
THE RESIDUE THEOREM AND ITS CONSEQUENCES

With Laurent series and the classification of singularities in hand, it is easy to
prove the Residue Theorem. In addition to being a handy tool for evaluating in-
tegrals, the Residue Theorem has many theoretical consequences. This writeup
presents the Argument Principle, the winding number, Rouché’s Theorem, the Lo-
cal Mapping Theorem, the Open Mapping Theorem, the Hurwitz Theorem, the
general Casorati–Weierstrass Theorem, and Riemann’s Theorem.
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1. The Residue Theorem

Definition 1.1. Let c be a point in C, and let f be a function that is meromorphic
at c. Let the Laurent series of f about c be

f(z) =

∞∑
n=−∞

an(z − c)n,

where an = 0 for all n less than some N . Then the residue of f at c is

Resc(f) = a−1.

Theorem 1.2 (Residue Theorem). Let Ω be a region and let f be meromorphic
on Ω. Let γ be a simple closed contractible counterclockwise curve in Ω, and suppose
that f is analytic on γ. Then

1

2πi

∫
γ

f(z) dz =
∑

c inside γ

Resc(f).

Proof. Although the sum in the residue theorem is taken over an uncountable set,
it has only finitely many nonzero terms, those arising from the points c inside γ
where f has poles. The Deformation Theorem lets us replace γ by finitely many
small counterclockwise loops, one around each such c. The basic result that

1

2πi

∫
|ζ−c|=ε

(ζ − c)n dζ =

{
1 if n = −1,

0 otherwise.

1
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combines with the Laurent series representation to show that the integral over each
such loop is the relevant residue. �

If f is analytic rather than meromorphic on Ω, and z is some particular point
inside γ, then the function

g(ζ) =
f(ζ)

ζ − z
is meromorphic on Ω, analytic everywhere except that its expansion about z is

g(ζ) =
a0 + a1(ζ − z) + a2(ζ − z)2 + · · ·

ζ − z
=

a0
ζ − z

+ a1 + a2(ζ − z) + · · · ,

so at z it has a pole of order 1 and its residue is a0, which is f(z). Thus the residue
theorem with g in place of f gives

1

2πi

∫
γ

f(ζ) dζ

ζ − z
= f(z).

That is, Cauchy’s integral representation theorem is a special case of the residue
theorem. But in a sense we are reversing our emphasis now: the point of the residue
theorem is as much that an integral can be expressed as a sum of residues as it is
that a sum of residues can be expressed as an integral.

2. The Argument Principle

Theorem 2.1 (Argument Principle). Let γ be a simple closed counterclockwise
curve. Let f be analytic and nonzero on γ and meromorphic inside γ. Let Z(f)
denote the number of zeros of f inside γ, each counted as many times as its mul-
tiplicity, and let P (f) denote the number of poles of f inside γ, each counted as
many times as its multiplicity. Then

Z(f)− P (f) =
1

2πi

∫
γ

df

f
.

Proof. The idea is that for any point c inside γ,

Resc(f
′/f) = ordc(f),

and so the Argument Principle follows immediately from the Residue Theorem.
Indeed, let c be any point inside γ, and let N = ordc(f). The Laurent expansion
of f at c is

f(z) = (z − c)N
∞∑
n=0

bn(z − c)n,

where bn = an+N and in particular b0 6= 0. Thus

f(z) = (z − c)Ng(z), g(z) analytic and nonzero at c.

Compute the logarithmic derivative of f ,

f ′(z)

f(z)
=
N(z − c)N−1g(z) + (z − c)Ng′(z)

(z − c)Ng(z)
=

N

z − c
+
g′(z)

g(z)
.

Note that g′(z)/g(z) is analytic at c because the denominator doesn’t vanish there.
So the expression in parentheses has a simple pole at c whose residue is precisely N .
The anticipated result that Resc(f

′/f) = ordc(f) follows. Next, note that the



THE RESIDUE THEOREM AND ITS CONSEQUENCES 3

logarithmic derivative f ′/f is analytic on γ and meromorphic inside γ. So by the
residue theorem and the previous formula,

1

2πi

∫
γ

df

f
=

∑
c inside γ

Resc(f
′/f) =

∑
c inside γ

ordc(f).

The last sum is Z(f)− P (f), and so the proof is complete. �

For one quick application of the Argument Principle, let f be a nonvanishing
entire function. We show that f takes the form f(z) = eg(z) where g is entire.
Indeed, define g as the sum of an integral and a constant,

g(z) =

∫ z

0

f ′(ζ) dζ

f(ζ)
+ log(f(0)), (using any value of log(f(0))).

