
ALGEBRAIC STRUCTURE AND GENERATIVE
DIFFERENTIATION RULES

In multivariable calculus the derivative is most naturally defined by a character-
izing property. Indeed, the one-variable difference-quotient is no longer meaningful.
Although computing the matrix of partial derivatives is a matter of one-variable
technique, proofs of the derivative properties should be intrinsic and based on the
definition. Especially, because the chain rule is so important but is elaborate in
coordinates, it demands a lucid intrinsic proof.

A proof in many texts relies on two preparatory results of different flavors and
carries out a two-part calculation with estimates. Its heterogeneity long frustrated
me as a teacher, leaving even strong students with the impression that the chain
rule is complicated and that mathematics sprawls. Eventually I realized that the
well known characterization of differentiability in the Landau notation makes the
chain rule proof incisive. The notation phrases everything uniformly and packages
the estimates, cutting straight to the real issue:

o(h) is a two-sided ideal of O(h).

Literally the previous sentence isn’t quite true, failing in one small way that will
be noted below, but still it is the right idea. The fact that the ideal property is
the crux of the chain rule proof may also be well known, but it seems to be rare
in sophomore-level texts. A proof of the chain rule using Landau notation is given
at the very beginning of Nelson’s book [9], for example, but there the context is
already Banach space and the Fréchet derivative.

Section 1 reviews the Landau notation (originally due to Bachmann) and its
basic properties. Section 2 characterizes the derivative in terms of the Landau
notation. Section 3 uses the characterizing property to prove the chain rule clearly
and briefly. Section 4 rehearses other benefits of phrasing differentiability in the
Landau notation, for the same small startup cost.

1. Review of the Landau Notation

Fix positive integers n and m.

Definition 1.1. Consider a function f : U −→ Rm where U is a neighborhood of 0
in Rn. Then:

• f is an O(h)-function if there exist c, δ ∈ R+ such that for all h ∈ U ,

|h| ≤ δ =⇒ |f(h)| ≤ c|h|.

More briefly, we say that such a function f is O(h).
• f is an o(h)-function if for every d ∈ R+ there exists some εd ∈ R+ such

that for all h ∈ U ,

|h| ≤ εd =⇒ |f(h)| ≤ d|h|.

More briefly, we say that such a function f is o(h).
The set of O(h)-functions is again denoted O(h), and similarly for o(h).
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Clearly o(h) ⊂ O(h).
The first of the two preparatory results mentioned in the introduction is that any

linear function S is O(h) (i.e., a linear function has an operator norm). Indeed, the
unit sphere in Rn is compact and S is continuous, so some c ∈ R+ exists such that
|Sh| ≤ c for |h| = 1; the homogeneity of S shows that |Sh| ≤ c|h| for all nonzero h,
and the inequality holds for h = 0 as well. Also, the only linear o(h)-function is
zero. Indeed, for nonzero linear S, let d = |Sh|/2 where |h| = 1 and Sh 6= 0, and
then homogeneity shows that no suitable εd exists. Thus the O(h) functions are the
functions of linear decay near the origin, and the o(h)-functions are such functions
of sub-linear decay.

The spaces O(h) and o(h) aren’t quite vector spaces because the sum of two
functions f : U −→ Rm and g : V −→ Rm is defined only on U ∩ V . The vector
space structure is sensible at the level of function-elements (f, U) or, better, at the
level of germs [f ] where f and g belong to the same germ if they agree on some
neighborhood of 0. We freely suppress these issues, tacitly working with germs
when we work at the level of functions, and treating O(h) and o(h) as vector spaces
after all. Strictly speaking, we should check that all properties being discussed for
functions are defined at the level of germs, but this will always be clear.

Let f : U −→ Rm and g : V −→ R` be O(h)-functions, with V a neighborhood
of 0 in Rm. Definition 1.1 quickly shows that after shrinking U if necessary, the
composition g ◦ f is defined. Composition of O(h)-functions descends to germs.

The proof of the next result is the only quantifier-intensive moment in this note.
After the proof we will briefly discuss how it could be lightened for a calculus course.

Proposition 1.2. Let f and g be composable O(h)-functions as in the previous
paragraph. Then their composition g ◦f is again O(h). If either f or g is o(h) then
so is g ◦ f . In symbols, O(O(h)) = O(h), O(o(h)) = o(h), and o(O(h)) = o(h).

