
SYMMETRIC POLYNOMIALS

1. Definition of the Symmetric Polynomials

Let n be a positive integer, and let r1, · · · , rn be indeterminates over Z (they
are algebraically independent, meaning that there is no nonzero polynomial relation
among them).

The monic polynomial g ∈ Z[r1, · · · , rn][X] having roots r1, · · · , rn expands as

g(X) =
n∏
i=1

(X − ri) =
∑
j∈Z

(−1)jσjXn−j

whose coefficients are (up to sign) the elementary symmetric functions of
r1, · · · , rn,

σj = σj(r1, · · · , rn) =

{∑
1≤i1<···<ij≤n

∏j
k=1 rik for j ≥ 0

0 for j < 0.

Note the special cases σ0 = 1 and σj = 0 for j > n. For example, if n = 4 then the
nonzero elementary symmetric functions are

σ0 = 1,
σ1 = r1 + r2 + r3 + r4,

σ2 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

σ3 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4,

σ4 = r1r2r3r4.

It seems clear that because r1, · · · , rn are algebraically independent, so are
σ1, · · · , σn, but a small argument is required to show this. The problem is that
although an integer polynomial relation f(σ1, · · · , σn) = 0 expands to an integer
polynomial relation F (r1, · · · , rn) = 0, forcing F to be the trivial polynomial, it is
not immediate that consequently f is the trivial polynomial as well. So, suppose a
relation

f(σ1, · · · , σn) = 0, f ∈ Z[X1, · · · , Xn].

Any nonzero term of f(X1, · · · , Xn) takes the form

aXd1
1 Xd2

2 · · ·Xdn
n .

Set

en = dn

en−1 = dn−1 + en

en−2 = dn−2 + en−1

...
e1 = d1 + e2.

1
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Then the nonzero term of f is now

aXe1−e2
1 Xe2−e3

2 · · ·Xen
n , e1 ≥ e2 ≥ · · · ≥ en ≥ 0.

Sort the nonzero terms lexicographically, i.e., first by total degree, then by X1-
exponent, then X2-exponent, and so on. In the lex-initial term, substituting the σi
for the Xi gives

aσe1−e21 σe2−e32 · · ·σen
n = a(re11 r

e2
2 · · · ren

n + · · · ).

Now are11 r
e2
2 · · · ren

n is the lex-initial nonzero term of g(r1, · · · , rn), sorting here by
ri-exponents rather than Xi-exponents. Thus no other term can cancel it in the
relation g(r1, · · · , rn) = 0. Therefore, no nonzero term of f(X1, · · · , Xn) exists.

Give the ring of polynomials in r1, · · · , rn a name,

R = Z[r1, · · · , rn].

The symmetric group Sn acts on R,

σf(r1, · · · , rn) = f(rσ1, · · · , rσn), σ ∈ Sn, f ∈ Z[r1, · · · , rn].

The polynomials in R that are invariant under the action form a subring of R,

Ro = {Sn-invariant polynomials in R}.

The product form in the earlier equality

g(X) =
n∏
i=1

(X − ri) =
∑
j∈Z

(−1)jσjXn−j

shows that the σj are invariant under the action, and hence

Z[σ1, · · · , σn] ⊂ Ro.

In fact the containment is an equality.

Theorem 1.1 (Fundamental Theorem of Symmetric Polynomials). The subring of
polynomials in Z[r1, · · · , rn] that are fixed under the action of Sn is Z[σ1, · · · , σn].

Proof. Consider a nonzero polynomial f ∈ Z[r1, · · · , rn] that is fixed under the
action of Sn. Sort its nonzero terms lexicographically, first by total degree, then by
r1-exponent, then r2-exponent, and so on. Consider its lex-initial term,

are11 · · · ren
n .

For any σ ∈ Sn the polynomial f contains a term having the same coefficient but
with the variables permuted by σ. Thus the lex-initial term takes the form

t = are11 · · · ren
n , e1 ≥ · · · ≥ en ≥ 0.

Now consider the coefficient of t times a product of elementary symmetric functions,

gt = aσe1−e21 σe2−e32 · · ·σen
n ∈ Z[σ1, · · · , σn]

(the exponents are all nonnegative because of the conditions on the ei). This
polynomial’s lexicographically-highest term is exactly t. Thus, recalling that f is
our Sn-invariant polynomial and noting that gt is certainly Sn-invariant as well,
we see that the polynomial f − gt is also Sn-fixed, and it has a smaller lex-initial
term than f . Replace f by f − gt and continue in this fashion until the original f
is expressed as a polynomial in the σi. �
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The discriminant of r1, · · · , rn (also called the discriminant of g) is

∆ = ∆(r1, · · · , rn) = ∆(g) =
∏

1≤i<j≤n

(ri − rj)2.