This function g is well defined in consequence of the Argument Principle, and its
derivative is g′(z) = f ′(z)/f(z). Compute,

d

dz

(
e−g(z)f(z)

)
= e−g(z)

(
f ′(z)− g′(z)f(z)

)
= 0,

so that f(z) = c eg(z), and then set z = 0 to see that c = 1. The relation f = eg

says that the function g is a well defined branch of log ◦f on C, but this does not
connote a well defined branch of the logarithm on f(C); the issue is that many z
values can be taken by f to the same value f(z), and log ◦f on C can distinguish
among these z-values but log on f(C) cannot. We will discuss this further below.

3. The Winding Number

Definition 3.1. Let γ : [0, 1] −→ C be any closed rectifiable path. By the usual
abuse of notation, let γ also denote the corresponding subset of C. Consider a
complex-valued function on the complement of the path,

Ind(γ, ·) : C− γ −→ C, Ind(γ, z) =
1

2πi

∫
γ

dζ

ζ − z
.

For any z ∈ C− γ, the function Ind(γ, z) is the winding number of γ about z.

For instance, if γ is a circle traversed once counterclockwise about z then its
winding number about z is 1.

Proposition 3.2. The winding number is an integer, and it is constant on the
connected components of C− γ.

This proposition is topological, and a proof for rectifiable curves is not trivial.
We prove it only for piecewise C1-curves.

Proof. First assume that γ is C1. To show that the winding number is an integer,
consider for any z ∈ C− γ the function

ϕ : [0, 1] −→ C, ϕ(t) =

∫ t

0

γ′(τ) dτ

γ(τ)− z
.

By the fundamental theorem of calculus, at every point t where γ is C1,

ϕ′(t) =
γ′(t)

γ(t)− z
.
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And so, using the product rule for derivatives, at every point t where γ is C1,

d

dt

(
e−ϕ(t)(γ(t)− z)

)
= 0.

Thus on each subinterval of [0, 1] where γ is C1, we have γ(t) − z = c eϕ(t) for
some constant c, and this constant is nonzero because z doesn’t lie on γ. Further,
because γ is continuous, the constants c for consecutive subintervals of [0, 1] where
γ′ is continuous must agree. Thus γ(t)− z = c eϕ(t) for a single nonzero constant c
for all t ∈ [0, 1]. Because γ(1) = γ(0), it follows that eϕ(1) = eϕ(0) = e0, and so
ϕ(1) = 2πin for some integer n. That is, Ind(γ, z) is an integer as desired.

Also, Ind(γ, z) is continuous as a function of z. Indeed, by familiar arguments,
γ is disjoint from some ball B about z, and for any sequence {zn} in B converging
to z, the functions {1/(ζ − zn)} converge uniformly to 1/(ζ − z) on γ, giving

lim
n→∞

Ind(γ, zn) =
1

2πi
lim
n→∞

∫
γ

dζ

ζ − zn
=

1

2πi

∫
γ

dζ

ζ − z
= Ind(γ, z).

And so, being a continuous, integer-valued function, the winding number is constant
on the connected components of its domain C− γ. This completes the proof. �

We use the winding number to further discuss the example from section 2. Again
let f be entire and never zero, choose any value of log(f(0)), and define

g(z) =

∫ z

0

f ′(ζ) dζ

f(ζ)
+ log(f(0)), z ∈ C.

Here the integral is path independent. We have shown that f(z) = eg(z) for all z.
Now consider any z1, z2 ∈ C such that f(z1) = f(z2). With γ any path from z1
to z2, we have

g(z2)− g(z1) =

∫
γ

f ′(ζ) dζ

f(ζ)
=

∫
f◦γ

dξ

ξ
= 2πi Ind(f ◦ γ, 0).

That is, the condition f(z1) = f(z2) says only that g(z1) and g(z2) differ by an
integer multiple of 2πi. This difference is ignored by the exponential in the relation
f(z) = eg(z). Reiterating from earlier in this writeup, g(z) = log(f(z)) does not
connote a single value of log(w) where w = f(z); rather, log ◦f is single valued, its
values at different inputs z giving the same value of w = f(z) possibly differing by
integer multiplies of 2πi.

4. The Argument Principle Again

With the winding number in hand, we can rephrase the Argument Principle in
a way that explains its name.