Proof. For example, suppose that f is O(h) and g is o(h). Thus we have c and δ,
and for any d ∈ R+ we have εd. To show that g ◦ f is o(h), let d ∈ R+ be given.
Define d̃ = d/c and ρd = min{εd̃/c, δ}. Then for all h ∈ U ,

|h| ≤ ρd =⇒ |f(h)| ≤ c|h| ≤ εd̃ since |h| ≤ δ and |h| ≤ εd̃/c

=⇒ |g(f(h))| ≤ d̃|f(h)| ≤ d̃c|h| since |f(h)| ≤ εd̃ and |f(h)| ≤ c|h|

=⇒ |g(f(h))| ≤ d|h| since d̃c = d.

The other arguments are similar. �
The proof just given could be made more digestible by leaving h small but

unquantified in Definition 1.1 and in the argument: the estimate |g(f(h))| ≤ d̃c|h|
with c fixed and d̃ small is quick and persuasive. Also, the fact that linear functions
are O(h) can be proved with no reference to compactness, and germs can be elided.

2. The Derivative Via a Characterizing Property

Let a ∈ Rn be a point, and let f : Ua −→ Rm be defined on a neighborhood
of a. Let S : Rn −→ Rm be linear. The condition that f is differentiable at a with
derivative f ′(a) = S is

f(a+ h) = f(a) + Sh+ o(h).

This characterization is sensible at the level of germs. The second of the two
preparatory results mentioned in the introduction is that f(a+ h)− f(a) = O(h).
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This follows immediately from the characterizing property and from the facts that
any linear function is O(h), that o(h) ⊂ O(h), and that O(h) is closed under
addition. Our pending proof of the chain rule tacitly uses the just-quoted facts,
but it does not use the second preparatory result.

3. The Chain Rule

We are given Ua ⊂ Rn and f : Ua −→ Rm differentiable at a, and g : Vf(a) −→ R`

differentiable at f(a). Let S = f ′(a) and T = g′(f(a)). Thus we have the conditions

f(a+ h) = f(a) + Sh+ o(h),

g(f(a) + k) = g(f(a)) + Tk + o(k).

We may assume that f(Ua) ⊂ Vf(a), so that the composition g ◦ f is defined. To
show that it is differentiable at a with derivative TS, compute that

g(f(a+ h)) = g(f(a) + Sh+ o(h)) by the first condition

= g(f(a)) + TSh+ T (o(h)) + o(Sh+ o(h)) by the second.

But T (o(h)) = O(o(h)) and o(Sh+ o(h)) = o(O(h)), so the previous display is

(g ◦ f)(a+ h) = (g ◦ f)(a) + TSh+O(o(h)) + o(O(h)).

The rules O(o(h)) = o(h) and o(O(h)) = o(h) and o(h) + o(h) = o(h) complete the
proof of the chain rule,

(g ◦ f)(a+ h) = (g ◦ f)(a) + TSh+ o(h).

In the chain rule we may assume that all the domain and codomain spaces have
the same dimension: simply add unused variables or trivial output component-
functions as necessary. The identity function now lies in O(h), and Proposition 1.2
almost says that O(h) forms an algebra and o(h) is a two-sided ideal of O(h). The
ideal properties prove the chain rule. The only reason that this doesn’t quite work
is that only one of the two distributive laws holds in O(h).

4. Related Comments

Setting up the Landau notation and its properties is admittedly a cost to weigh
against the benefit of a clear chain rule proof. This section will argue that the
notation offers enough other benefits to tilt the balance decisively in its favor.

First, with computing power now ubiquitous, algorithmic thinking in mathemat-
ics is crucial. The Landau notation is fundamental to the analysis of algorithms,
and so the sooner students see it the better.

Second, basic properties of the Landau notation entail basic properties of the
derivative. For tidiness, work in local coordinates: given a function f : Ua −→ Rm,
let U = Ua − a and define

fo : U −→ Rm, fo(h) = f(a+ h)− f(a);

then f is differentiable at a with f ′(a) = S if and only if fo is differentiable at 0
with f ′

o(0) = S as well. The characterizing property for a normalized function
(itself now denoted f) is

f(h) = Sh+ o(h).
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Especially, f is O(h). Define o(1) similarly to o(h) except that for every d ∈ R+

there exists some εd ∈ R+ such that for all suitable h,

|h| ≤ εd =⇒ |f(h)| ≤ d.