Being visibly invariant under Sn, the discriminant lies in the coefficient field of g.
For example, if n = 2 then

∆ = (r1 − r2)2 = (r1 + r2)2 − 4r1r2 = σ2
1 − 4σ2.

Trying similarly to analyze the case n = 3 quickly shows that expressing ∆ in terms
of the σj is not easy, although the proof of the Fundamental Theorem shows us how
to do it. (Answer: σ2

1σ
2
2 − 4σ3

2 − 4σ3
1σ3 − 27σ2

3 + 18σ1σ2σ3.) Soon we will develop
a general discriminant algorithm.

The square root of the discriminant,
√

∆ =
∏

1≤i<j≤n

(ri − rj),

changes its sign when any two of the r’s are exchanged, i.e., (k `)
√

∆ = −
√

∆ for
any transposition (k `) ∈ Sn. That is,

√
∆ is fixed by An but not by Sn.

2. Guided example: Solving the Cubic Equation

To solve the general cubic equation, the task is to express r1, r2, r3 in terms
of σ1, σ2, σ3. Let

r = r1 + ζ3r2 + ζ2
3r3.

Show that r3 is invariant under the alternating group A3. Let S3 act on Z[r1, r2, r3].
Then we have

(2 3)r = r1 + ζ3r3 + ζ2
3r2.

Show that ((2 3)r)3 6= r3 and hence that (2 3)(r3) 6= r3. Thus r3 is not invariant
under the full symmetric group S3. Since a set of coset representatives for S3/A3

is {1, (2 3)}, the polynomial

Rr3(X) = (X − r3)(X − (2 3)(r3)) = X2 − (r3 + (2 3)(r3))X + r3 · (2 3)(r3)

lies in Z[σ1, σ2, σ3]. (This polynomial is the resolvent of r3.) Use the proof of the
Fundamental Theorem of Symmetric Functions for n = 3 to show that

r · (2 3)r = σ2
1 − 3σ2,

r3 + (2 3)(r3) = 2σ3
1 − 9σ1σ2 + 27σ3,

so that the resolvent expands as

Rr3(X) = X2 − (2σ3
1 − 9σ1σ2 + 27σ3)X + (σ2

1 − 3σ2)3.

Taking a square root over the coefficient field gives r3 and (r3)(2 3). (We don’t
know which is which because there is no canonical labeling of r1, r2, r3, so just
designate one as r3.) Now r is a root of

Rr(X) = X3 − r3
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(there are three roots, but again they are indistinguishable under relabeling of
the ri), and r(2 3) = (σ2

1−3σ2)/r as computed above. Now that we have r and r(2 3),
find r1, r2, r3 by solving the linear system

r1 + ζ3r2 + ζ2
3r3 = r

r1 + ζ2
3r2 + ζ3r3 = r(2 3)

r1 + r2 + r3 = σ1.

Use these methods to solve the cubic polynomial X3 − 3X + 1.

The strategy of this example is very general. Suppose that a polynomial

g(X) =
n∏
i=1

(X − ri)

has roots r1, · · · , rn that need not be algebraically independent, and suppose that
a group G acts on the roots, fixing some underlying ring A. If we can find some
polynomial expression in the roots,

s = s(r1, · · · , rn), s ∈ A[X1, · · · , Xn],

that is invariant under the action of a subgroup H of G, then the associated resol-
vent polynomial is

fs(X) =
∏

gH∈G/H

(X − gs).

(The name g for group-elements in the formula for the resolvent has no connection
to the name g of the original polynomial from a moment ago.) The resolvent has
degree [G : H], and it has s as a root, and it is invariant under the action of the
full group G because the map gH 7→ γgH permutes the coset space G/H,

(γfs)(X) =
∏

gH∈G/H

(X − γgs) =
∏

γgH∈G/H

(X − γgs) = fs(X).

Thus, the coefficients of fs are G-invariant. An algorithm might consequently be
available to compute them, and then perhaps we can find the roots of fs, one of
which is s. Thus the problem of finding the roots of g given only the elementary
symmetric functions of the roots would be reduced to finding the roots of g given
also the roots of fs, those roots being {gs : gH ∈ G/H}.

Depending on the context, one can bring various artfulnesses to bear on choosing
a subgroup H of G and then finding an H-invariant expression s.

3. Guided Example: Solving the Quartic Equation

Let n = 4. Let

r = r1 − r2 + r3 − r4,
s = r2.

