
COMPLEX TORI

This writeup gives a quick sketch of results about complex tori, also known as
complex elliptic curves for reasons to be explained in another writeup.

1. Definition

A lattice in C is a set Λ = ω1Z ⊕ ω2Z with {ω1, ω2} a basis for C over R. We
make the normalizing convention ω1/ω2 ∈ H, but this still does not specify a basis
given a lattice. Instead,

Lemma 1.1. Consider two lattices Λ = ω1Z ⊕ ω2Z and Λ′ = ω′1Z ⊕ ω′2Z with
ω1/ω2 ∈ H and ω′1/ω

′
2 ∈ H. Then Λ′ = Λ if and only if[

ω′1
ω′2

]
=

[
a b
c d

] [
ω1

ω2

]
for some

[
a b
c d

]
∈ SL2(Z).

Proof. Exercise. �

A complex torus is a quotient of the complex plane by a lattice,

C/Λ = {z + Λ : z ∈ C}.
Algebraically a complex torus is an Abelian group under the addition it inherits
from C. Geometrically a complex torus is a parallelogram spanned by {ω1, ω2}
with its sides identified in opposing pairs. Identifying one pair of sides rolls the
parallelogram into a tube, and then identifying the other pair bends the tube into
a torus. But the flat model of the complex torus with neighborhoods extending
across the sides better illustrates that every complex torus is a Riemann surface,
roughly meaning a connected set that looks like the complex plane C in the small.

The notion of a holomorphic map makes sense for Riemann surfaces since it
is local. Any holomorphic map between compact Riemann surfaces is either a
surjection or a map to one point. To see this, suppose X and Y are compact
Riemann surfaces and f : X −→ Y is holomorphic. Since f is continuous and X
is compact and connected, so is the image f(X), making f(X) closed. Unless f is
constant f is open by the Open Mapping Theorem of complex analysis, applicable
to Riemann surfaces since it is a local result, making f(X) open as well. So f(X)
is either a single point or a connected, open, closed subset of the connected set Y ,
i.e., all of Y . As a special case of this, any nonconstant holomorphic map from one
complex torus to another is a surjection.

2. Maps Between Tori: Homomorphisms, Isomorphisms, Isogenies

Proposition 2.1. Suppose ϕ : C/Λ −→ C/Λ′ is a holomorphic map between
complex tori. Then there exist complex numbers m, b with mΛ ⊂ Λ′ such that
ϕ(z + Λ) = mz + b+ Λ′. The map is invertible if and only if mΛ = Λ′.

Proof. (Sketch.) The key is to lift ϕ to a holomorphic map ϕ̃ : C −→ C by using
topology. (The plane is the so-called universal covering space of the torus—see a
topology text for the definition and the relevant lifting theorem.) With the map
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lifted, consider for any λ ∈ Λ the function fλ(z) = ϕ̃(z + λ) − ϕ̃(z). Since ϕ̃
lifts a map between the quotients, the continuous function fλ maps to the discrete
set Λ′ and is therefore constant. Differentiating gives ϕ̃′(z + λ) = ϕ̃′(z). Thus
ϕ̃′ is holomorphic and Λ-periodic, making it bounded and therefore constant by
Liouville’s Theorem. Now ϕ̃ is a first degree polynomial ϕ̃(z) = mz + b, and again
since this lifts a map between quotients, necessarily mΛ ⊂ Λ′. The original map
thus has the form asserted in the proposition. If the containment mΛ ⊂ Λ′ is proper
then ϕ is not injective: some z ∈ Λ′ satisfies z/m /∈ Λ but ϕ(z/m+ Λ) = b+ Λ′ =
ϕ(Λ). If mΛ = Λ′ then (1/m)Λ′ = Λ and the map ψ : C/Λ′ −→ C/Λ given by
ψ(w + Λ′) = (w − b)/m+ Λ inverts ϕ. �

Corollary 2.2. Suppose ϕ : C/Λ −→ C/Λ′ is a holomorphic map between complex
tori, ϕ(z + Λ) = mz + b+ Λ′ with mΛ ⊂ Λ′. Then the following are equivalent:

(1) ϕ is a group homomorphism,
(2) b ∈ Λ′, so ϕ(z + Λ) = mz + Λ′,
(3) ϕ(0) = 0.