Theorem 4.1 (Argument Principle, second version). Let γ be a simple closed coun-
terclockwise curve. Let f be analytic and nonzero on γ and meromorphic inside γ.
Let Z(f) denote the number of zeros of f inside γ, each counted as many times as
its multiplicity, and let P (f) denote the number of poles of f inside γ, each counted
as many times as its multiplicity. Then

Z(f)− P (f) = Ind(f ◦ γ, 0).
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That is, the theorem is called the Argument Principle because the number of
zeros minus poles of f inside γ is the number of times that the argument of f ◦ γ
increases by 2π.

In the Argument Principle, replacing f by f − w for any w ∈ C gives

Z(f − w)− P (f) = Ind(f ◦ γ,w).

This is because f − w has the same poles as f , and because

Ind(f ◦ γ,w) =
1

2πi

∫
f◦γ

dξ

ξ − w

=
1

2πi

∫
(f−w)◦γ

d(ξ + w)

ξ

=
1

2πi

∫
(f−w)◦γ

dξ

ξ
= Ind((f − w) ◦ γ, 0).

For example, consider the polynomial

f(z) = z4 − 8z3 + 3z2 + 8z + 3.

To count the roots of f in the right half plane, let D be a large disk centered at
the origin, large enough to contain all the roots of f . Let γ be the boundary of
the right half of D. Thus γ is the union of a segment of the imaginary axis and a
semicircle. The values of f on the imaginary axis are

f(iy) = (y4 − 3y2 + 3) + i(8y3 + 8y).

The real part of f(iy) is always positive, and so f takes the imaginary axis into the
right half plane. On the semicircle, f(z) behaves qualitatively as z4. Therefore the
path Γ = f ◦ γ winds twice around the origin, showing that f has two roots in the
right half plane.

5. Rouché’s Theorem

Theorem 5.1 (Rouché’s Theorem). Let γ be a simple closed counterclockwise
curve. Let f and g be analytic on and inside γ, and let them satisfy the condi-
tion

|f − g| < |g| on γ.

Then f and g have the same number of roots inside γ.

The usual application is that f is some given function and g is its dominant term
on γ, easier to analyze than the more complicated f .

Proof. The given condition shows that f and g are nonzero on γ, making the
quotient f/g nonzero and analytic on γ. By the Argument Principle,

Z(f)− Z(g) = Z(f/g)− P (f/g) = Ind((f/g) ◦ γ, 0).

Note that on γ, ∣∣∣∣fg − 1

∣∣∣∣ =

∣∣∣∣f − gg
∣∣∣∣ < 1.

So (f/g) ◦ γ does not wind about the origin, i.e., Ind((f/g) ◦ γ, 0) = 0. This
completes the proof. �
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For example, consider the polynomial

f(z) = z7 − 2z5 + 6z3 − z + 1.

To count the roots of f in the unit disk D1 = {|z| < 1}, let g(z) be the dominant
term of f on its boundary, the unit circle,

g(z) = 6z3.

Then on the unit circle we have

|f(z)− g(z)| = |z7 − 2z5 − z + 1| ≤ 5 < 6 = |6z3| = |g(z)|.
Because g has three roots in D1, so does f . To count the roots of f in the disk
D2 = {|z| < 2}, let g(z) be the dominant term of f on the circle of radius 2,

g(z) = z7.

On the boundary circle of D2 we have

|f(z)− g(z)| = | − 2z5 + 6z3 − z + 1| ≤ 115 < 128 = |z7| = |g(z)|.
Because g has seven roots in D2, so does f .

6. Local and Open Mapping Theorems

Theorem 6.1 (Local Mapping Theorem). Suppose f is analytic at z0 and that
f(z)−w0 has a zero of order n at z0. Then f is n-to-1 near z0. More specifically,
for any sufficiently small ball B(z0, ε) about z0 there is corresponding ball B(w0, δ)
about w0 such that for all w ∈ B(w0, δ)− {w0}, the equation

f(z) = w

has n distinct roots in B(z0, ε).

Proof. Because f is not identically w0, its w0-points are isolated. So on some
closed ball B = B(z0, ε), f takes the value w0 only at z0. By further shrinking ε if
necessary, we may assume also that the only possible zero of f ′ in B is at z0. Let γ
be the boundary circle of B. Then f 6= w0 on γ, and by the Argument Principle,

n = Ind(f ◦ γ,w0).

Because the winding number is constant on the connected components of C−f ◦γ,
it follows that for all w close enough to w0,

Ind(f ◦ γ,w) = Ind(f ◦ γ,w0) = n.