Show that the subgroup of S4 leaving s invariant is the dihedral group

D = 〈(1 2 3 4), (1 3)〉,
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and that a set of coset representatives for S4/D is {1, (1 2), (1 4)}. Show that the
Fundamental Theorem of Symmetric Functions gives

r · (1 2)r · (1 4)r = σ3
1 − 4σ1σ2 + 8σ3

s+ (1 2)s+ (1 4)s = 3σ2
1 − 8σ2

s · (1 2)s+ s · (1 4)s+ (1 2)s · (1 4)s = 3σ4
1 − 16σ2

1σ2 + 16σ1σ3 + 16σ2
2 − 64σ4.

To solve the quartic, take the cubic resolvent of s,

Rs(X) = (X − s)(X − (1 2)s)(X − (1 4)s)

= X3 − (3σ2
1 − 8σ2)X2 + (3σ4

1 − 16σ2
1σ2 + 16σ1σ3 + 16σ2

2 − 64σ4)X

− (σ3
1 − 4σ1σ2 + 8σ3)2.

The three roots are s, (1 2)s, and (1 4)s; taking square roots of the first two gives
r and (1 2)r, so as computed above, (1 4)r = (σ3

1 − 4σ1σ2 + 8σ3)/(r · (1, 2)r). Now
to solve the original quartic, solve the linear system

r1 − r2 + r3 − r4 = r

−r1 + r2 + r3 − r4 = r(1 2)

−r1 − r2 + r3 + r4 = r(1 4)

r1 + r2 + r3 + r4 = σ1.

4. Newton’s identities

Retaining the notation from before, now define the power sums of r1, · · · , rn
to be

sj = sj(r1, · · · , rn) =

{∑n
i=1 r

j
i for j ≥ 0

0 for j < 0

including s0 = n. The power sums are clearly invariant under the action of Sn.
We want to relate them to the elementary symmetric functions σj . Start from the
general polynomial,

g(X) =
n∏
i=1

(X − ri) =
∑
j∈Z

(−1)jσjXn−j .

Certainly

g′(X) =
∑
j∈Z

(−1)jσj(n− j)Xn−j−1.

But also, the logarithmic derivative and geometric series formulas,

g′(X)
g(X)

=
n∑
i=1

1
X − ri

and
1

X − r
=
∞∑
k=0

rk

Xk+1
,
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give

g′(X) = g(X) · g
′(X)
g(X)

= g(X)
n∑
i=1

∞∑
k=0

rki
Xk+1

= g(X)
∑
k∈Z

sk
Xk+1

=
∑
k,`∈Z

(−1)`σ`skXn−k−`−1

=
∑
j∈Z

[∑
`∈Z

(−1)`σ`sj−`

]
Xn−j−1 (letting j = k + `).

Equate the coefficients of the two expressions for g′(X) to get
j−1∑
`=0

(−1)`σ`sj−` + (−1)jσjn = (−1)jσj(n− j).

Newton’s identities follow,
j−1∑
`=0

(−1)`σ`sj−` + (−1)jσjj = 0 for all j.

Explicitly, Newton’s identities are

s1 − σ1 = 0
s2 − s1σ1 + 2σ2 = 0
s3 − s2σ1 + s1σ2 − 3σ3 = 0
s4 − s3σ1 + s2σ2 − s1σ3 + 4σ4 = 0
and so on.

The identities show (exercise) that for any j ∈ {1, · · · , n}, the power sums s1, · · · , sj
are integer polynomials (with constant terms zero) in the elementary symmetric
functions σ1, · · · , σj , while the elementary symmetric functions σ1, · · · , σj are ra-
tional polynomials with constant terms zero) in the power sums s1, · · · , sj . Conse-
quently,

Proposition 4.1. The first j coefficients a1, · · · , aj of the polynomial f(X) =
Xn + a1X

n−1 + · · · + an are zero exactly when the first j power sums of its roots
are zero.

5. Resultants

Given polynomials p and q, we can determine whether they have a root in com-
mon without actually finding their roots.

Let m and n be nonnegative integers. Let

a0, · · · , am, b0, · · · , bn, (a0 6= 0, b0 6= 0)

be symbols (possibly elements of the base field Q). Let the coefficient field be

k = Q(a0, · · · , am, b0, · · · , bn).