In particular, there exists a nonzero holomorphic group homomorphism between the
complex tori C/Λ and C/Λ′ if and only if there exists some nonzero m ∈ C such that
mΛ ⊂ Λ′, and there exists a holomorphic group isomorphism between the complex
tori C/Λ and C/Λ′ if and only if there exists some m ∈ C such that mΛ = Λ′.

Proof. Exercise. �

For one isomorphism of particular interest, start from an arbitrary lattice Λ =
ω1Z ⊕ ω2Z with ω1/ω2 ∈ H. Let τ = ω1/ω2 and let Λτ = τZ ⊕ Z. Then since
(1/ω2)Λ = Λτ , Corollary 2.2 shows that the map ϕτ : C/Λ −→ C/Λτ given by
ϕ(z + Λ) = z/ω2 + Λτ is an isomorphism. This shows that every complex torus
is isomorphic to a complex torus whose lattice is generated by a complex number
τ ∈ H and by 1. This τ is not unique, but if τ ′ ∈ H is another such number
then τ ′ = ω′1/ω

′
2 where Λ = ω′1Z ⊕ ω′2Z, and so by Lemma 1.1 τ ′ = γ(τ) for some

γ ∈ SL2(Z). Thus each complex torus determines a point τ ∈ H up to the action
of SL2(Z). In fact the isomorphism classes of complex tori biject to the orbits
SL2(Z)τ in H.

Definition 2.3. A nonzero holomorphic homomorphism between complex tori is
called an isogeny.

In particular, every holomorphic isomorphism is an isogeny. Every isogeny sur-
jects and has finite kernel—the kernel is finite because it is discrete (otherwise
complex analysis shows that the map is zero) and complex tori are compact.

Multiply-by-integer maps are isogenies but not isomorphisms. For any positive
integer N and lattice Λ consider the map

[N ] : C/Λ −→ C/Λ, z + Λ 7→ Nz + Λ.

This is an isogeny since NΛ ⊂ Λ. Its kernel, the points z + Λ ∈ C/Λ such that
[N ](z + Λ) = 0, is the set of N -torsion points of C/Λ, a subgroup isomorphic to
Z/NZ×Z/NZ. Letting E denote the torus C/Λ (for reasons to be explained soon),
this subgroup is denoted E[N ].

Cyclic quotient maps are also isogenies but not isomorphisms. Let C/Λ be a
complex torus, let N be a positive integer, and let C be a cyclic subgroup of E[N ]
isomorphic to Z/NZ. The elements of C are cosets {c + Λ} and so as a set C
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forms a superlattice of Λ. Slightly abusing notation we use the same symbol for
the subgroup and the superlattice. Then the cyclic quotient map

π : C/Λ −→ C/C, z + Λ 7→ z + C

is an isogeny with kernel C.
In fact every isogeny is a composition of the examples already given. To see this,

consider an arbitrary isogeny

ϕ : C/Λ −→ C/Λ′, z + Λ 7→ mz + Λ′

and let K denote its kernel, the finite subgroup K = m−1Λ′/Λ of C/Λ also viewed
as the superlattice K = m−1Λ′ of Λ. If N is the order of K as a subgroup then
K ⊂ E[N ] ∼= Z/NZ × Z/NZ, and so by the theory of finite Abelian groups K ∼=
Z/nZ×Z/nn′Z for some positive integers n and n′. The multiply-by-n isogeny [n]
of C/Λ takes K to a cyclic subgroup nK isomorphic to Z/n′Z, and then the quotient
isogeny π from C/Λ to C/nK has kernel nK. Follow this by the map C/nK −→
C/Λ′ given by z + nK 7→ (m/n)z + (m/n)nK, now viewing nK as a lattice in C.
This map makes sense and is an isomorphism since (m/n)nK = mK = Λ′. The
composition of the three maps is z+Λ 7→ nz+Λ 7→ nz+nK 7→ mz+Λ′ = ϕ(z+Λ).
That is, the general isogeny is a composition as claimed,

ϕ : C/Λ [n]−→ C/Λ π−→ C/nK ∼−→ C/Λ′.