But Ind(f ◦ γ,w) is the number of z-values in B such that f(z) = w, counting
multiplicity, and f doesn’t take any value with multiplicity greater than one, except
possibly w0. This completes the proof. �

Corollary 6.2 (Open Mapping Theorem). Let f be analytic and nonconstant.
Then f maps open sets to open sets, and at any point z0 such that f ′(z0) 6= 0, f is
a local homeomorphism.

Proof. To show that f is an open mapping, let S be an open set in its domain.
Consider any point w0 ∈ f(S), i.e., w0 = f(z0) for some z0 ∈ S. For all small ε, the
ball B(z0, ε) lies in S. The Local Mapping Theorem says that for all sufficiently
small ε, some ball B(w0, δ) lies in f(B(z0, ε)), a subset of f(S). Thus f(S) is open.

To show that f is a local homeomorphism if f ′(z0) 6= 0, note that this con-
dition means that n = 1 in the Local Mapping Theorem. Thus f is a bijection
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between B(w0, δ) and f−1(B(w0, δ)), and the fact that f is open shows that f−1 is
continuous. �

Note how the Local Mapping Theorem reproves the Maximum Principle more
convincingly: an analytic function f maps open sets to open sets, and so its mod-
ulus |f | can’t take a maximum on an open set.

To understand the local mapping more explicitly, note that near z0 we have

f(z)− w0 = (z − z0)ng(z), g(z0) 6= 0.

By continuity, |g(z)− g(z0)| < |g(z0)| for all z near z0. So we can take a branch of
the nth root of g near z0. Call it h. Thus

w − w0 = f(z)− w0 = ((z − z0)h(z))n = ζn, ζ = (z − z0)h(z),

and the map z 7→ ζ is a homeomorphism near z0. Thus the general map f is locally
a translation of a homeomorphism, followed by an nth power.

In fact, when the local inverse f−1 of an analytic function exists, it is also
analytic. The point is that by the Local Mapping Theorem, at each point z where
f is locally invertible, necessarily f ′(z) 6= 0. And then a calculation from one-
variable calculus, equally valid over the complex numbers as over the real numbers,
shows that the derivative of the inverse of f at f(z) exists and equals the reciprocal
of the derivative of f at z. A situation like the real function f(x) = x3, which
is differentiable and invertible but whose inverse is not differentiable at 0, cannot
arise.

7. The Hurwitz Theorem

Theorem 7.1 (The Hurwitz Theorem). Let

{fn} : Ω −→ C
be a sequence of analytic functions that never vanish on Ω, and suppose that the
sequence converges uniformly on compact subsets of Ω to a limit function

f : Ω −→ C.
Then either f never vanishes on Ω as well, or f is identically zero.

Proof. We know that f is analytic. Assume that it is not identically zero. Then
any zeros that it may have must be isolated. So given any point z of Ω, some small
circle γ about z contains no zeros of f except possibly z itself. But the sequence
{f ′n/fn} converges to f ′/f uniformly on γ (exercise), and so the Argument Principle
shows that the number of zeros of f inside γ is

Z(f) =
1

2πi

∫
γ

df

f
= lim
n→∞

1

2πi

∫
γ

dfn
fn

= lim
n→∞

Z(fn) = 0.

So in particular, f(z) 6= 0. Because z is an arbitrary point of Ω, the proof is
complete. �

Corollary 7.2. Let
{fn} : Ω −→ C

be a sequence of analytic functions that are injective on Ω, and suppose that the
sequence converges uniformly on compact subsets of Ω to a limit function

f : Ω −→ C.
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Then either f is injective on Ω as well, or f is constant.

Proof. Suppose that f(z1) = f(z2) for distinct points z1, z2 ∈ Ω. Some open
ball B about z1 lies in Ω and misses z2. The functions gn : B −→ C given by
gn(z) = fn(z)− fn(z2) are never 0, while their limit function g : B −→ C given by
g(z) = f(z)−f(z2) is 0 at z = z1. By the theorem, g is identically 0 on B. That is,
f is the constant function f(z2) on B, and so f is constant on Ω by the uniqueness
theorem. �

8. Behavior at infinity

If f is analytic on C except for finitely many singularities then f is analytic on
{|z| > r} for some positive r. Define a function g on inputs near 0 that behaves as
f behaves for large inputs,

g : {ζ : 0 < |ζ| < 1/r} −→ C, g(ζ) = f(1/ζ).

Then g has an isolated singularity at 0. The nature of the singularity of f at ∞ is
defined to be the nature of the singularity of g at 0. For example, a polynomial f
of degree n has a pole of order n at ∞, because in this case

g(ζ) = f(1/ζ) =

n∑
j=0

ajζ
−j , an 6= 0.

