SYMMETRIC POLYNOMIALS

1. DEFINITION OF THE SYMMETRIC POLYNOMIALS

Let n be a positive integer, and let r1,--- ,r, be indeterminates over Z (they
are algebraically independent, meaning that there is no nonzero polynomial relation
among them).

The monic polynomial g € Z[ry,--- ,r,][X] having roots r1,- -+ ,r, expands as

n

g(X) =[x =) =3 (1) oy x"

i=1 jez
whose coefficients are (up to sign) the elementary symmetric functions of
T, 5 Tn,

O—j = Jj(rla"'

7 .

rn) = 21§i1<~-<ijgn Hk:l ri, forj>0
’ 0 for j < 0.
Note the special cases 09 = 1 and o; = 0 for j > n. For example, if n = 4 then the
nonzero elementary symmetric functions are

og — 1,

01 =711+ 72+ 173+ T4,

02 =T1T2 + 1173 + 17174 + 7273 + Tar'q + 1374,

03 = 17273 + 1274 + 17374 + 727374,

04 = T'1T2T3T4.

It seems clear that because ry,---,r, are algebraically independent, so are
o1, ,0p, but a small argument is required to show this. The problem is that
although an integer polynomial relation f(oy,---,0,) = 0 expands to an integer
polynomial relation F(rq,--- ,7,) = 0, forcing F' to be the trivial polynomial, it is

not immediate that consequently f is the trivial polynomial as well. So, suppose a
relation

flo1,- - ,00) =0, [feZ[Xy, -, X,]
Any nonzero term of f(Xy,---,X,) takes the form
aXh Xz xdn,
Set
e, =dy,
en—1=dn—1+€p

en—2=dn_2+e€n_1

€1 = d1 + es.

1



2 SYMMETRIC POLYNOMIALS

Then the nonzero term of f is now
aX{tTXTS X e > e > > ey > 0.

Sort the nonzero terms lexicographically, i.e., first by total degree, then by X;-
exponent, then Xs-exponent, and so on. In the lex-initial term, substituting the o;
for the X; gives

a01€1_€20§2_53 . O'Z’" = a(r‘li17~§2 ‘e TZ" 4 )
Now ar{'rs?---ré is the lex-initial nonzero term of g(r1,--- ,7,), sorting here by
r;-exponents rather than X;-exponents. Thus no other term can cancel it in the
relation g(r1,---,r,) = 0. Therefore, no nonzero term of f(Xi,---,X,) exists.
Give the ring of polynomials in rq,--- ,7, a name,

R=7Z[r1, - ,ra].
The symmetric group S,, acts on R,
of(ri,- ) = f(ro1s - yTon), 0 ESn, fELr1, - ,ru)
The polynomials in R that are invariant under the action form a subring of R,
R, = {S,-invariant polynomials in R}.
The product form in the earlier equality
n
9(X) =[[(X =ri) =D (-1)o; X"
i=1 JEZ
shows that the o; are invariant under the action, and hence
Zloy, - ,0n] C R,.

In fact the containment is an equality.

Theorem 1.1 (Fundamental Theorem of Symmetric Polynomials). The subring of
polynomials in Z[ry,- -+ ,7y] that are fized under the action of Sy, s Zlo1,- -+ ,0n].

Proof. Consider a nonzero polynomial f € Z[ry,--- ,r,] that is fixed under the
action of S,,. Sort its nonzero terms lexicographically, first by total degree, then by
ri-exponent, then ro-exponent, and so on. Consider its lex-initial term,

arit-oren.
For any o € S,, the polynomial f contains a term having the same coefficient but

with the variables permuted by o. Thus the lex-initial term takes the form
t=arf*---rir, ep > >e, > 0.

