1. Definition of the Symmetric Polynomials

Let n be a positive integer, and let r_1, \ldots, r_n be indeterminates over \mathbb{Z} (they are algebraically independent, meaning that there is no nonzero polynomial relation among them).

The monic polynomial $g \in \mathbb{Z}[r_1, \ldots, r_n][X]$ having roots r_1, \ldots, r_n expands as

$$g(X) = \prod_{i=1}^{n} (X - r_i) = \sum_{j \in \mathbb{Z}} (-1)^j \sigma_j X^{n-j}$$

whose coefficients are (up to sign) the elementary symmetric functions of r_1, \ldots, r_n,

$$\sigma_j = \sigma_j(r_1, \ldots, r_n) = \begin{cases} \sum_{1 \leq i_1 < \cdots < i_j \leq n} \prod_{k=1}^{j} r_{i_k} & \text{for } j \geq 0 \\ 0 & \text{for } j < 0. \end{cases}$$

Note the special cases $\sigma_0 = 1$ and $\sigma_j = 0$ for $j > n$. For example, if $n = 4$ then the nonzero elementary symmetric functions are

$$\sigma_0 = 1,$$
$$\sigma_1 = r_1 + r_2 + r_3 + r_4,$$
$$\sigma_2 = r_1r_2 + r_1r_3 + r_1r_4 + r_2r_3 + r_2r_4 + r_3r_4,$$
$$\sigma_3 = r_1r_2r_3 + r_1r_2r_4 + r_1r_3r_4 + r_2r_3r_4,$$
$$\sigma_4 = r_1r_2r_3r_4.$$

It seems clear that because r_1, \ldots, r_n are algebraically independent, so are $\sigma_1, \ldots, \sigma_n$, but a small argument is required to show this. The problem is that although an integer polynomial relation $f(\sigma_1, \ldots, \sigma_n) = 0$ expands to an integer polynomial relation $F(r_1, \ldots, r_n) = 0$, forcing F to be the trivial polynomial, it is not immediate that consequently f is the trivial polynomial as well. So, suppose a relation

$$f(\sigma_1, \ldots, \sigma_n) = 0, \quad f \in \mathbb{Z}[X_1, \ldots, X_n].$$

Any nonzero term of $f(X_1, \ldots, X_n)$ takes the form

$$aX_1^{d_1}X_2^{d_2} \cdots X_n^{d_n}.$$

Set

$$e_n = d_n,$$
$$e_{n-1} = d_{n-1} + e_n,$$
$$e_{n-2} = d_{n-2} + e_{n-1}$$
$$\vdots$$
$$e_1 = d_1 + e_2.$$
Then the nonzero term of \(f \) is now
\[
aX_1^{e_1-e_2}X_2^{e_2-e_3}\cdots X_n^{e_n}, \quad e_1 \geq e_2 \geq \cdots \geq e_n \geq 0.
\]
Sort the nonzero terms lexicographically, i.e., first by total degree, then by \(X_1 \)-exponent, then \(X_2 \)-exponent, and so on. In the lex-initial term, substituting the \(\sigma_i \) for the \(X_i \) gives
\[
a\sigma_1^{e_1-e_2}\sigma_2^{e_2-e_3}\cdots \sigma_n^{e_n} = a(r_1^{e_1}r_2^{e_2}\cdots r_n^{e_n} + \cdots).
\]
Now \(ar_1^{e_1}r_2^{e_2}\cdots r_n^{e_n} \) is the lex-initial nonzero term of \(g(r_1, \ldots, r_n) \), sorting here by \(r_i \)-exponents rather than \(X_i \)-exponents. Thus no other term can cancel it in the relation \(g(r_1, \ldots, r_n) = 0 \). Therefore, no nonzero term of \(f(X_1, \ldots, X_n) \) exists.

Give the ring of polynomials in \(r_1, \ldots, r_n \) a name,
\[
R = \mathbb{Z}[r_1, \ldots, r_n].
\]
The symmetric group \(S_n \) acts on \(R \),
\[
\sigma f(r_1, \ldots, r_n) = f(r_{\sigma 1}, \ldots, r_{\sigma n}), \quad \sigma \in S_n, \ f \in \mathbb{Z}[r_1, \ldots, r_n].
\]
The polynomials in \(R \) that are invariant under the action form a subring of \(R \),
\[
R_o = \{ S_n \text{-invariant polynomials in } R \}.
\]
The product form in the earlier equality
\[
g(X) = \prod_{i=1}^n (X - r_i) = \sum_{j \in \mathbb{Z}} (-1)^j \sigma_j X^{n-j}
\]
shows that the \(\sigma_j \) are invariant under the action, and hence
\[
\mathbb{Z}[\sigma_1, \ldots, \sigma_n] \subset R_o.
\]
In fact the containment is an equality.