The polynomials

p(X) =
m∑
i=0

aiX
m−i, q(X) =

n∑
i=0

biX
n−i
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in k[X] are utterly general when the ai’s and the bi’s form an algebraically inde-
pendent set, or conversely they can be explicit polynomials when all the coefficients
lie in Q or in R or in C or in some other extension field of Q. It is an exercise to
show that the polynomials p and q share a nonconstant factor in k[X] if and only
if there exist nonzero polynomials in k[X],

P (X) =
n−1∑
i=0

ciX
n−1−i, Q(X) =

m−1∑
i=0

diX
m−1−i,

having respective degrees less than n and m, such that pP = qQ. Such P and Q
exist if and only if the system

vM = 0
of m+n linear equations over k in m+n unknowns has a nonzero solution v, where

v = [c0, c1, · · · , cn−1,−d0,−d1, · · · ,−dm−1]

lies in km+n, and M is the Sylvester matrix

M =



a0 a1 · · · · · · am
. . . . . . . . .

a0 a1 · · · · · · am
b0 b1 · · · bn

b0 b1 · · · bn
. . . . . . . . .

b0 b1 · · · bn


(n staggered rows of ai’s, m staggered rows of bj ’s, all other entries 0), an (m+n)-
by-(m+n) matrix. Such a nonzero solution exists in turn if and only if detM = 0.
This determinant is called the resultant of p and q,

R(p, q) = detM ∈ Z[a0, · · · , am, b0, · · · , bn].

The condition that p and q share a factor in k[X] is equivalent to their sharing a
root in the splitting field over k of pq. Thus the result is

Theorem 5.1. The polynomials p and q in k[X] share a nonconstant factor in
k[X], or equivalently, share a root in the splitting field over k of their product, if
and only if R(p, q) = 0.

When the coefficients of p and q are algebraically independent, R(p, q) is a master
formula that applies to all polynomials of degrees m and n. At the other extreme,
if the coefficients lie in some numerical superfield of Q then R(p, q) is a number
that is zero or nonzero depending on whether the particular polynomials p and q
share a factor.

Taking the resultant of p and q to check whether they share a root can also
be viewed as eliminating the variable X from the pair of equations p(X) = 0 and
q(X) = 0, leaving one equation R(p, q) = 0 in the remaining variables a0, · · · , am,
b0, · · · , bn.

In principle, evaluating R(p, q) = detM can be carried out via a process of
row and column operations. (Using only row operations encompasses computing
the greatest common divisor of p and q by the Euclidean algorithm.) In practice,
evaluating a large determinant is an error-prone process by hand. The next theorem
will supply as a corollary a more efficient method to compute R(p, q). In any
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case, since any worthwhile computer symbolic algebra package is equipped with a
resultant function, nontrivial resultants can often be found by machine.

In their splitting field over k, the polynomials p and q factor as

p(X) = a0

m∏
i=1

(X − ri), q(X) = b0

n∏
j=1

(X − sj).

To express the resultant R(p, q) explicitly in terms of the roots of p and q intro-
duce the quantity R̃(p, q) = an0 b

m
0

∏m
i=1

∏n
j=1(ri − sj). This polynomial vanishes

if and only if p and q share a root, so it divides R(p, q). Note that R̃(p, q) is ho-
mogeneous of degree mn in the ri and sj . On the other hand, each coefficient
ai = a0(−1)iσi(r1, · · · , rm) of p has homogeneous degree i in r1, · · · , rm, and simi-
larly for each bj and s1, · · · , sn. Thus in the Sylvester matrix the (i, j)th entry has
degree {

j − i in the ri if 1 ≤ i ≤ n, i ≤ j ≤ i+m,
j − i+ n in the sj if n+ 1 ≤ i ≤ n+m, i− n ≤ j ≤ i.

It quickly follows that any nonzero term in the determinant R(p, q) has degree mn
in the ri and the sj , so R̃(p, q) and R(p, q) agree up to multiplicative constant.
Matching coefficients of (s1 · · · sn)m shows that the constant is 1. This proves

Theorem 5.2. The resultant of the polynomials

p(X) =
m∑
i=0

aiX
m−i = a0

m∏
i=1

(X − ri), q(X) =
n∑
j=0

bjX
n−j = b0

n∏
j=1

(X − sj)

is given by the formulas

R(p, q) = an0 b
m
0

m∏
i=1

n∏
j=1

(ri − sj) = an0

m∏
i=1

q(ri) = (−1)mnbm0
n∏
j=1

p(sj).

A special case of this theorem gives the efficient formula for the discriminant
promised earlier. See the exercises.

Computing resultants can now be carried out via a Euclidean algorithm pro-
cedure: repeatedly do polynomial division with remainder and apply formula (4)
in

Corollary 5.3. The following formulas hold:
(1) R(q, p) = (−1)mnR(p, q).
(2) R(pp̃, q) = R(p, q)R(p̃, q) and R(p, qq̃) = R(p, q)R(p, q̃).
(3) R(a0, q) = an0 and R(a0X + a1, q) = an0 q(−a1/a0).
(4) If q = Qp+ q̃ with deg(q̃) < deg(p) then

R(p, q) = a
deg(q)−deg(q̃)
0 R(p, q̃).

The proof of the corollary is an exercise.