Now consider the coefficient of ¢ times a product of elementary symmetric functions,

. €1—e2 _€2—e€3 e
gt = aoy o5 ceeopn € Loy, 00

(the exponents are all nonnegative because of the conditions on the e;). This
polynomial’s lexicographically-highest term is exactly ¢. Thus, recalling that f is
our Sp-invariant polynomial and noting that g; is certainly S,-invariant as well,
we see that the polynomial f — g; is also S,-fixed, and it has a smaller lex-initial
term than f. Replace f by f — g: and continue in this fashion until the original f
is expressed as a polynomial in the o;. ([l
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The discriminant of r1,--- ,7, (also called the discriminant of g) is
A:A(Tl7"' ,Tn):A(g>: H (Ti_'f‘j)2.
1<i<j<n

Being visibly invariant under S,,, the discriminant lies in the coefficient field of g.
For example, if n = 2 then

A= (7“1 - 7"2)2 = (7’1 + 7’2)2 —4ryryg = g% —405.

Trying similarly to analyze the case n = 3 quickly shows that expressing A in terms

of the o; is not easy, although the proof of the Fundamental Theorem shows us how

to do it. (Answer: o303 — 403 — 40303 — 2702 + 18010203.) Soon we will develop

a general discriminant algorithm.
The square root of the discriminant,

\/K: H (’ri_rj)v

1<i<j<n

changes its sign when any two of the 7’s are exchanged, i.e., (k£)vV/A = —/A for
any transposition (k /) € S,,. That is, v/A is fixed by A,, but not by S,,.

2. GUIDED EXAMPLE: SOLVING THE CUBIC EQUATION

To solve the general cubic equation, the task is to express r1,72,73 in terms
of J1,02,03. Let

r =11+ (372 + (33

Show that 3 is invariant under the alternating group As. Let Ss act on Z[ry, 72, 73).
Then we have

(23)r =711+ (rs+ Cgm.

Show that ((23)7)3 # r3 and hence that (23)(r®) # r3. Thus 73 is not invariant
under the full symmetric group Ss3. Since a set of coset representatives for S3/Aj3
is {1, (23)}, the polynomial

Rus(X) = (X —r)(X - (23)(r%) = X2 — (r* + (23)(r*) X + 7> - (23)(r?)

lies in Z[o1, 02,03]. (This polynomial is the resolvent of 73.) Use the proof of the
Fundamental Theorem of Symmetric Functions for n = 3 to show that

r-(23)r = 0% — 309,
3+ (23)(r?) = 207 — 90109 + 2703,
so that the resolvent expands as

R.s(X) = X% — (202 — 90109 + 2703) X + (07 — 309)>.

Taking a square root over the coefficient field gives 7% and (3)(23). (We don’t
know which is which because there is no canonical labeling of rq, ro, r3, so just
designate one as r3.) Now 7 is a root of

R.(X)=X3—13



4 SYMMETRIC POLYNOMIALS

(there are three roots, but again they are indistinguishable under relabeling of
the 7;), and r(23) = (02 —303) /7 as computed above. Now that we have r and 7(23),
find 71, 79,73 by solving the linear system

T+ Gra+Gry=r

i+ GGra + Gary = Y

r+ ro+ r3=o01.
Use these methods to solve the cubic polynomial X3 — 3X + 1.

The strategy of this example is very general. Suppose that a polynomial

n

9(X) =J(xX =)

i=1

has roots rq,--- ,7, that need not be algebraically independent, and suppose that
a group G acts on the roots, fixing some underlying ring A. If we can find some
polynomial expression in the roots,

s=38(r1, - ,rn), s€AXy, -, Xnl,

that is invariant under the action of a subgroup H of G, then the associated resol-
vent polynomial is
fX) = JI x-gs).
gHeG/H
(The name g for group-elements in the formula for the resolvent has no connection
to the name ¢ of the original polynomial from a moment ago.) The resolvent has

degree [G : H], and it has s as a root, and it is invariant under the action of the
full group G because the map gH — ygH permutes the coset space G/H,

(vfs)(X) [T &x=vgs)= ][] X -r9s) =f(X).

gHEeG/H vygHEG/H

Thus, the coefficients of fs; are G-invariant. An algorithm might consequently be
available to compute them, and then perhaps we can find the roots of fs, one of
which is s. Thus the problem of finding the roots of g given only the elementary
symmetric functions of the roots would be reduced to finding the roots of g given
also the roots of f, those roots being {gs: gH € G/H}.

Depending on the context, one can bring various artfulnesses to bear on choosing
a subgroup H of G and then finding an H-invariant expression s.