A very similar argument shows that isogeny is an equivalence relation. Suppose
that ϕ : C/Λ −→ C/Λ′ is an isogeny. Thus ϕ(z + Λ) = mz + Λ′ where m 6= 0 and
mΛ ⊂ Λ′. By the theory of finite Abelian groups there exists a basis {ω1, ω2} of
Λ′ and positive integers n1, n2 such that {n1ω1, n2ω2} is a basis of mΛ. It follows
that n1n2Λ′ ⊂ mΛ and therefore (n1n2/m)Λ′ ⊂ Λ. Thus there is a dual isogeny
ϕ̂ : C/Λ′ −→ C/Λ back in the other direction, ϕ̂(z+Λ′) = (n1n2/m)z+Λ. Note that
(ϕ̂ ◦ ϕ)(z + Λ) = n1n2z + Λ, i.e., the isogeny followed by its dual is multiplication
by a positive integer. The integer n1n2 in question is the degree of the original
isogeny since {ω1/m, ω2/m} is a basis of ker(ϕ) and {n1ω1/m, n2ω2/m} is a basis
of Λ, making ker(ϕ) ∼= Z/n1Z× Z/n2Z and showing that ϕ is n1n2-to-1. That is,

ϕ̂ ◦ ϕ = [deg(ϕ)].

This condition specifies ϕ̂ uniquely since ϕ surjects. Since the map [deg(ϕ)] has
degree (deg(ϕ))2 and the degree of a composition is the product of the degrees, the
dual isogeny has degree deg(ϕ̂) = deg(ϕ). The dual isogeny of a multiply-by-integer
map is itself. The dual isogeny of a cyclic quotient isogeny quotients the torus in a
second direction by a cyclic group of the same order to restore its shape and then
expands it back to full size. The dual isogeny of an isomorphism is its inverse. The
dual of a composition of isogenies is the composition of the duals in the reverse
order. If ϕ is an isogeny and ϕ̂ is its dual then the formulas ϕ(z + Λ) = mz + Λ′,
ϕ̂(z′ + Λ′) = (deg(ϕ)/m)z′ + Λ show that also

ϕ ◦ ϕ̂ = [deg(ϕ)] = [deg(ϕ̂)],

so that ϕ is in turn the dual isogeny of its dual ϕ̂. Isogeny of complex tori, rather
than isomorphism, will turn out to be the appropriate equivalence relation in the
context of modular forms.

If ϕ1, ϕ2 : C/Λ −→ C/Λ′ are isogenies, and ϕ1 + ϕ2 6= 0 so that their sum is
again an isogeny, then the dual of the sum is the sum of their duals. To see this,
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let ϕ : C/Λ −→ C/Λ′ be an isogeny. Thus ϕ(z + Λ) = mz + Λ′ where m 6= 0 and
mΛ ⊂ Λ′. Let Λ = ω1Z⊕ ω2Z with ω1/ω2 ∈ H, and similarly for Λ′. Consequently[

mω1

mω2

]
= α

[
ω′1
ω′2

]
for some α =

[
a b
c d

]
∈ M2(Z).

Homogenizing this equality gives ω1/ω2 = α(ω′1/ω
′
2) where now α acts as a frac-

tional linear transformation, showing that detα 6= 0 and hence detα > 0 because
in general Im (α(τ)) = detα · Im (τ) /|j(α, τ)|2 for α ∈ GL2(R). This justifies the
last step of the calculation

deg(ϕ) = | ker(ϕ)| = [m−1Λ′ : Λ] = [Λ′ : mΛ] = detα.