Theorem 1.1 (Fundamental Theorem of Symmetric Polynomials). *The subring of polynomials in \(\mathbb{Z}[r_1, \ldots, r_n] \) that are fixed under the action of \(S_n \) is \(\mathbb{Z}[\sigma_1, \ldots, \sigma_n] \).*

Proof. Consider a nonzero polynomial \(f \in \mathbb{Z}[r_1, \ldots, r_n] \) that is fixed under the action of \(S_n \). Sort its nonzero terms lexicographically, first by total degree, then by \(r_1 \)-exponent, then \(r_2 \)-exponent, and so on. Consider its lex-initial term,
\[
ar_1^{e_1}\cdots r_n^{e_n}.
\]
For any \(\sigma \in S_n \) the polynomial \(f \) contains a term having the same coefficient but with the variables permuted by \(\sigma \). Thus the lex-initial term takes the form
\[
t = ar_1^{e_1}\cdots r_n^{e_n}, \quad e_1 \geq \cdots \geq e_n \geq 0.
\]
Now consider the coefficient of \(t \) times a product of elementary symmetric functions,
\[
g_t = a\sigma_1^{e_1-e_2}\sigma_2^{e_2-e_3}\cdots \sigma_n^{e_n} \in \mathbb{Z}[\sigma_1, \cdots, \sigma_n]
\]
(the exponents are all nonnegative because of the conditions on the \(e_i \)). This polynomial’s lexicographically-highest term is exactly \(t \). Thus, recalling that \(f \) is our \(S_n \)-invariant polynomial and noting that \(g_t \) is certainly \(S_n \)-invariant as well, we see that the polynomial \(f - g_t \) is also \(S_n \)-fixed, and it has a smaller lex-initial term than \(f \). Replace \(f \) by \(f - g_t \) and continue in this fashion until the original \(f \) is expressed as a polynomial in the \(\sigma_i \). \(\square \)
The discriminant of \(r_1, \ldots, r_n \) (also called the discriminant of \(g \)) is

\[
\Delta = \Delta(r_1, \ldots, r_n) = \Delta(g) = \prod_{1 \leq i < j \leq n} (r_i - r_j)^2.
\]

Being visibly invariant under \(S_n \), the discriminant lies in the coefficient field of \(g \).

For example, if \(n = 2 \) then

\[
\Delta = (r_1 - r_2)^2 = (r_1 + r_2)^2 - 4r_1r_2 = \sigma_1^2 - 4\sigma_2.
\]

Trying similarly to analyze the case \(n = 3 \) quickly shows that expressing \(\Delta \) in terms of the \(\sigma_j \) is not easy, although the proof of the Fundamental Theorem shows us how to do it. (Answer: \(\sigma_1^2\sigma_2^2 - 4\sigma_2^3 - 4\sigma_1^3\sigma_3 - 27\sigma_3^2 + 18\sigma_1\sigma_2\sigma_3 \)). Soon we will develop a general discriminant algorithm.

The square root of the discriminant,

\[
\sqrt{\Delta} = \prod_{1 \leq i < j \leq n} (r_i - r_j),
\]

changes its sign when any two of the \(r \)’s are exchanged, i.e., \((k \ell)\sqrt{\Delta} = -\sqrt{\Delta} \) for any transposition \((k \ell) \in S_n \). That is, \(\sqrt{\Delta} \) is fixed by \(A_n \) but not by \(S_n \).

