THE RESIDUE THEOREM AND ITS CONSEQUENCES

1. INTRODUCTION

With Laurent series and the classification of singularities in hand, it is easy to
prove the Residue Theorem. In addition to being a handy tool for evaluating in-
tegrals, the Residue Theorem has many theoretical consequences. This writeup
presents the Argument Principle, Rouché’s Theorem, the Local Mapping Theo-
rem, the Open Mapping Theorem, the Hurwitz Theorem, the general Casorati—
Weierstrass Theorem, and Riemann’s Theorem.

2. THE RESIDUE THEOREM

Definition 2.1. Let ¢ be a point in C, and let f be a function that is meromorphic
at c. Let the Laurent series of f about ¢ be

oo

F&) = Y anz-o)n,

n=—oo

where a, = 0 for all n less than some N. Then the residue of f at c is
Res.(f) = a_1.

Theorem 2.2 (Residue Theorem). Let Q2 be a region and let f be meromorphic
on Q). Lety be a simple closed contractible counterclockwise curve in ), and suppose
that f is analytic on . Then

1
3 /7 f(z)dz = c ”;e 7Resc(f).

Proof. Although the sum in the residue theorem is taken over an uncountable set,
it has only finitely many nonzero terms, those arising from the points ¢ inside
where f has poles. The Deformation Theorem lets us replace v by finitely many
small counterclockwise loops, one around each such c. The basic result that

! (c—c>"d<={

270 Jy¢—cl=<
combines with the Laurent series representation to show that the integral over each
such loop is the relevant residue. ([

1 ifn=—1,
0 otherwise.

3. THE ARGUMENT PRINCIPLE

Theorem 3.1 (Argument Principle). Let v be a simple closed counterclockwise
curve. Let f be analytic and nonzero on v and meromorphic inside . Let Z(f)
denote the number of zeros of f inside v, each counted as many times as its mul-
tiplicity, and let P(f) denote the number of poles of f inside v, each counted as
many times as its multiplicity. Then
1 df
Z(f)—P(f)=— | —.
n-rn =555
1
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Proof. The idea is that for any point ¢ inside ~,
Res.(f'/f) = ord.(f),

and so the Argument Principle follows immediately from the Residue Theorem.
Indeed, let ¢ be any point inside v, and let N = ord.(f). The Laurent expansion
of f at cis

F) = (=Y Y ba(z = o),
n=0

where b,, = a4 and in particular by # 0. Thus
f(z) =(z—=¢)Ng(2), g¢(2) analytic and nonzero at c.

Compute the logarithmic derivative of f,

f'(z) _NE-"lg(zx)+(z—c)g'(z) _ N L 9)

f(z) (z = c)Ng(2) z—c  g(z)
Note that ¢’'(z)/g(z) is analytic at ¢ since the denominator doesn’t vanish there. So
the expression in parentheses has a simple pole at ¢ whose residue is precisely N.
The anticipated result that Res.(f’/f) = ord.(f) follows. Next, note that the

logarithmic derivative f’/f is analytic on v and meromorphic inside v. So by the
residue theorem and the previous formula,

LY S Resf/= Y od)).

211

v c inside v c inside vy

The last sum is Z(f) — P(f), and so the proof is complete. O

For one quick application of the Argument Principle, let f be a nonvanishing
entire function. We show that f has a logarithm. Consider a second entire function,
defined as the sum of an integral and a constant,

= AL o) using any value of lo
o2) = [ LS +108(£0). (using any value of log(/(0).

This function g is well defined in consequence of the Argument Principle, and its
derivative is ¢'(z) = f'(2)/f(z). To see that g is a logarithm of f, compute
d

P (e_g(z)f(z)) =90 (f'(z) = d'(2)f(2)) =0,

so that f(2) = ced®), and then set z = 0 to see that ¢ = 1.

4. THE WINDING NUMBER

Definition 4.1. Let v : [0,1] — C be any closed rectifiable path. By the usual
abuse of notation, let v also denote the corresponding subset of C. Consider a
complez-valued function on the complement of the path,

Ind(y,:) : C—vy —C, Ind(y,2) = QLTI"L/
v

d¢
(—z
For any z € C — , the function Ind(y, z) is the winding number of v about z.

For instance, if v is a circle traversed once counterclockwise about z then its
winding number about z is 1.
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Proposition 4.2. The winding number is an integer, and it is constant on the
connected components of C — .

This proposition is topological, and a proof for rectifiable curves is not trivial.
We prove it only for piecewise C'-curves.

Proof. First assume that v is C!. To show that the winding number is an integer,
consider for any z € C — ~ the function

o [0,1] — C, <p(t)=/0 m.