3. GUIDED EXAMPLE: SOLVING THE QUARTIC EQUATION

Let n = 4. Let

=71 —7T2+ 13— Ty,
s=r2
Show that the subgroup of Sy leaving s invariant is the dihedral group

D =((1234),(13)),
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and that a set of coset representatives for S4/D is {1,(12),(14)}. Show that the
Fundamental Theorem of Symmetric Functions gives
r-(12)r - (14)r = 0 — 40109 + 803
s+ (12)s+ (14)s = 307 — 80
5-(12)s+5-(14)s 4 (12)s - (14)s = 307 — 160705 + 160103 + 16035 — 640y.

To solve the quartic, take the cubic resolvent of s,

Ry(X) = (X — 8)(X — (12)5)(X — (14)s)
= X3 — (307 — 809)X? + (307 — 160309 + 160,03 + 1605 — 6404) X
— (0% — 40109 + 803)%.
The three roots are s, (12)s, and (14)s; taking square roots of the first two gives
r and (12)r, so as computed above, (14)r = (03 — 40109 + 803)/(r - (1,2)r). Now
to solve the original quartic, solve the linear system
T —To+T3—T4=T
—r1+reot+rz3—ryg= r(12)
—Tr1—Tro+r3+ry= r(4

7’1—|—T’2—|—T3—|—T‘4=O'1.

4. NEWTON’S IDENTITIES

Retaining the notation from before, now define the power sums of r1,--- , 7,
to be
S rg for j >0

0 for j <0

sj = 8;(r1, ) ={

including sy = n. The power sums are clearly invariant under the action of S,.
We want to relate them to the elementary symmetric functions o;. Start from the
general polynomial,

Certainly

g(X) = (~1Yoj(n— X"

JEL

But also, the logarithmic derivative and geometric series formulas,

J(X) &~ 1 1 — ¥
= d =
9(X) ;Xfri a X—r kzzoxw’
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give
g/(X) ¢ Ti‘ﬁ Sk
g (X) =g(X) 9(X) = g(X) ZXk-H = g(X) Je
i=1 k=0 kez

= > (Do Xt
k€T

=D lz(—l)éoesg‘-e} X"=i=h (letting j = k + £).
JEZL Leel

Equate the coefficients of the two expressions for ¢’(X) to get

j—1

Z(—l)eogsj_g +(=1)ojn = (-1)0j(n — 7).
=0

Newton’s identities follow,

j—1
> (=Dfousji+ (—1)0;5 =0  for all j.
=0

Explicitly, Newton’s identities are

s1—o1 =0

So — 8101 + 202 =10

S3 — S901 + 8109 — 303 =0

84 — 8301 + 8209 — 8103 +404 =0

and so on.
The identities show (exercise) that for any j € {1,--- ,n}, the power sums s1,- - , s;
are integer polynomials (with constant terms zero) in the elementary symmetric
functions o1, -+, 0, while the elementary symmetric functions oq,--- ,0; are ra-

tional polynomials with constant terms zero) in the power sums si,--- ,s;. Conse-
quently,

Proposition 4.1. The first j coefficients a1,--- ,a; of the polynomial f(X) =
X"+ a1 X" '+ .-+ a, are zero exactly when the first j power sums of its roots
are zero.

5. RESULTANTS

Given polynomials p and ¢, we can determine whether they have a root in com-
mon without actually finding their roots.
Let m and n be nonnegative integers. Let

ag, 5 Gmy Doyt ,bn,  (ag #0, by #0)
be symbols (possibly elements of the base field Q). Let the coefficient field be
k=Q(ag, - ,Qm,bo, -+ ,bp).
The polynomials

m

PX) =D aX™ (X)) =) biX"
=0 =0
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in k[X] are utterly general when the a;’s and the b;’s form an algebraically inde-
pendent set, or conversely they can be explicit polynomials when all the coefficients
lie in Q or in R or in C or in some other extension field of Q. It is an exercise to
show that the polynomials p and ¢ share a nonconstant factor in k[X] if and only
if there exist nonzero polynomials in k[X],

