THE RATIO TEST

Consider a complex power series all of whose coefficients are nonzero,

$$f(z) = \sum_{n=0}^{\infty} a_n (z-c)^n, \quad a_n \neq 0 \text{ for each } n.$$

Suppose that the limit

$$R = R(f) = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

exists in the extended nonnegative real number system $[0, \infty]$. We show that R is the radius of convergence of f,

f(z) converges absolutely on the open disk of radius R about c, and this convergence is uniform on compacta, but f(z) diverges if |z-c| > R.

Not every power series has coefficients that are all nonzero, and even if all the coefficients are nonzero then the limit R needn't exist, so the statement here is only a partial result. For the full story, see this course's related writeup on the radius of convergence formula, involving an idea called the *limit superior*.

We freely take c = 0, and we proceed by cases.

CONTENTS

1.	The case $0 \leq R < \infty$	1
2.	The case $R = \infty$	2
3.	Absolute convergence implies convergence	3
4.	Absolutely convergent series can be rearranged	3

1. The case $0 \le R < \infty$

If $0 < R < \infty$, let z vary through a compact subset K of the open disk of radius R about 0; this open disk is empty for R = 0. Thus, for some $r \in (0, 1)$,

$$|z| < r^2 R, \quad z \in K.$$

Because $\lim_{n \to \infty} |a_n|/|a_{n+1}| = R$, there is a starting index N such that

$$rR \le |a_N|/|a_{N+1}|$$

$$rR \le |a_{N+1}|/|a_{N+2}|$$

$$rR \le |a_{N+2}|/|a_{N+3}|,$$

and so on. It follows that

$$\begin{aligned} |a_{N+1}| &\leq |a_N|/(rR) \\ |a_{N+2}| &\leq |a_{N+1}|/(rR) \leq |a_N|/(rR)^2 \\ |a_{N+3}| &\leq |a_{N+2}|/(rR) \leq |a_N|/(rR)^3, \end{aligned}$$

and in general

$$|a_{N+k}| \le |a_N|/(rR)^k, \quad k = 0, 1, 2, \dots,$$

from which

$$|a_{N+k}z^{N+k}| \le |a_N|/(rR)^k \cdot (r^2R)^N (r^2R)^k, \quad k = 0, 1, 2, \dots$$

Let $C = |a_N| (r^2 R)^N$, and now the previous display is

$$|a_{N+k}z^{N+k}| \le Cr^k, \quad k = 0, 1, 2, \dots$$

The head of the sum of the absolute values of the terms of the power series satisfies the estimate

$$\sum_{n=0}^{N-1} |a_n z^n| \le \sum_{n=0}^{N-1} |a_n| (r^2 R)^n,$$

and the tail satisfies

$$\sum_{n=N}^{\infty} |a_n z^n| \le C \sum_{k=0}^{\infty} r^k = \frac{C}{1-r} \,.$$

So $\sum_{n\geq 0} |a_n z^n|$ converges altogether. The convergence uniform over K because for $M\geq N,$

$$\sum_{n=M}^{\infty} |a_n z^n| \le Cr^{M-N} \sum_{k=0}^{\infty} r^k = \frac{C}{1-r} r^{M-N},$$

and as M goes to ∞ , this goes to 0 independently of where z lies in K.

Now with $0 \leq R < \infty$, suppose that |z| > R. Because $\lim_{n \to \infty} |a_n|/|a_{n+1}| = R$, there is a starting index N such that

$$|a_{N+k}|/|a_{N+k+1}| < |z|, \quad k = 0, 1, 2, \dots$$

and so, similarly to above,

$$|a_{N+k}| > |a_N|/|z|^k, \quad k = 1, 2, 3, \dots,$$

from which, with $C = |a_N| |z|^N > 0$,

$$|a_{N+k}z^{N+k}| > C, \quad k = 1, 2, 3, \dots$$

Thus $\sum_{n=0}^{\infty} a_n z^n$ diverges because its terms don't go to 0.

2. The case
$$R = \infty$$

Let z vary through any compact subset K of \mathbb{C} . Thus for some d > 0,

$$|z| \le d, \quad z \in K.$$

Because $\lim_{n \to \infty} |a_n|/|a_{n+1}| = \infty$, there is a starting index N such that

$$2d \le |a_{N+k}|/|a_{N+k+1}|, \quad k = 0, 1, 2, \dots,$$

so that

$$|a_{N+k}| \le |a_N|/(2d)^k, \quad k = 0, 1, 2, \dots,$$

As above, now with $C = |a_N| d^N$,

$$|a_{N+k}z^{N+k}| \le |a_N|/(2d)^k \cdot d^{N+k} = C/2^k, \quad k = 0, 1, 2, \dots$$

From here the convergence argument is exactly as before, now with r = 1/2. No divergence argument is needed here because the convergence holds everywhere.

3. Absolute convergence implies convergence

Let $\{c_n\}$ be a sequence of complex numbers such that $\sum_{n=0}^{\infty} |c_n|$ converges. We show that $\sum_{n=0}^{\infty} c_n$ converges.

To say that $\sum_{n=0}^{\infty} |c_n|$ converges is to say that its sequence of partial sums,

$$\{s_N\} = \{\sum_{n=0}^N |c_n|\},\$$

converges. Thus this sequence of partial sums is Cauchy, meaning that for any $\varepsilon > 0$ there exists a starting index $N_o = N_o(\varepsilon)$ such that $|s_N - s_M| < \varepsilon$ for all $N, M \ge N_o$. That is, for all $N, M \ge N_o$, freely taking $N \ge M$,

$$|c_{M+1}| + |c_{M+2}| + \dots + |c_N| < \varepsilon.$$

By the triangle inequality it follows that for all $N, M \ge N_o$, again taking $N \ge M$,

$$|c_{M+1} + c_{M+2} + \dots + c_N| < \varepsilon.$$

This says that the sequence of partial sums,

0

$$\{t_N\} = \{\sum_{n=0}^N c_n\},\$$

is Cauchy. Because \mathbb{C} is complete, this sequence therefore converges. That is, $\sum_{n=0}^{\infty} c_n$ converges.

4. Absolutely convergent series can be rearranged

Let $\{c_n\}$ be a sequence of complex numbers such that $\sum_{n=0}^{\infty} |c_n|$ converges. Let $\{d_n\}$ be a rearrangement of $\{c_n\}$, meaning that

$$\{d_0, d_1, d_2, \dots\} = \{c_{m(0)}, c_{m(1)}, c_{m(2)}, \dots\}$$

where $m: \{0, 1, 2, ...\} \longrightarrow \{0, 1, 2, ...\}$ is a bijection. We show that $\sum_{n=0}^{\infty} d_n = \sum_{n=0}^{\infty} c_n$.

For any N there exists a minimal $M = M(N) \ge N$ such that $\{m(0), \ldots, m(M)\}$ contains $\{0, \ldots, N\}$. Thus, for any $L \ge M$, with the primed summation sign denoting a finite sum in the next display,

$$\left|\sum_{n=0}^{L} d_n - \sum_{n=0}^{L} c_n\right| = \left|\sum_{n>N}' (\pm c_n)\right| \le \sum_{n>N}' |c_n|.$$

Because $\sum_{n=0}^{\infty} |c_n|$ converges, $\sum_{n>N}' |c_n|$ goes to 0 as N grows. So for large L, $\sum_{n=0}^{L} d_n$ is close to $\sum_{n=0}^{L} c_n$, which is close to $\sum_{n=0}^{\infty} c_n$. That is, $\sum_{n=0}^{\infty} d_n = \sum_{n=0}^{\infty} c_n$.