By the fundamental theorem of calculus, at every point ¢ where v is C!,

!
/ V' (®)
o) = 2
TOEE
And so, using the product rule for derivatives, at every point ¢ where v is C!,
d
T (e_‘P(t) (v(t) — z)) =0.

Thus on each subinterval of [0,1] where v is C!, we have y(t) — z = ce?® for
some constant ¢, and this constant is nonzero because z doesn’t lie on «y. Further,
because v is continuous, the constants ¢ for consecutive subintervals of [0, 1] where
4/ is continuous must agree. Thus () — z = ce?® for a single nonzero constant c
for all ¢ € [0,1]. Because v(1) = (0), it follows that e¥(1) = ¢#(®) = €% and so
(1) = 2min for some integer n. That is, Ind(y, z) is an integer as desired.

Also, Ind(~, z) is continuous as a function of z. Indeed, by familiar arguments,
~ is disjoint from some ball B about z, and for any sequence {z,} in B converging
to z, the functions {1/(¢ — z,)} converge uniformly to 1/({ — z) on 7, giving

lim Ind(y,2,) = =— 1 = = Ind(v,
n1—>Holon (772 7TZ711—>H<§0/<_Z71 27”/< ! ’y )

And so, being a continuous, integer-valued function, the winding number is constant
on the connected components of its domain C — «y. This completes the proof. [

5. THE ARGUMENT PRINCIPLE AGAIN

With the winding number in hand, we can rephrase the Argument Principle in
a way that explains its name.

Theorem 5.1 (Argument Principle, second version). Let « be a simple closed coun-
terclockwise curve. Let f be analytic and nonzero on v and meromorphic inside .
Let Z(f) denote the number of zeros of f inside vy, each counted as many times as
its multiplicity, and let P(f) denote the number of poles of f inside 7, each counted
as many times as its multiplicity. Then

Z(f) = P(f) = Ind(f ©,0).

That is, the theorem is called the Argument Principle because the number of
zeros minus poles of f inside « is the number of times that the argument of f o~y
increases by 2.

In the Argument Principle, replacing f by f —w for any w € C gives

Z(f —w) = P(f) = Ind(f o7, w).
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This is because f — w has the same poles as f, and because
1 d
Ind(f o w) = —— [ 2
270 Jpoy § —w

1 d(€ +w)
27 J(gmwyer €

1 d¢
=5 — =Ind((f —w) 07,0).

270 ) (g -wyer &
For example, consider the polynomial
f(z) = 2" —82° 432> 482+ 3.

To count the roots of f in the right half plane, let D be a large disk centered at
the origin, large enough to contain all the roots of f. Let « be the boundary of
the right half of D. Thus -y is the union of a segment of the imaginary axis and a
semicircle. The values of f on the imaginary axis are

fliy) = (y* = 39> +3) +i(8y° + 8y).

The real part of f(iy) is always positive, and so f takes the imaginary axis into the
right half plane. On the semicircle, f(z) behaves qualitatively as z*. Therefore the
path I' = f oy winds twice around the origin, showing that f has two roots in the
right half plane.

6. RoucHE’S THEOREM

Theorem 6.1 (Rouché’s Theorem). Let v be a simple closed counterclockwise
curve. Let f and g be analytic on and inside v, and let them satisfy the condi-
tion

lf =gl <lgl on~.
Then f and g have the same number of roots inside ~y.

The usual application is that f is some given function and g is its dominant term
on v, easier to analyze than the more complicated f.

Proof. The given condition shows that f and g are nonzero on -, making the
quotient f/g nonzero and analytic on . By the Argument Principle,

Z(f)—Z(g)=2Z(f/9) — P(f/g) =Ind((f/g) ©,0).
Note that on 7,

g g
So (f/g) o v does not wind about the origin, i.e., Ind((f/g) o 4,0) = 0. This
completes the proof. O

For example, consider the polynomial
flz)=2"—2°462° -2 +1.

To count the roots of f in the unit disk D7 = {|z| < 1}, let g(z) be the dominant
term of f on its boundary, the unit circle,

g(z) = 62°.
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Then on the unit circle we have
1f(2) —g(2)| = [2" = 22° — 2+ 1| <5 <6 =162°] = |g(2)].

Since g has three roots in Dj, so does f. To count the roots of f in the disk
Dy = {|z] < 2}, let g(z) be the dominant term of f on the circle of radius 2,

g(z)=2z".
On the boundary circle of Dy we have
1f(2) —g(2)] = | —22° +62° — 2+ 1] <115 < 128 = |27| = |g(2)].

Since g has seven roots in Dy, so does f.