2. Guided example: Solving the Cubic Equation

To solve the general cubic equation, the task is to express \(r_1, r_2, r_3 \) in terms of \(\sigma_1, \sigma_2, \sigma_3 \). Let

\[
r = r_1 + \zeta_3 r_2 + \zeta_3^2 r_3.
\]

Show that \(r^3 \) is invariant under the alternating group \(A_3 \). Let \(S_3 \) act on \(\mathbb{Z}[r_1, r_2, r_3] \). Then we have

\[
(2 3)r = r_1 + \zeta_3 r_3 + \zeta_3^2 r_2.
\]

Show that \(((2 3)r)^\times \neq r^3 \) and hence that \((2 3)(r^3) \neq r^3 \). Thus \(r^3 \) is not invariant under the full symmetric group \(S_3 \). Since a set of coset representatives for \(S_3/A_3 \) is \(\{1, (2 3)\} \), the polynomial

\[
R_{r^3}(X) = (X - r^3)(X - (2 3)(r^3)) = X^2 - (r^3 + (2 3)(r^3))X + r^3 \cdot (2 3)(r^3)
\]

lies in \(\mathbb{Z}[\sigma_1, \sigma_2, \sigma_3] \). (This polynomial is the resolvent of \(r^3 \)). Use the proof of the Fundamental Theorem of Symmetric Functions for \(n = 3 \) to show that

\[
r \cdot (2 3)r = \sigma_1^2 - 3\sigma_2,
\]

\[
r^3 + (2 3)(r^3) = 2\sigma_1^3 - 9\sigma_1\sigma_2 + 27\sigma_3,
\]

so that the resolvent expands as

\[
R_{r^3}(X) = X^2 - (2\sigma_1^3 - 9\sigma_1\sigma_2 + 27\sigma_3)X + (\sigma_1^2 - 3\sigma_2)^3.
\]

Taking a square root over the coefficient field gives \(r^3 \) and \((r^3)^{(2 3)} \). (We don’t know which is which because there is no canonical labeling of \(r_1, r_2, r_3 \), so just designate one as \(r^3 \)). Now \(r \) is a root of

\[
R_r(X) = X^3 - r^3
\]
(there are three roots, but again they are indistinguishable under relabeling of the \(r_i \)), and \(r^{(23)} = (\sigma_1^2 - 3\sigma_2)/r \) as computed above. Now that we have \(r \) and \(r^{(23)} \), find \(r_1, r_2, r_3 \) by solving the linear system

\[
\begin{align*}
 r_1 + \zeta_3 r_2 + \zeta_3^2 r_3 &= r \\
 r_1 + \zeta_3^2 r_2 + \zeta_3 r_3 &= r^{(23)} \\
 r_1 + r_2 + r_3 &= \sigma_1.
\end{align*}
\]

Use these methods to solve the cubic polynomial \(X^3 - 3X + 1 \).

The strategy of this example is very general. Suppose that a polynomial

\[
g(X) = \prod_{i=1}^{n}(X - r_i)
\]

has roots \(r_1, \cdots, r_n \) that need not be algebraically independent, and suppose that a group \(G \) acts on the roots, fixing some underlying ring \(A \). If we can find some polynomial expression in the roots,

\[s = s(r_1, \cdots, r_n), \quad s \in A[X_1, \cdots, X_n], \]

that is invariant under the action of a subgroup \(H \) of \(G \), then the associated resolvent polynomial is

\[
f_s(X) = \prod_{gH \in G/H} (X - gs).
\]

(The name \(g \) for group-elements in the formula for the resolvent has no connection to the name \(g \) of the original polynomial from a moment ago.) The resolvent has degree \([G : H]\), and it has \(s \) as a root, and it is invariant under the action of the full group \(G \) because the map \(gH \mapsto \gamma gH \) permutes the coset space \(G/H \),

\[
(\gamma f_s)(X) = \prod_{gH \in G/H} (X - \gamma gs) = \prod_{\gamma gH \in G/H} (X - \gamma gs) = f_s(X).
\]

Thus, the coefficients of \(f_s \) are \(G \)-invariant. An algorithm might consequently be available to compute them, and then perhaps we can find the roots of \(f_s \), one of which is \(s \). Thus the problem of finding the roots of \(g \) given only the elementary symmetric functions of the roots would be reduced to finding the roots of \(g \) given also the roots of \(f_s \), those roots being \(\{gs : gH \in G/H\} \).

Depending on the context, one can bring various artfulnesses to bear on choosing a subgroup \(H \) of \(G \) and then finding an \(H \)-invariant expression \(s \).