A similar calculation shows that a rational function

f(z) =
p(z)

q(z)
, deg(p) = n, deg(q) = m

has order m− n at infinity, giving the pleasing relation∑
c∈C∪∞

ordc(f) = 0.

An entire transcendental function f has an essential singularity at ∞ because

g(ζ) = f(1/ζ) =

∞∑
n=0

anζ
−n.

And the principal part of any Laurent expansion has a removable singularity at∞.
(This finishes exercise 5(a); in 5(b) the singularity at ∞ is not isolated because
g(ζ) = f(1/ζ) isn’t analytic in any punctured disk about 0.)

What’s going on here is that the Riemann sphere, while globally distinct from C,
is indistinguishable from C in the small. To study a function at ∞, we use the
mapping

z 7−→ 1/z
call
= ζ

to take a neighborhood of∞ homeomorphically to a neighborhood of 0, because we
understand how to analyze singularities at 0. The notion we are tiptoeing around
here is that of a manifold , loosely a topological space that is locally Euclidean.
More generally than studying functions at infinity, if f has an isolated singularity
at c and some mapping ϕ takes a neighborhood of a point p ∈ C analytically and
homeomorphically to a neighborhood of c, then the singularity of f at c is of the
same type as the singularity of f ◦ϕ at p. Proving this is an exercise in manipulating
Laurent series. (Changing variables like this makes exercise 5(c) easy at z = 1/n
where n is a nonzero integer. Let z = 1/(ζ + n), so that ζ = 1/z − n, in order
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to study sin(π/z) at 1/n by studying sinπ(ζ + nπ) at 0. The singularity at 0 is
nonisolated.)

9. Casorati–Weierstrass and Riemann Theorems

Using the ideas here makes it easy to generalize the Casorati-Weierstrass theo-
rem:

Theorem 9.1 (Casorati–Weierstrass Theorem, version 2). If f has an essential
singularity at ∞ then for all large enough values R, the set

{f(z) : |z| > R}

is dense in C.

Proof. To say that f has an essential singularity at ∞ is to say that it has a two-
sided expansion

f(z) =

∞∑
n=−∞

anz
n for large z,

with the principal part
∑−1
n=−∞ anz

n convergent for large z and extending contin-

uously to 0 at z =∞, and with
∑∞
n=0 anz

n an entire transcendental function. The
principal part has absolute value less than ε/2 for z large enough, while the entire
transcendental function gets within ε/2 of any c ∈ C for infinitely many large z by
the previous version of Casorati–Weierstrass. The result follows. �

In fact, once we think in terms of manifolds, there is nothing special about
infinity. The final Casorati-Weierstrass theorem is

Theorem 9.2 (Casorati–Weierstras Theorem version 3). If f has an essential
singularity at a point c ∈ C ∪∞ then for any small enough neighborhood N of c,
the set

f(N − {c})
is dense in C.

Proof. The result is already established if c =∞. If c ∈ C instead then let g(z) =
f(z + c), which has an essential singularity at 0, and then let h(z) = g(1/z), which
has an essential singularity at ∞. Because h takes large inputs to a dense set of
outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs
near c to a dense set of outputs. �

The summary theorem about singularities is called

Theorem 9.3 (Riemann’s Theorem). Let f have an isolated singularity at the
point c ∈ C ∪∞. The singularity is

• removable if and only if f is bounded near c,
• a pole if and only if |f(z)| → +∞ as z → c,
• essential if and only if f behaves in any other fashion.

What makes this theorem satisfying is that it perfectly matches up the various
series-based descriptions of f about c with the various behavioral (i.e., function-
theoretic) descriptions of f near c.
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Proof. Consider the Laurent series of f about c,

f(z) = g(ζ) =

∞∑
n=−∞

anζ
n, where ζ =

{
z − c if c ∈ C,
1/z if c =∞.

The behavior of f near c is the behavior of g near 0.
If the singularity is removable then an = 0 for all n < 0, and so g(ζ) → a0

as ζ → 0, i.e., g is bounded near 0.
If the singularity is a pole of order N > 0 then g(ζ) = ζ−Nh(ζ) where h is

analytic at 0 and h(0) 6= 0. This goes to ∞ as ζ → 0.
If the singularity is essential then by the Casorati-Weierstrass theorem, g is

neither bounded nor uniformly large near 0.
Thus the three implications ( =⇒ ) are proved. And because the three behaviors

are exclusive and exhaustive, the three implications (⇐= ) follow. �


