THE RESIDUE THEOREM AND ITS CONSEQUENCES

With Laurent series and the classification of singularities in hand, it is easy to
prove the Residue Theorem. In addition to being a handy tool for evaluating in-
tegrals, the Residue Theorem has many theoretical consequences. This writeup
presents the Argument Principle, the winding number, Rouché’s Theorem, the Lo-
cal Mapping Theorem, the Open Mapping Theorem, the Hurwitz Theorem, the
general Casorati—Weierstrass Theorem, and Riemann’s Theorem.
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1. THE RESIDUE THEOREM

Definition 1.1. Let ¢ be a point in C, and let f be a function that is meromorphic
at c. Let the Laurent series of f about c be

oo

f(Z): Z an(zfc)nv

n=—oo

where a, = 0 for all n less than some N. Then the residue of f at ¢ is
Res.(f) = a_1.

Theorem 1.2 (Residue Theorem). Let 2 be a region and let f be meromorphic
on Q). Lety be a simple closed contractible counterclockwise curve in ), and suppose
that f is analytic on . Then

1
m[yf(z) dz = C %;MResc(f).

Proof. Although the sum in the residue theorem is taken over an uncountable set,
it has only finitely many nonzero terms, those arising from the points ¢ inside
where f has poles. The Deformation Theorem lets us replace v by finitely many
small counterclockwise loops, one around each such c¢. The basic result that

(c—c>"d<={

1

1

20 Jygcl=e

1 ifn=-1,

0 otherwise.
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combines with the Laurent series representation to show that the integral over each
such loop is the relevant residue. ([

If f is analytic rather than meromorphic on €2, and z is some particular point
inside «, then the function

f(Q)
is meromorphic on 2, analytic everywhere except that its expansion about z is
ap+a1(¢—2)+a —2)2 4 a
g(q) = ot le )C_j(c ! = c w2t

so at z it has a pole of order 1 and its residue is ag, which is f(z). Thus the residue
theorem with ¢ in place of f gives

1 fQdC

2mi ), C—2

= f(2):

That is, Cauchy’s integral representation theorem is a special case of the residue
theorem. But in a sense we are reversing our emphasis now: the point of the residue
theorem is as much that an integral can be expressed as a sum of residues as it is
that a sum of residues can be expressed as an integral.

2. THE ARGUMENT PRINCIPLE

Theorem 2.1 (Argument Principle). Let v be a simple closed counterclockwise
curve. Let f be analytic and nonzero on vy and meromorphic inside y. Let Z(f)
denote the number of zeros of f inside v, each counted as many times as its mul-
tiplicity, and let P(f) denote the number of poles of f inside v, each counted as
many times as its multiplicity. Then
1 df
Z(f)—P(f)=— | —.
NP =55 | F
Proof. The idea is that for any point c¢ inside 7,

Res,(f'/f) = ordc(f),

and so the Argument Principle follows immediately from the Residue Theorem.
Indeed, let ¢ be any point inside v, and let N = ord.(f). The Laurent expansion
of fatcis

fR)= (=" Y balz = )",
n=0

where b, = an4+n and in particular by # 0. Thus
f(z) = (2 —c)Ng(2), g(z) analytic and nonzero at c.

Compute the logarithmic derivative of f,

F'(z) _NE=og"9(:)+ (-9 N _ J()

f(z) (z = c)Ng(2) z—c  g(2)
Note that ¢'(z)/g(z) is analytic at ¢ because the denominator doesn’t vanish there.
So the expression in parentheses has a simple pole at ¢ whose residue is precisely N.

The anticipated result that Res.(f’/f) = ord.(f) follows. Next, note that the
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logarithmic derivative f’/f is analytic on v and meromorphic inside v. So by the
residue theorem and the previous formula,

1 [df ,
ami) = Z; Res.(f'/f) = Z ord.(f).
c inside y c inside vy

The last sum is Z(f) — P(f), and so the proof is complete. O

For one quick application of the Argument Principle, let f be a nonvanishing
entire function. We show that f takes the form f(z) = e9%*) where g is entire.
Indeed, define g as the sum of an integral and a constant,

= ZM o) using any value of lo
o2) = [ LS +10(/0). (using any value of log(/(0).

This function g is well defined in consequence of the Argument Principle, and its
derivative is ¢'(z) = f/(2)/f(z). Compute,

d

= (efg(z)f(z)> — ¢ 9(2) (f’(z) — g’(z)f(z)) =0,

so that f(z) = ce9®) and then set z = 0 to see that ¢ = 1. The relation f = €9
says that the function g is a well defined branch of logof on C, but this does not
connote a well defined branch of the logarithm on f(C); the issue is that many z
values can be taken by f to the same value f(z), and logof on C can distinguish
among these z-values but log on f(C) cannot. We will discuss this further below.

3. THE WINDING NUMBER

Definition 3.1. Let v : [0,1] — C be any closed rectifiable path. By the usual
abuse of notation, let v also denote the corresponding subset of C. Consider a
complez-valued function on the complement of the path,

Ind(y,:): C—~v —C, Ind(y,2) = 2%1'2/
gl

d¢
(-2

For any z € C — v, the function Ind(y, z) is the winding number of v about z.

For instance, if v is a circle traversed once counterclockwise about z then its
winding number about z is 1.

Proposition 3.2. The winding number is an integer, and it is constant on the
connected components of C — ~.

This proposition is topological, and a proof for rectifiable curves is not trivial.
We prove it only for piecewise C!-curves.

Proof. First assume that «y is C!. To show that the winding number is an integer,
consider for any z € C —  the function

t
Y (r)dr
¢:0,1] —C, wt=/ :
o O= )y 3 -
By the fundamental theorem of calculus, at every point ¢ where v is C',
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And so, using the product rule for derivatives, at every point ¢ where «y is C!,

% (e—v(ﬂ (y(t) — z)) ~0.

Thus on each subinterval of [0,1] where v is C!, we have y(t) — z = ce?® for
some constant ¢, and this constant is nonzero because z doesn’t lie on «y. Further,
because v is continuous, the constants ¢ for consecutive subintervals of [0, 1] where
4/ is continuous must agree. Thus () — z = ce?® for a single nonzero constant c
for all ¢ € [0,1]. Because v(1) = 7(0), it follows that e¥(1) = ¢#(®) = €% and so
(1) = 2min for some integer n. That is, Ind(y, z) is an integer as desired.

Also, Ind(v, z) is continuous as a function of z. Indeed, by familiar arguments,
~ is disjoint from some ball B about z, and for any sequence {z,} in B converging
to z, the functions {1/(¢ — z,)} converge uniformly to 1/({ — z) on 7, giving

1 d 1 d
lim Ind(y,2,) = =— lim / ¢ - — e Ind(y, 2).
n—o00 271 n—o00 ,YC—Zn 27 ,YC—Z

And so, being a continuous, integer-valued function, the winding number is constant
on the connected components of its domain C — «y. This completes the proof. [

We use the winding number to further discuss the example from section 2. Again
let f be entire and never zero, choose any value of log(f(0)), and define

_rroa ]
o) = / Lo +loa(f ), zec.

Here the integral is path independent. We have shown that f(z) = e9(*) for all 2.
Now counsider any z1,2e € C such that f(z1) = f(22). With v any path from z;
to 23, we have

f(€)d¢ dg .
29)—g(z) = | ——== — = 2miInd(f 0~,0).
O O s e (f27.0)
That is, the condition f(z1) = f(22) says only that g(z1) and g(zq) differ by an
integer multiple of 27i. This difference is ignored by the exponential in the relation
f(z) = e9(3). Reiterating from earlier in this writeup, g(z) = log(f(z)) does not
connote a single value of log(w) where w = f(z); rather, logof is single valued, its
values at different inputs z giving the same value of w = f(z) possibly differing by
integer multiplies of 2.

4. THE ARGUMENT PRINCIPLE AGAIN

With the winding number in hand, we can rephrase the Argument Principle in
a way that explains its name.

Theorem 4.1 (Argument Principle, second version). Let v be a simple closed coun-
terclockwise curve. Let f be analytic and nonzero on v and meromorphic inside -y.
Let Z(f) denote the number of zeros of f inside v, each counted as many times as
its multiplicity, and let P(f) denote the number of poles of f inside 7y, each counted
as many times as its multiplicity. Then

Z(f) = P(f) = Ind(f 07,0).
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That is, the theorem is called the Argument Principle because the number of
zeros minus poles of f inside « is the number of times that the argument of f o~y
increases by 2.

In the Argument Principle, replacing f by f —w for any w € C gives

Z(f —w) = P(f) = nd(f 7, w).
This is because f — w has the same poles as f, and because
14
211 fovy g —w

1 d(€ +w)
2 Sy €

1 d¢

“ 2wt iy € Ind((f —w) ©,0).

Ind(f oy, w) =

For example, consider the polynomial
f(z) =2 —823 + 322 +82+3.

To count the roots of f in the right half plane, let D be a large disk centered at
the origin, large enough to contain all the roots of f. Let « be the boundary of
the right half of D. Thus -y is the union of a segment of the imaginary axis and a
semicircle. The values of f on the imaginary axis are

fliy) = (y* = 39> +3) +i(8y° + 8y).

The real part of f(iy) is always positive, and so f takes the imaginary axis into the
right half plane. On the semicircle, f(z) behaves qualitatively as z*. Therefore the
path I' = f oy winds twice around the origin, showing that f has two roots in the
right half plane.

5. RoucHik’s THEOREM

Theorem 5.1 (Rouché’s Theorem). Let v be a simple closed counterclockwise
curve. Let f and g be analytic on and inside v, and let them satisfy the condi-
tion

lf =gl <lgl on~.

Then f and g have the same number of roots inside -y.

The usual application is that f is some given function and g is its dominant term
on 7, easier to analyze than the more complicated f.

Proof. The given condition shows that f and ¢ are nonzero on 7, making the
quotient f/g nonzero and analytic on . By the Argument Principle,

Z(f)—Z(9) = Z(f/g9) — P(f/9) = Ind((f/g) ©,0).
Note that on 7,
I 1‘ - ’f_g‘ <1
g g

So (f/g) o~y does not wind about the origin, i.e., Ind((f/g) o v,0) = 0. This
completes the proof. [
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For example, consider the polynomial
fl2)=2"—22° 4+ 62 — 2 + 1.

To count the roots of f in the unit disk D; = {|z| < 1}, let g(z) be the dominant
term of f on its boundary, the unit circle,

g(z) = 62°.
Then on the unit circle we have
1f(2) —g(2)| = |27 = 22° — 2+ 1| <5 <6 =[62°] = |g(2)].

Because g has three roots in D1, so does f. To count the roots of f in the disk
Dy = {|z] < 2}, let g(z) be the dominant term of f on the circle of radius 2,

g(z) =2".
On the boundary circle of Dy we have
1f(2) —g(2)] = | —22° +62° — 2+ 1] <115 < 128 = |27| = |g(2)].

Because g has seven roots in Dy, so does f.

6. LocAL AND OPEN MAPPING THEOREMS

Theorem 6.1 (Local Mapping Theorem). Suppose f is analytic at zo and that
f(z) —wq has a zero of order n at zo. Then f is n-to-1 near zo. More specifically,
for any sufficiently small ball B(zg,e) about zy there is corresponding ball B(wy, o)
about wo such that for all w € B(wy, ) — {wo}, the equation

fz)=w
has n distinct roots in B(zg,¢€).

Proof. Because f is not identically wq, its wg-points are isolated. So on some
closed ball B = B(zg,¢), f takes the value wy only at zg. By further shrinking ¢ if
necessary, we may assume also that the only possible zero of f' in B is at zg. Let

be the boundary circle of B. Then f # wg on +, and by the Argument Principle,
n = Ind(f ov,wp).

Because the winding number is constant on the connected components of C — f oy,
it follows that for all w close enough to wy,

Ind(f oy, w) =Ind(f ovy,wy) = n.

But Ind(f o v,w) is the number of z-values in B such that f(z) = w, counting
multiplicity, and f doesn’t take any value with multiplicity greater than one, except
possibly wg. This completes the proof. (Il

Corollary 6.2 (Open Mapping Theorem). Let f be analytic and nonconstant.
Then f maps open sets to open sets, and at any point zo such that f'(zo) #0, f is
a local homeomorphism.