Thus O(h) ⊂ o(1). The o(1) condition captures continuity in local coordinates:
a function f : U −→ Rm that takes 0 to 0 is o(1) if and only if it is continuous
at 0. The vector space properties of o(1) give the linearity of continuity. Now, let
f and g take 0 to 0 and be differentiable at 0, and let k be any real number. The
normalized characterizing property instantly shows that:

• f is continuous at 0 because O(h) ⊂ o(1).
• f ′(0) is unique because the only linear o(h)-function is zero.
• f+g and kf are differentiable at 0 with derivatives f ′(0)+g′(0) and kf ′(0)

because o(h) is a vector space.

These results follow quickly from any reasonable definition of the derivative, but
they come especially gracefully from the characterization. And now the main point
of this note, that

• g ◦ f is differentiable at 0 with derivative g′(0)f ′(0) because o(h) is a two-
sided ideal of O(h),

gives a concrete sense of the relative difficulty of the chain rule in comparison to
the other results. Incidentally, once one has verified that the chain rule reduces to
the local coordinates case, its proof is yet tidier:

g(f(h)) = g(Sh+ o(h)) = TSh+ T (o(h)) + o(Sh+ o(h)),

and the right side is TSh+ o(h) as before.
To discuss the product rule of one-variable calculus, let our variables and func-

tions be scalar-valued. The usual proof relies on a little trick of inserting two terms
that add to 0, and then one needs to have in place—or to stop and establish—that
differentiability implies continuity. This proof can give students the impression that
mathematical argument is esoteric and fragile. To prove the product rule with the
characterizing property instead, let f and g be differentiable at a, and let fo and go

be the corresponding normalized functions. A mechanical calculation, using the
characterizing property and the equalities f ′(a) = f ′

o(0) and g′(a) = g′
o(0), shows

that

(f · g)(a+ h)− (f · g)(a)−
(
f(a)g′(a) + f ′(a)g(a)

)
h = (fo · go)(h) + o(h).

Thus the product rule reduces to showing that (fo·go)(h) is o(h). Since differentiable
germs are O(h) in local coordinates, it suffices to show that the product of two
O(h)-germs is o(h), and this follows from Definition 1.1. Alternatively, we can
write

fo(h)go(h) =
(
sh+ o(h)

)(
th+ o(h)

)
= sth2 + sh o(h) + th o(h) + o(h) o(h),

and each term is o(h), so that their sum is o(h) as well. The characterizing prop-
erty also works in the original coordinates, but then the clutter until many terms
inevitably cancel obscures the main point that the product of differentiable germs
is small. Realizing that the local result (fo · go)′(0) = 0 (with no assumption that
f ′

o(0) = 0 or g′
o(0) = 0) gives the full product rule clarifies that the usual proof

intermixes normalization and analysis. A standard picture in this context shows
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that the incremental area-growth of an (f · g)-rectangle comes mostly from the in-
cremental translation of two sides, but also there is a new corner-area that is an
order of magnitude smaller and hence insignificant in the limit.

As another example, the proof of the so-called first fundamental theorem of
calculus is far less cluttered: if f is continuous on an interval then∫ x+h

a

f −
∫ x

a

f − f(x)h =
∫ x+h

x

(f − f(x)) =
∫ x+h

x

o(1) = o(h),

and so the derivative of
∫ x

a
f is f(x).

Finally, I believe that already in a one-variable calculus course, the characterizing
property is how to define the derivative. To discuss what it means for the graph of
a function to have tangent slope s at a point, we should work in local coordinates,
and then we should subtract sh as is done to reduce the Mean Value Theorem to
Rolle’s Theorem. So the question is what it means for the graph of a function that
takes 0 to 0 to be horizontal at the origin. A natural answer is that for any positive
real number c, however small, the region between the lines of slope ±c contains
the graph of f close enough to the origin. That is, f is o(h). Surely the geometric
intuition here is at least as clear as defining the tangent slope as the limit of secant
slopes. With the derivative characterized, introducing the limit as a computing
mechanism costs little since their equivalence is immediate. Then one can establish
derivative properties with the characterization and compute derivatives with the
limit. In hindsight, my attempts as a calculus student long ago to think clearly
about the derivative amounted to trying to discern these issues.
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