7. LOCAL ANALYSIS OF ANALYTIC FUNCTIONS

Theorem 7.1 (Local Mapping Theorem). Suppose f is analytic at zyp and that
f(2) —wq has a zero of order n at zg. Then f is n-to-1 near zo. More specifically,
for any sufficiently small ball B(zp, ) about zg there is corresponding ball B(wy, d)
about wo such that for all w € B(wo,d) — {wo}, the equation

f(z)=w
has n distinct roots in B(zg,¢€).

Proof. Since f is not identically wyq, its wp-points are isolated. So on some closed
ball B = B(zp,¢), f takes the value wg only at zo. By further shrinking e if
necessary, we may assume also that the only possible zero of f’ in B is at zy. Let ~y
be the boundary circle of B. Then f # wg on ~y, and by the Argument Principle,

n = Ind(f o~y,wp).

Since the winding number is constant on the connected components of C — f o+,
it follows that for all w close enough to wy,

Ind(f o7, w) = Ind(f o, wp) = n.

But Ind(f o v,w) is the number of z-values in B such that f(z) = w, counting
multiplicity, and f doesn’t take any value with multiplicity greater than one, except
possibly wg. This completes the proof. ([

Corollary 7.2 (Open Mapping Theorem). Let f be analytic and nonconstant.
Then f maps open sets to open sets, and at any point zo such that f'(zo) #0, f is
a local homeomorphism.

Proof. To show that f is an open mapping, let S be an open set in its domain.
Consider any point wg € f(.9), i.e., wg = f(20) for some 2y € S. For all small ¢, the
ball B(zg,¢) lies in S. The Local Mapping Theorem says that for all sufficiently
small e, some ball B(wq, d) lies in f(B(z0,¢)), a subset of f(5). Thus f(S) is open.

To show that f is a local homeomorphism if f’(z9) # 0, note that this condition
means that n = 1 in the Local Mapping Theorem. Thus f is a bijection between
B(wg,d) and f~1(B(wo,d)), and the previous paragraph has shown that f=! is
continuous. (]
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Note how the Local Mapping Theorem reproves the Maximum Principle more
convincingly: an analytic function f maps open sets to open sets, and so its mod-
ulus | f| can’t take a maximum on an open set.

To understand the local mapping more explicitly, note that near zy we have

J(2) —wo = (= — 20)"g(2),  g(z0) #0.

By continuity, |g(z) — g(z0)| < |g(20)| for all z near zy. So we can take a branch of
the nth root of g near zy. Call it A. Thus

w—wo = f(2) —wo = ((2 —20)h(2))" =", (= (2~ 20)h(2),

and the map z +— ( is a homeomorphism near zg. Thus the general map f is locally
a translation of a homeomorphism, followed by an nth power.

In fact, when the local inverse f~! of an analytic function exists, it is also
analytic. The point is that by the Local Mapping Theorem, at each point z where
f is locally invertible, necessarily f'(z) # 0. And then a calculation from one-
variable calculus, equally valid over the complex numbers as over the real numbers,
shows that the derivative of the inverse of f at f(z) exists and equals the reciprocal
of the derivative of f at z. A situation like the real function f(z) = 2, which
is differentiable and invertible but whose inverse is not differentiable at 0, cannot
arise.

8. THE HURWITZ THEOREM
Theorem 8.1 (The Hurwitz Theorem). Let
{fn}: @ —C

be a sequence of analytic functions that never vanish on €, and suppose that the
sequence converges uniformly on compact subsets of Q to a limit function

f:Q—~C.
Then either f never vanishes on  as well, or f is identically zero.

Proof. We know that f is analytic. Assume that it is not identically zero. Then
any zeros that it may have must be isolated. So given any point z of €2, some small
circle v about z contains no zeros of f except possibly z itself. But the sequence
{f! ] fn} converges to f’/f uniformly on 7 (exercise), and so the Argument Principle
shows that the number of zeros of f inside 7 is
A=k [ Y L[
¥

~ o

So in particular, f(z) # 0. Since z is an arbitrary point of €, the proof is complete.
O

Corollary 8.2. Let
{fn}:Q@—C

be a sequence of analytic functions that are injective on 2, and suppose that the
sequence converges uniformly on compact subsets of Q to a limit function

f:Q-—C.

Then either f is injective on Q as well, or f is constant.
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Proof. Suppose that f(z1) = f(z2) for distinct points 21,22 € Q. Some open
ball B about z; lies in 2 and misses z,. The functions g, : B — C given by
gn(2) = fn(2) — fn(z2) are never 0, while their limit function g : B — C given by
g(z) = f(2) — f(22) is 0 at z = z;. By the theorem, g is identically 0 on B. That is,
f is the constant function f(z2) on B, and so f is constant on € by the uniqueness
theorem. d

9. BEHAVIOR AT INFINITY

If f is analytic on C except for finitely many singularities then f is analytic on
{|z] > r} for some positive r. Define a function g on inputs near 0 that behaves as
f behaves for large inputs,

g:{C:0<[¢] <1/r} —C,  g(¢) = f(1/Q).
Then g has an isolated singularity at 0. The nature of the singularity of f at oo is
defined to be the nature of the singularity of g at 0. For example, a polynomial f
of degree n has a pole of order n at oo, because in this case

9(¢) = f(1/¢) = Zagé a, # 0.