Since ϕ̂ ◦ ϕ = [deg(ϕ)] and the matrix of a composition is the right-to-left product
of the matrices, the dual isogeny must induce the matrix

α̂ = detα · α−1 =
[

d −b
−c a

]
,

and conversely this matrix determines the dual isogeny. Now let ϕ1 and ϕ2 be
isogenies from C/Λ to C/Λ′ with ϕ1 + ϕ2 6= 0. Their sum (ϕ1 + ϕ2)(z + Λ) =
(m1 +m2)z + Λ′ gives rise to the matrix

α1 + α2 =
[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
,

and so correspondingly the dual isogeny of the sum is determined by the matrix[
d1 + d2 −b1 − b2
−c1 − c2 a1 + a2

]
= α̂1 + α̂2,

the sum of the matrices determining the dual isogenies. This proves the claim at
the beginning of the paragraph,

(1) ϕ̂1 + ϕ2 = ϕ̂1 + ϕ̂2 if ϕ1 + ϕ2 6= 0.

For one more example, some complex tori have endomorphisms other than the
multiply-by-N maps [N ], in which case they have complex multiplication. Let τ =√
d for some squarefree d ∈ Z− such that d ≡ 2, 3 (mod 4), or let τ = (−1 +

√
d)/2

for squarefree d ∈ Z−, d ≡ 1 (mod 4). Then the set O = τZ⊕Z is a ring. (Readers
with background in number theory will recognize it as the ring of integers in the
imaginary quadratic number field Q(

√
d).) Let Λ be any ideal of O and let m be any

element of O. Then mΛ ⊂ Λ, so multiplying by m gives an endomorphism of C/Λ.
In particular, the ring of endomorphisms of C/Λi is isomorphic to Λi = iZ⊕Z rather
than to Z, and similarly for the ring of endomorphisms of C/Λζ3 where ζ3 = e2πi/3.

3. The Weil Pairing

Let Λ be a lattice. The N -torsion subgroup of the additive torus group C/Λ,

E[N ] = {P ∈ C/Λ : [N ]P = 0} = 〈ω1/N + Λ〉 × 〈ω2/N + Λ〉,
is analogous to the N -torsion subgroup of the multiplicative circle group C∗/R+ ∼=
{z ∈ C : |z| = 1} ∼= R/Z, the complex Nth roots of unity

ζN = {z ∈ C : zN = 1} = 〈e2πi/N 〉.
A sort of inner product exists on E[N ] with values in ζN , the Weil pairing

eN : E[N ]× E[N ] −→ ζN .
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To define this, let P and Q be points in E[N ], possibly equal. If Λ = ω1Z ⊕ ω2Z
with ω1/ω2 ∈ H then[

P
Q

]
= γ

[
ω1/N + Λ
ω2/N + Λ

]
for some γ ∈ M2(Z/NZ)

since ω1/N + Λ and ω2/N + Λ generate E[N ]. The Weil pairing of P and Q is

eN (P,Q) = e2πi det γ/N .

This makes sense even though det γ is defined only modulo N . It is independent
of how the basis {ω1, ω2} is chosen (and once the basis is chosen the matrix γ
is uniquely determined since its entries are reduced modulo N), remembering the
normalization ω1/ω2 ∈ H (exercise). If P and Q generate E[N ] then the matrix
γ lies in the group GL2(Z/nZ) of invertible 2-by-2 matrices with entries in Z/NZ,
making det γ invertible modulo N and eN (P,Q) therefore a primitive complex Nth
root of unity. See parts (b–d) of the following exercise for more properties of the
Weil pairing, in particular that the Weil pairing is preserved under isomorphisms
of complex tori.

Exercise (a) Show that the Weil pairing is independent of which basis {ω1, ω2}
is used, provided ω1/ω2 ∈ H.

(b) Show that the Weil pairing is bilinear, alternating, and nondegenerate. (Re-
member that the group ζN is multiplicative.)

(c) Show that the Weil pairing is compatible with N . This means that for
positive integers N and d, the diagram

E[dN ]× E[dN ]
edN (·,·)

//

d(·,·)
��

ζdN

·d

��

E[N ]× E[N ]
eN (·,·)

// ζN

commutes, where the vertical maps are suitable multiplications by d.
(d) Let Λ and Λ′ be lattices with mΛ = Λ′ for some m ∈ C. Show that the

isomorphism of complex elliptic curves C/Λ ∼−→ C/Λ′ given by z + Λ 7→ mz + Λ′

preserves the Weil pairing.