Proof. To show that f is an open mapping, let S be an open set in its domain.
Consider any point wg € f(5), i.e., wo = f(20) for some zy € S. For all small ¢, the
ball B(zp,¢) lies in S. The Local Mapping Theorem says that for all sufficiently
small €, some ball B(wq,d) lies in f(B(z0,¢)), a subset of f(S). Thus f(5) is open.

To show that f is a local homeomorphism if f’(z9) # 0, note that this con-
dition means that n = 1 in the Local Mapping Theorem. Thus f is a bijection
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between B(wq, ) and f~(B(wp,?)), and the fact that f is open shows that f~1 is
continuous. (]

Note how the Local Mapping Theorem reproves the Maximum Principle more
convincingly: an analytic function f maps open sets to open sets, and so its mod-
ulus | f| can’t take a maximum on an open set.

To understand the local mapping more explicitly, note that near zy we have

f(z) =wo = (2 = 20)"9(2), g(20) # 0.
By continuity, |g(z) — g(z0)| < |g(20)] for all z near zy. So we can take a branch of
the nth root of g near zy. Call it h. Thus

w—wo = f(2) —wo = ((z = 20)h(2))" =", (= (2= 20)h(2),

and the map z — ( is a homeomorphism near zy. Thus the general map f is locally
a translation of a homeomorphism, followed by an nth power.

In fact, when the local inverse f~! of an analytic function exists, it is also
analytic. The point is that by the Local Mapping Theorem, at each point z where
f is locally invertible, necessarily f’(z) # 0. And then a calculation from one-
variable calculus, equally valid over the complex numbers as over the real numbers,
shows that the derivative of the inverse of f at f(z) exists and equals the reciprocal
of the derivative of f at z. A situation like the real function f(z) = 23, which
is differentiable and invertible but whose inverse is not differentiable at 0, cannot
arise.

7. THE HURWITZ THEOREM
Theorem 7.1 (The Hurwitz Theorem). Let
{fn}:@—C

be a sequence of analytic functions that never vanish on €2, and suppose that the
sequence converges uniformly on compact subsets of Q to a limit function

f:Q—C.
Then either f never vanishes on Q as well, or f is identically zero.

Proof. We know that f is analytic. Assume that it is not identically zero. Then
any zeros that it may have must be isolated. So given any point z of ), some small
circle v about z contains no zeros of f except possibly z itself. But the sequence
{f} ] fn} converges to f’/f uniformly on ~ (exercise), and so the Argument Principle
shows that the number of zeros of f inside 7 is

Z(f) L/g: lim = %: lim Z(f,)=0.
8!

Tomi ), noeo2mi ) fn  nese
So in particular, f(z) # 0. Because z is an arbitrary point of €2, the proof is
complete. |
Corollary 7.2. Let
{fn}: Q@ —C

be a sequence of analytic functions that are injective on 2, and suppose that the
sequence converges uniformly on compact subsets of Q to a limit function

f:Q—C.
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Then either f is injective on € as well, or f is constant.

Proof. Suppose that f(z1) = f(z2) for distinct points z1,29 € Q. Some open
ball B about z; lies in € and misses z3. The functions ¢, : B — C given by
gn(z) = fn(2) — fu(z2) are never 0, while their limit function g : B — C given by
g(z) = f(2) — f(22) is 0 at z = z;. By the theorem, g is identically 0 on B. That is,
f is the constant function f(z2) on B, and so f is constant on € by the uniqueness
theorem. O

8. BEHAVIOR AT INFINITY

If f is analytic on C except for finitely many singularities then f is analytic on
{|z| > r} for some positive . Define a function g on inputs near 0 that behaves as
f behaves for large inputs,

g:A{¢:0<[Cl<1/r} —C,  g(Q) = f(1/Q).
Then g has an isolated singularity at 0. The nature of the singularity of f at oo is

defined to be the nature of the singularity of g at 0. For example, a polynomial f
of degree n has a pole of order n at oo, because in this case

9(¢) = f(1/¢) = Zaw an # 0.

