they map
into each other is different. Because of this, the torus and the Klein bottle do not
have the same fundamental group.

The Connected Sum of n Klein Bottles: As before, we consider the funda-
mental polygon of our space. In this case, we have a 4n−gon whose edges are (in
order from an arbitrary starting point)

α1, β1, α1, β1, α2, β2, α2, β2, ..., αn, βn, αn, βn

. Let these edges be oriented such that, in each set of four, the first appearance of
αi faces clockwise, the second faces counterclockwise, and both appearances of βi
face clockwise.

We proceed to cover our space in the usual way. Let B be the connected sum
of n Klein bottles. Let U be B minus one interior point of the polygon. Let V
be an open patch covering the puncture. Retracting our punctured polygon to its
edge, we find that the fundamental group of U is the free group on 2n generators,
{αi, βi : i ∈ {1, 2, ...n}}. The fundamental group of V is trivial, and that of U ∩ V
is free on one generator γ. We construct our usual diagram thus:

〈{αi, βi}〉
f

%%JJJJJJJJJ

〈γ〉 0 //

φ1

::uuuuuuuuu

φ2
$$IIIIIIIIII π(B)

〈e〉
0

99tttttttttt
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This time,

φ1(γ) =
n∏
i=1

αiβiα
−1
i βi

.
As before, the subgroup generated by φ1(γ) is the kernel of f . This makes π(B)
isomorphic to

Zn/〈
n∏
i=1

αiβiα
−1
i βi〉

Commentary

Fundamental groups are useful tools that can be used to help describe a topological
space. A space is simply connected if and only if its fundamental group is trivial.
In some sense, the fundamental group represents the degree to which a space fails
to be simply connected.

Fundamental groups are also useful in determining whether two spaces are not
homeomorphic. Homeomorphic spaces have the same fundamental group. It should
be noted, however, that the converse is not true.

Determining the fundamental group of a topological space using the Seifert and Van
Kampen Theorem relies not only on what the fundamental groups of the smaller
spaces are, but how they map into each other. This is a prime example of how
a mapping-theoretic approach can yield tremendous insight into the structure of
something. On the face of it, one might think that the torus and the Klein bottle
would have the same fundamental group, given that you can cover them in such
similar ways. It is when one considers the mappings between pieces of the covering
that one discovers the difference.


