Problems:

1. (a) Let \(r \) be a positive integer, and let \(p \) be prime with \(\gcd(r, p - 1) = 1 \). Thus \(r \) has an inverse modulo \(p - 1 \). Let \(s \) denote the inverse,
\[
s = r^{-1} \mod p - 1.
\]
Show that for every \(a \) modulo \(p \), the value
\[
a^s \mod p
\]
is an \(r \)th root of \(a \) modulo \(p \).

(b) Let \(q \) be prime, and let \(p \) be prime with \(q \mid p - 1 \) but \(q^2 \nmid p - 1 \). Thus \(q \) has an inverse modulo \((p - 1)/q \). Let
\[
s = q^{-1} \mod (p - 1)/q.
\]
Suppose that \(a \) is a \(q \)th power modulo \(p \). Show that the value
\[
a^s \mod p
\]
is a \(q \)th root of \(a \) modulo \(p \).

2. (a) Let \(p \) be prime and let \(n > 1 \). Show that the polynomial
\[
f(X) = X^n - pX + p
\]
has no rational root.

(b) Let \(p \) be prime, and let \(c \) be an integer not divisible by \(p \). Show that the polynomial
\[
g(X) = X^p - X + c
\]
has no rational root.

3. Use fast modular exponentiation to compute
\[
72^{50} \mod 101.
\]
What does the result say about a square root of \(-1\) modulo \(101 \)?

4. Explain why for any positive integer \(n \),
\[
\sum_{d|n} \varphi(d) = n.
\]

5. (a) Supply the two missing calculations in the handout’s proof of the Sun-Ze Theorem.

(b) Use the map \(g \) in the handout’s proof of the Sun-Ze Theorem to find an equivalence class \(c \mod 77 \) such that
\[
c = 3 \mod 7, \quad c = 7 \mod 11.
\]
Use the map g in the handout’s proof of the Sun-Ze Theorem to find an equivalence class $c \mod 1001$ such that
\[c = 3 \mod 7, \quad c = 7 \mod 11, \quad c = 4 \mod 13. \]