3. GUIDED EXAMPLE: SOLVING THE QUARTIC EQUATION

Let \(n = 4 \). Let

\[
\begin{align*}
 r &= r_1 - r_2 + r_3 - r_4, \\
 s &= r^2.
\end{align*}
\]

Show that the subgroup of \(S_4 \) leaving \(s \) invariant is the dihedral group

\[
D = \langle (1\ 2\ 3\ 4), (1\ 3) \rangle,
\]
and that a set of coset representatives for \(S_4/D \) is \(\{1, (1 2), (1 4)\} \). Show that the Fundamental Theorem of Symmetric Functions gives

\[
\begin{align*}
\sigma_1^3 &= 4\sigma_1\sigma_2 + 8\sigma_3 \\
\sigma_1^2 - 8\sigma_2 &= 3\sigma_1^3 \\
\sigma_1^4 - 16\sigma_1^2\sigma_2 + 16\sigma_1\sigma_3 + 16\sigma_2^2 - 64\sigma_4.
\end{align*}
\]

To solve the quartic, take the cubic resolvent of \(s \),

\[
R_s(X) = (X - s)(X - (1 2)s)(X - (1 4)s) = X^3 - (3\sigma_1^2 - 8\sigma_2)X^2 + (3\sigma_1^4 - 16\sigma_1^2\sigma_2 + 16\sigma_1\sigma_3 + 16\sigma_2^2 - 64\sigma_4)X - (\sigma_1^3 - 4\sigma_1\sigma_2 + 8\sigma_3)^2.
\]

The three roots are \(s, (1 2)s, \) and \((1 4)s \); taking square roots of the first two gives \(r \) and \((1 2)r \), so as computed above, \((1 4)r = (\sigma_3^1 - 4\sigma_1\sigma_2 + 8\sigma_3)/(r \cdot (1 2)r) \). Now to solve the original quartic, solve the linear system

\[
\begin{align*}
r_1 - r_2 + r_3 - r_4 &= r \\
-r_1 + r_2 + r_3 - r_4 &= r^{(1 2)} \\
-r_1 - r_2 + r_3 + r_4 &= r^{(1 4)} \\
r_1 + r_2 + r_3 + r_4 &= \sigma_1.
\end{align*}
\]

4. Newton’s identities

Retaining the notation from before, now define the power sums of \(r_1, \ldots, r_n \) to be

\[
s_j = s_j(r_1, \ldots, r_n) = \begin{cases} \sum_{i=1}^n r_i^j & \text{for } j \geq 0 \\ 0 & \text{for } j < 0 \end{cases}
\]

including \(s_0 = n \). The power sums are clearly invariant under the action of \(S_n \). We want to relate them to the elementary symmetric functions \(\sigma_j \). Start from the general polynomial,

\[
g(X) = \prod_{i=1}^n (X - r_i) = \sum_{j \in \mathbb{Z}} (-1)^j \sigma_j X^{n-j}.
\]

Certainly

\[
g'(X) = \sum_{j \in \mathbb{Z}} (-1)^j \sigma_j (n - j) X^{n-j-1}.
\]

But also, the logarithmic derivative and geometric series formulas,

\[
\frac{g'(X)}{g(X)} = \sum_{i=1}^n \frac{1}{X - r_i} \quad \text{and} \quad \frac{1}{X - r} = \sum_{k=0}^{\infty} \frac{r^k}{X^{k+1}}.
\]
give
\[g'(X) = g(X) \cdot \frac{g'(X)}{g(X)} = g(X) \sum_{i=1}^{n} \sum_{k=0}^{\infty} r_i^k X^{k+1} = g(X) \sum_{k \in \mathbb{Z}} s_k X^{k+1} \]
\[= \sum_{k, \ell \in \mathbb{Z}} (-1)^\ell \sigma_\ell s_k X^{n-k-\ell-1} \]
\[= \sum_{j \in \mathbb{Z}} \left(\sum_{\ell \in \mathbb{Z}} (-1)^\ell \sigma_\ell s_j^{\ell} \right) X^{n-j-1} \quad \text{(letting } j = k + \ell). \]

Equate the coefficients of the two expressions for \(g'(X) \) to get
\[\sum_{\ell=0}^{j-1} (-1)^\ell \sigma_\ell s_{j-\ell} + (-1)^j \sigma_j n = (-1)^j \sigma_j (n-j). \]