7=0
A similar calculation shows that a rational function

f(z) = 2’8 dog(p) = n, deg(q) =m

has order m — n at infinity, giving the pleasant relation

Z ord.(f) =0.

ceCUoco
An entire transcendental function f has an essential singularity at co since

9(Q) = f(1/¢) = Zanc-

And the principal part of any Laurent expansion has a removable singularity at co.
(This finishes exercise 5(a); in 5(b) the singularity at oo is not isolated since g(¢) =
f(1/¢) isn’t analytic in any punctured disk about 0.)

What’s going on here is that the Riemann sphere, while globally distinct from C,
is indistinguishable from C in the small. To study a function at co, we use the
mapping

z—1/z call ¢

to take a neighborhood of oo homeomorphically to a neighborhood of 0, since we
understand how to analyze singularities at 0. The notion we are tiptoeing around
here is that of a manifold, loosely a topological space that is locally Euclidean.
More generally than studying functions at infinity, if f has a nonisolated singularity
at ¢ and some mapping ¢ takes a neighborhood of a point p € C analytically and
homeomorphically to a neighborhood of ¢, then the singularity of f at c¢ is of the
same type as the singularity of fop at p. Proving this is an exercise in manipulating
Laurent series. (Changing variables like this makes exercise 5(c) easy at z = 1/n
where n is a nonzero integer. Let z = 1/(¢ + n), so that ( = 1/z — n, in order
to study sin(w/z) at 1/n by studying sin7(¢ + nm) at 0. The singularity at 0 is
nonisolated.)
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10. FUNCTION-THEORETIC RESULTS

Using the ideas here makes it easy to generalize the Casorati-Weierstrass theo-
rem:

Theorem 10.1 (Casorati-Weierstrass Theorem, version 2). If f has an essential
singularity at oo then for all large enough values R, the set

{f(2) : |2[ > R}
is dense in C.

Proof. To say that f has an essential singularity at co is to say that it has a two-
sided expansion

o0
f(z)= Z a,z" for large z,
n=—oo
with the principal part Z;ifoo anz™ convergent for large z and extending contin-
uously to 0 at z = oo, and with > 7/ a, 2" an entire transcendental function. The
principal part has absolute value less than /2 for z large enough, while the entire
transcendental function gets within /2 of any ¢ € C for infinitely many large z by

the previous version of Casorati—Weierstrass. The result follows. O

In fact, once we think in terms of manifolds, there is nothing special about
infinity. The final Casorati-Weierstrass theorem is

Theorem 10.2 (Casorati-Weierstras Theorem version 3). If f has an essential
singularity at a point ¢ € CU oo then for any small enough neighborhood N of c,
the set

(N —{c})

is dense in C.

Proof. The result is already established if ¢ = co. If ¢ € C instead then let g(z) =
f(z+ ¢), which has an essential singularity at 0, and then let h(z) = g(1/z), which
has an essential singularity at oo. Since h takes large inputs to a dense set of
outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs
near c¢ to a dense set of outputs. ([

The summary theorem about singularities is called
Theorem 10.3 (Riemann’s Theorem). Let f have an isolated singularity at the

point ¢ € CUoo. The singularity is

e removable if and only if f is bounded near c,
e a pole if and only if |f(2)] = +o00 as z — ¢,
e essential if and only if f behaves in any other fashion.

What makes this theorem satisfying is that it perfectly matches up the various
series-based descriptions of f about ¢ with the various behavioral (i.e., function-
theoretic) descriptions of f near c.

Proof. Consider the Laurent series of f about c,

z—c ifceC,

1/z  ifec=o0.

f(z)=9(C) = Z anC", where ¢ = {

n—=—oo

The behavior of f near ¢ is the behavior of g near 0.
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If the singularity is removable then a, = 0 for all n < 0, and so g({) — ao
as ( — 0, i.e., g is bounded near 0.

If the singularity is a pole of order N > 0 then g(¢) = (~"h(¢) where h is
analytic at 0 and h(0) # 0. This goes to co as ¢ — 0.

If the singularity is essential then by the Casorati-Weierstrass theorem, ¢ is
neither bounded nor uniformly large near 0.

Thus the three implications ( = ) are proved. And since the three behaviors
are exclusive and exhaustive, the three implications ( <= ) follow. g



