
MATHEMATICS 332: ALGEBRA – MIDTERM

1. Introduction

This exam is meant to help you work with various ideas from group theory in
one context.

As we have discussed, this exam is open instructor, and you are
expected to check with me regularly on your progress, first in solving
the problems and then second in expounding your solutions.

Definition 1.1 (Modular Group). The modular group is the subgroup of SL2(R)
consisting of the 2-by-2 matrices having integer entries and determinant 1,

SL2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

Exercise 1. Verify that indeed SL2(Z) is a subgroup of SL2(R).

2. Principal Congruence Subgroups

Let N be a positive integer. The reduce mod N map

Z −→ Z/NZ

is a ring homomorphism that takes 1Z to 1Z/NZ. Consequently, applying the map
entrywise to 2-by-2 matrices gives a group homomorphism

SL2(Z) −→ SL2(Z/NZ).

Definition 2.1 (Principal Congruence Subgroup). Let N be a positive integer.
The principal congruence subgroup of level N is the kernel of the entrywise
reduction mod N map on SL2(Z),

Γ(N) = ker
(
SL2(Z) −→ SL2(Z/NZ)

)
.

Thus Γ(N) is normal in SL2(Z). Specifically,

Γ(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=
[

1 0
0 1

]
mod N

}
.

(The matrix congruence is interpreted entrywise, i.e., a = 1 modN and so on.)

In particular Γ(1) = SL2(Z). The next exercise shows that the entrywise reduc-
tion map SL2(Z) −→ SL2(Z/NZ) is a surjection.

Exercise 2. Let γ ∈ SL2(Z/NZ) be given. Lift γ to a matrix
[
a b
c d

]
∈ M2(Z). This

exercise explains how to modify the lift so that its determinant is 1.
(a) Show that gcd(c, d,N) = 1.
(b) Assume that c 6= 0. Show that gcd(c, d′) = 1 for some d′ = d + tN where

t ∈ Z. (If c = 0 then d 6= 0—unless N = 1, in which case the whole problem is
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trivial—and a similar argument works, so we omit it.) Hint: Let t =
∏
p|c, p-d p,

and show that if p | c then d+ tN 6= 0 mod p.
(c) Still working with the case c 6= 0, show that some lift

[
a+kN b+`N
c d′

]
of γ lies

in SL2(Z). Thus the map surjects. (Again the c = 0 case is handled similarly, so
we omit it. But note that the process of adjusting the lift to make its determinant
equal 1 has involved all four of its entries. Since SL2(Z) is infinite and SL2(Z/NZ) is
finite, perhaps the amount of work necessary to show that SL2(Z) −→ SL2(Z/NZ)
surjects is surprising.)

Now that the homomorphism SL2(Z) −→ SL2(Z/NZ) is known to surject, we
have an isomorphism

SL2(Z)/Γ(N) ∼−→ SL2(Z/NZ).
Consequently the index [SL2(Z) : Γ(N)] is finite for all N . The next exercise is to
show that specifically the index is

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
,

where the product is taken over all prime divisors of N .

Exercise 3. (a) Let p be a prime and let e be a positive integer. Show by induction
on e that |SL2(Z/peZ)| = p3e(1− 1/p2).

(b) Cite the Sun-Ze Theorem and use one more idea to show that |SL2(Z/NZ)| =
N3
∏
p|N (1− 1/p2), so this is also the index [SL2(Z) : Γ(N)].

3. Congruence Subgroups in General

Definition 3.1 (Congruence Subgroup, Level). Let N be a positive integer. A
subgroup of SL2(Z) is a congruence subgroup of level N if it contains the
principal congruence subgroup Γ(N). Equivalently, a subgroup of SL2(Z) is a con-
gruence subgroup if it is the inverse image under reduction modulo N of a subgroup
of SL2(Z/NZ).

Since every Γ(N) has finite index in SL2(Z), so does every congruence sub-
group Γ. Besides the principal congruence subgroups, the most important congru-
ence subgroups are the inverse images of the SL2(Z/NZ)-subgroups

G1 =
{[

1 ∗
0 1

]
∈ SL2(Z/NZ)

}
(where “∗” means “unspecified”) and

G0 =
{[
∗ ∗
0 ∗

]
∈ SL2(Z/NZ)

}
.

Specifically, the congruence subgroups are

Γ1(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=
[

1 ∗
0 1

]
mod N

}
and

Γ0(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=
[
∗ ∗
0 ∗

]
mod N

}
.
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Thus for any positive integer N we have the chain of containments

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Exercise 4. (a) Show that the map

g1 : Γ1(N) −→ Z/NZ,
[
a b
c d

]
7−→ b mod N

is an epimorphism with kernel Γ(N).
(b) Show that the map

g0 : Γ0(N) −→ (Z/NZ)×,
[
a b
c d

]
7−→ d mod N

is an epimorphism with kernel Γ1(N).

It follows from exercise 4(a) that

Γ(N) C Γ1(N), Γ1(N)/Γ(N) ∼−→ Z/NZ, [Γ1(N) : Γ(N)] = N.

And it follows from exercise 4(b) that

Γ1(N) C Γ0(N), Γ0(N)/Γ1(N) ∼−→ (Z/NZ)×, [Γ0(N) : Γ1(N)] = ϕ(N),

where ϕ is the Euler totient function.

Exercise 4. (c) Show that in consequence of the indices in the two previous displays
and of the previously-computed value of [SL2(Z) : Γ(N)], it follows that

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + 1/p),

the product taken over all primes dividing N .

4. The Theta Group as a Congruence Subgroup

Here is a sketched argument that the modular group is generated by the two
matrices [

1 1
0 1

]
and

[
0 −1
1 0

]
.

Let Γ be the subgroup of SL2(Z) generated by the two matrices. Note that
[ 1 n
0 1 ] = [ 1 1

0 1 ]n ∈ Γ for all n ∈ Z. Let α =
[
a b
c d

]
be a matrix in SL2(Z). The identity[

a b
c d

] [
1 n
0 1

]
=
[
a b′

c nc+ d

]
shows that unless c = 0, some matrix αγ with γ ∈ Γ has bottom row (c, d′) with
|d′| ≤ |c|/2. The identity[

a b
c d

] [
0 −1
1 0

]
=
[
b −a
d −c

]
shows that this process can be iterated until some matrix αγ with γ ∈ Γ has bottom
row (0, ∗). Because we are working with matrices that have determinant 1, in fact
the bottom row of αγ is (0,±1), and since

[
0 −1
1 0

]2
= −I it can be taken to be

(0, 1). It follows that αγ = [ 1 n
0 1 ] for some n ∈ Z and hence that αγ ∈ Γ. Thus

α ∈ Γ, and Γ is all of SL2(Z).
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Make sure that you understand this argument. If it gives you trouble then work
with me in person or via email until you get it.

Definition 4.1 (Theta Group). The theta group Γθ is the subgroup of SL2(Z)
generated by the matrices

±
[

1 1
0 1

]
and ±

[
1 0
4 1

]
.

Exercise 5. This exercise shows that Γθ = Γ0(4). The containment “⊂” holds
because the four generators of Γθ lie in Γ0(4). For the other containment, let
α =

[
a b
c d

]
be a matrix in Γ0(4). Similarly to the discussion above, the identity[

a b
c d

] [
1 n
0 1

]
=
[
a b′

c nc+ d

]
shows that unless c = 0, some matrix αγ with γ ∈ Γθ has bottom row (c, d′) with
|d′| < |c|/2, but now the inequality is strict. Explain why the inequality is strict.

Use the identity [
a b
c d

] [
1 0

4n 1

]
=
[

a′ b
c+ 4nd d

]
to show that unless d = 0, some matrix αγ with γ ∈ Γθ has bottom row (c′, d′)
with |c′| < 2|d′|. Again explain why the inequality is strict.

Each multiplication reduces the positive integer quantity min{|c|, 2|d|}, so the
process must stop with c = 0 or d = 0. Show that in fact this means that αγ ∈ Γθ
for some γ ∈ Γθ and so α ∈ Γθ.