Newton’s identities follow,
\[\sum_{\ell=0}^{j-1} (-1)^\ell \sigma_\ell s_{j-\ell} + (-1)^j \sigma_j j = 0 \quad \text{for all } j. \]

Explicitly, Newton’s identities are
\[s_1 - \sigma_1 = 0 \]
\[s_2 - s_1 \sigma_1 + 2\sigma_2 = 0 \]
\[s_3 - s_2 \sigma_1 + s_1 \sigma_2 - 3\sigma_3 = 0 \]
\[s_4 - s_3 \sigma_1 + s_2 \sigma_2 - s_1 \sigma_3 + 4\sigma_4 = 0 \]
and so on.

The identities show (exercise) that for any \(j \in \{1, \ldots, n\} \), the power sums \(s_1, \ldots, s_j \) are integer polynomials (with constant terms zero) in the elementary symmetric functions \(\sigma_1, \ldots, \sigma_j \), while the elementary symmetric functions \(\sigma_1, \ldots, \sigma_j \) are rational polynomials with constant terms zero) in the power sums \(s_1, \ldots, s_j \). Consequently,

Proposition 4.1. The first \(j \) coefficients \(a_1, \ldots, a_j \) of the polynomial \(f(X) = X^n + a_1 X^{n-1} + \cdots + a_n \) are zero exactly when the first \(j \) power sums of its roots are zero.

5. Resultants

Given polynomials \(p \) and \(q \), we can determine whether they have a root in common without actually finding their roots.

Let \(m \) and \(n \) be nonnegative integers. Let
\[a_0, \ldots, a_m, \quad b_0, \ldots, b_n, \quad (a_0 \neq 0, \ b_0 \neq 0) \]
be symbols (possibly elements of the base field \(\mathbb{Q} \)). Let the coefficient field be
\[k = \mathbb{Q}(a_0, \ldots, a_m, b_0, \ldots, b_n). \]

The polynomials
\[p(X) = \sum_{i=0}^{m} a_i X^{m-i}, \quad q(X) = \sum_{i=0}^{n} b_i X^{n-i} \]
in \(k[X] \) are utterly general when the \(a_i \)'s and the \(b_i \)'s form an algebraically independent set, or conversely they can be explicit polynomials when all the coefficients lie in \(\mathbb{Q} \) or in \(\mathbb{R} \) or in \(\mathbb{C} \) or in some other extension field of \(\mathbb{Q} \). It is an exercise to show that the polynomials \(p \) and \(q \) share a nonconstant factor in \(k[X] \) if and only if there exist nonzero polynomials in \(k[X], P(X) = \sum_{i=0}^{n-1} c_i X^{n-1-i}, Q(X) = \sum_{i=0}^{m-1} d_i X^{m-1-i}, \) having respective degrees less than \(n \) and \(m \), such that \(pP = qQ \). Such \(P \) and \(Q \) exist if and only if the system \(vM = 0 \) of \(m+n \) linear equations over \(k \) in \(m+n \) unknowns has a nonzero solution \(v \), where

\[
v = [c_0, c_1, \cdots, c_{n-1}, -d_0, -d_1, \cdots, -d_{m-1}]
\]
lies in \(k^{m+n} \), and \(M \) is the **Sylvester matrix**

\[
M = \begin{bmatrix} a_0 & a_1 & \cdots & \cdots & a_m \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
b_0 & b_1 & \cdots & \cdots & b_n \end{bmatrix}
\]

(\(n \) staggered rows of \(a_i \)'s, \(m \) staggered rows of \(b_j \)'s, all other entries 0), an \((m+n) \)-by-(\(m+n \)) matrix. Such a nonzero solution exists in turn if and only if \(\det M = 0 \). This determinant is called the **resultant** of \(p \) and \(q \),

\[
R(p,q) = \det M \in \mathbb{Z}[a_0, \cdots, a_m, b_0, \cdots, b_n].
\]

The condition that \(p \) and \(q \) share a factor in \(k[X] \) is equivalent to their sharing a root in the splitting field over \(k \) of \(pq \). Thus the result is

Theorem 5.1. The polynomials \(p \) and \(q \) in \(k[X] \) share a nonconstant factor in \(k[X] \), or equivalently, share a root in the splitting field over \(k \) of their product, if and only if \(R(p,q) = 0 \).