m—1

n—1
P(X)=> ;X" QX)=> dxm ',
i=0 =0

having respective degrees less than n and m, such that pP = ¢@. Such P and @
exist if and only if the system
vM =0
of m+n linear equations over k in m+n unknowns has a nonzero solution v, where
U= [COa C1, " ,Cp—1, _dOa _dla Tty _dm—l]

lies in k™*" and M is the Sylvester matrix

ao al PR PRI am
a/o al PRI PR am
M= by b - by
bo by - by,
I bo b -+ by

(n staggered rows of a;’s, m staggered rows of b;’s, all other entries 0), an (m+n)-
by-(m + n) matrix. Such a nonzero solution exists in turn if and only if det M = 0.
This determinant is called the resultant of p and ¢,

R(p,q) =det M € Z[ag, -+ , @m,bo," - ,bp].

The condition that p and ¢ share a factor in k[X] is equivalent to their sharing a
root in the splitting field over k of pg. Thus the result is

Theorem 5.1. The polynomials p and q in k[X] share a nonconstant factor in
k[X], or equivalently, share a root in the splitting field over k of their product, if
and only if R(p,q) = 0.

When the coefficients of p and ¢ are algebraically independent, R(p, q) is a master
formula that applies to all polynomials of degrees m and n. At the other extreme,
if the coefficients lie in some numerical superfield of Q then R(p,q) is a number
that is zero or nonzero depending on whether the particular polynomials p and ¢
share a factor.

Taking the resultant of p and ¢ to check whether they share a root can also
be viewed as eliminating the variable X from the pair of equations p(X) = 0 and
q(X) = 0, leaving one equation R(p,q) = 0 in the remaining variables ag, - - , Gm,
bo, -, bn.

In principle, evaluating R(p,q) = det M can be carried out via a process of
row and column operations. (Using only row operations encompasses computing
the greatest common divisor of p and ¢ by the Euclidean algorithm.) In practice,
evaluating a large determinant is an error-prone process by hand. The next theorem
will supply as a corollary a more efficient method to compute R(p,q). In any
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case, since any worthwhile computer symbolic algebra package is equipped with a
resultant function, nontrivial resultants can often be found by machine.
In their splitting field over k, the polynomials p and ¢ factor as

m

p(X) =ao [[(X =), —bOH —55).

i=1
To express the resultant R(p, ) explicitly in terms of the roots of p and ¢ intro-
duce the quantity R(p,q) = afbg' -, HJ 1(r; — s5). This polynomial vanishes

if and only if p and ¢ share a root, so it divides R(p,q). Note that R(p7 q) is ho-
mogeneous of degree mn in the 7; and s;. On the other hand, each coefficient

a; = ag(—1)%0;(r1,- -+ ,7m) of p has homogeneous degree i in rq,--- , 7, and simi-
larly for each b; and s1,-- -, s,. Thus in the Sylvester matrix the (¢, j)th entry has
degree

j — i in the r; if1<i<n,i<j<i+m,

j—i+ninthes; ifn+1<i<n4+m,i—n<j<i
It quickly follows that any nonzero term in the determinant R(p, ¢) has degree mn

in the r; and the s;, so R(p,q) and R(p,q) agree up to multiplicative constant.
Matching coefficients of (s; ---s,)" shows that the constant is 1. This proves

Theorem 5.2. The resultant of the polynomials

Zale’—a()H —7i), ZbX"J—bOH —55)

is given by the formulas

R(p,q) = aobmHH i — 85) H (=™ b [ ] p(s)-
1=17=1 =1 j=1

A special case of this theorem gives the efficient formula for the discriminant
promised earlier. See the exercises.

Computing resultants can now be carried out via a Euclidean algorithm pro-
cedure: repeatedly do polynomial division with remainder and apply formula (4)
in
Corollary 5.3. The following formulas hold:

(1) R(q,p) = (=1)""R(p,q).

(2) R(pp,q) = R(p,q)R(p,q) and R(p,qq) = R(p,q)R(p,q).
(3) (ag, q) = afy and R(apX + a1,q) = ajq(—a1/aop).

(4) If g = Qp + G with deg(q) < deg(p) then

R(p,q) = ag®® DD R(p, §).

The proof of the corollary is an exercise.