A similar calculation shows that a ratlonal function
p(z
flz) = Q deg(p) = n, deg(q) =m

has order m — n at infinity, giving the pleasing relation

Z ord.(f) =0.

ceCUoco

An entire transcendental function f has an essential singularity at oo because

9(Q) = f(1/¢) = Zancn

And the principal part of any Laurent expansion has a removable singularity at co.
(This finishes exercise 5(a); in 5(b) the singularity at oo is not isolated because
g(¢) = f(1/¢) isn’t analytic in any punctured disk about 0.)

What’s going on here is that the Riemann sphere, while globally distinct from C,
is indistinguishable from C in the small. To study a function at oo, we use the
mapping

N 1/ call C

to take a neighborhood of oo homeomorphically to a neighborhood of 0, because we
understand how to analyze singularities at 0. The notion we are tiptoeing around
here is that of a manifold, loosely a topological space that is locally Euclidean.
More generally than studying functions at infinity, if f has an isolated singularity
at ¢ and some mapping ¢ takes a neighborhood of a point p € C analytically and
homeomorphically to a neighborhood of ¢, then the singularity of f at c¢ is of the
same type as the singularity of foy at p. Proving this is an exercise in manipulating
Laurent series. (Changing variables like this makes exercise 5(c) easy at z = 1/n
where n is a nonzero integer. Let z = 1/(¢ + n), so that ( = 1/z — n, in order
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to study sin(w/z) at 1/n by studying sin7(¢ + nw) at 0. The singularity at 0 is
nonisolated.)

9. CASORATI-WEIERSTRASS AND RIEMANN THEOREMS

Using the ideas here makes it easy to generalize the Casorati-Weierstrass theo-
rem:

Theorem 9.1 (Casorati-Weierstrass Theorem, version 2). If f has an essential
singularity at oo then for all large enough values R, the set

{f(2) : |2[ > R}
is dense in C.

Proof. To say that f has an essential singularity at oo is to say that it has a two-
sided expansion

oo
f(z)= Z anz" for large z,

n=—oo

with the principal part Z;i_oo anz™ convergent for large z and extending contin-

uously to 0 at z = oo, and with >~/ a, 2" an entire transcendental function. The
principal part has absolute value less than /2 for z large enough, while the entire
transcendental function gets within /2 of any ¢ € C for infinitely many large z by
the previous version of Casorati—Weierstrass. The result follows. O

In fact, once we think in terms of manifolds, there is nothing special about
infinity. The final Casorati-Weierstrass theorem is

Theorem 9.2 (Casorati-Weierstras Theorem version 3). If f has an essential
singularity at a point ¢ € CU oo then for any small enough neighborhood N of ¢,
the set

F(N = {c})

is dense in C.

Proof. The result is already established if ¢ = co. If ¢ € C instead then let g(z) =
f(z+ ¢), which has an essential singularity at 0, and then let h(z) = g(1/z), which
has an essential singularity at co. Because h takes large inputs to a dense set of
outputs, g takes inputs near 0 to a dense set of outputs, and so f takes inputs
near ¢ to a dense set of outputs. [l

The summary theorem about singularities is called

Theorem 9.3 (Riemann’s Theorem). Let f have an isolated singularity at the
point ¢ € CUoo. The singularity is

e removable if and only if f is bounded near c,
e a pole if and only if |f(2)] = +o00 as z — ¢,
o essential if and only if f behaves in any other fashion.

What makes this theorem satisfying is that it perfectly matches up the various
series-based descriptions of f about ¢ with the various behavioral (i.e., function-
theoretic) descriptions of f near c.
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Proof. Consider the Laurent series of f about c,

f(Z):g(C): Z ancn’ Wheregz{z_c ifCE(Ca

1/z  if¢=o0.

The behavior of f near c is the behavior of g near 0.

If the singularity is removable then a, = 0 for all n < 0, and so g({) — ao
as ( — 0, i.e., g is bounded near 0.

If the singularity is a pole of order N > 0 then g(¢) = ¢~V h(¢) where h is
analytic at 0 and h(0) # 0. This goes to co as ¢ — 0.

If the singularity is essential then by the Casorati-Weierstrass theorem, ¢ is
neither bounded nor uniformly large near 0.

Thus the three implications ( = ) are proved. And because the three behaviors
are exclusive and exhaustive, the three implications ( <= ) follow. g