When the coefficients of \(p \) and \(q \) are algebraically independent, \(R(p,q) \) is a master formula that applies to all polynomials of degrees \(m \) and \(n \). At the other extreme, if the coefficients lie in some numerical superfield of \(\mathbb{Q} \) then \(R(p,q) \) is a number that is zero or nonzero depending on whether the particular polynomials \(p \) and \(q \) share a factor.

Taking the resultant of \(p \) and \(q \) to check whether they share a root can also be viewed as eliminating the variable \(X \) from the pair of equations \(p(X) = 0 \) and \(q(X) = 0 \), leaving one equation \(R(p,q) = 0 \) in the remaining variables \(a_0, \cdots, a_m, b_0, \cdots, b_n \).

In principle, evaluating \(R(p,q) = \det M \) can be carried out via a process of row and column operations. (Using only row operations encompasses computing the greatest common divisor of \(p \) and \(q \) by the Euclidean algorithm.) In practice, evaluating a large determinant is an error-prone process by hand. The next theorem will supply as a corollary a more efficient method to compute \(R(p,q) \). In any

case, since any worthwhile computer symbolic algebra package is equipped with a resultant function, nontrivial resultants can often be found by machine.

In their splitting field over k, the polynomials p and q factor as

$$p(X) = a_0 \prod_{i=1}^{m} (X - r_i), \quad q(X) = b_0 \prod_{j=1}^{n} (X - s_j).$$

To express the resultant $R(p, q)$ explicitly in terms of the roots of p and q introduce the quantity

$$\tilde{R}(p, q) = a_0^n b_0^m \prod_{i=1}^{m} \prod_{j=1}^{n} (r_i - s_j).$$

This polynomial vanishes if and only if p and q share a root, so it divides $R(p, q)$. Note that $\tilde{R}(p, q)$ is homogeneous of degree mn in the r_i and s_j. On the other hand, each coefficient $a_i = a_0 (-1)^i \sigma_i(r_1, \ldots, r_m)$ of p has homogeneous degree i in r_1, \ldots, r_m, and similarly for each b_j and s_1, \ldots, s_n. Thus in the Sylvester matrix the (i, j)th entry has degree

$$\begin{cases} j - i \text{ in the } r_i & \text{if } 1 \leq i \leq n, i \leq j \leq i + m, \\ j - i + n \text{ in the } s_j & \text{if } n + 1 \leq i \leq n + m, i - n \leq j \leq i. \end{cases}$$

It quickly follows that any nonzero term in the determinant $R(p, q)$ has degree mn in the r_i and the s_j, so $\tilde{R}(p, q)$ and $R(p, q)$ agree up to multiplicative constant. Matching coefficients of $(s_1 \cdots s_n)^m$ shows that the constant is 1. This proves

Theorem 5.2. The resultant of the polynomials

$$p(X) = \sum_{i=0}^{m} a_i X^{m-i} = a_0 \prod_{i=1}^{m} (X - r_i), \quad q(X) = \sum_{j=0}^{n} b_j X^{n-j} = b_0 \prod_{j=1}^{n} (X - s_j)$$

is given by the formulas

$$R(p, q) = a_0^n b_0^m \prod_{i=1}^{m} \prod_{j=1}^{n} (r_i - s_j) = a_0^n m \prod_{i=1}^{m} q(r_i) = (-1)^{mn} b_0^m \prod_{j=1}^{n} p(s_j).$$

A special case of this theorem gives the efficient formula for the discriminant promised earlier. See the exercises.

Computing resultants can now be carried out via a Euclidean algorithm procedure: repeatedly do polynomial division with remainder and apply formula (4) in

Corollary 5.3. The following formulas hold:

1. $R(q, p) = (-1)^{mn} R(p, q)$.
2. $R(p\bar{q}, q) = R(p, q) R(p, \bar{q})$ and $R(p, q\bar{q}) = R(p, q) R(p, \bar{q})$.
3. $R(a_0 q) = a_0^n$ and $R(a_0 X + a_1, q) = a_0^n q(-a_1/a_0)$.
4. If $q = Qp + \bar{q}$ with $\deg(\bar{q}) < \deg(p)$ then

$$R(p, q) = a_0^{\deg(q) - \deg(\bar{q})} R(p, \bar{q}).$$

The proof of the corollary is an exercise.