
THE RATIO TEST

Consider a complex power series all of whose coefficients are nonzero,

f(z) =

∞∑
n=0

an(z − c)n, an 6= 0 for each n.

Suppose that the limit

R = R(f) = lim
n→∞

|an|
|an+1|

exists in the extended nonnegative real number system [0,∞]. We show that R is
the radius of convergence of f ,

f(z) converges absolutely on the open disk of radius R about c,
and this convergence is uniform on compacta, but f(z) diverges if
|z − c| > R.

Not every power series has coefficients that are all nonzero, and even if all the
coefficients are nonzero then the limit R needn’t exist, so the statement here is
only a partial result. For the full story, see this course’s related writeup on the
radius of convergence formula, involving an idea called the limit superior.

We freely take c = 0, and we proceed by cases.
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1. The case 0 ≤ R <∞

If 0 < R < ∞, let z vary through a compact subset K of the open disk of
radius R about 0; this open disk is empty for R = 0. Thus, for some r ∈ (0, 1),

|z| < r2R, z ∈ K.

Because limn |an|/|an+1| = R, there is a starting index N such that

rR ≤ |aN |/|aN+1|
rR ≤ |aN+1|/|aN+2|
rR ≤ |aN+2|/|aN+3|,

and so on. It follows that

|aN+1| ≤ |aN |/(rR)

|aN+2| ≤ |aN+1|/(rR) ≤ |aN |/(rR)2

|aN+3| ≤ |aN+2|/(rR) ≤ |aN |/(rR)3,
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and in general

|aN+k| ≤ |aN |/(rR)k, k = 0, 1, 2, . . . ,

from which

|aN+kz
N+k| ≤ |aN |/(rR)k · (r2R)N (r2R)k, k = 0, 1, 2, . . . .

Let C = |aN |(r2R)N , and now the previous display is

|aN+kz
N+k| ≤ Crk, k = 0, 1, 2, . . . .

The head of the sum of the absolute values of the terms of the power series
satisfies the estimate

N−1∑
n=0

|anzn| ≤
N−1∑
n=0

|an|(r2R)n,

and the tail satisfies
∞∑

n=N

|anzn| ≤ C

∞∑
k=0

rk =
C

1− r
.

So
∑

n≥0 |anzn| converges altogether. The convergence uniform over K because for
M ≥ N ,

∞∑
n=M

|anzn| ≤ CrM−N
∞∑
k=0

rk =
C

1− r
rM−N ,

and as M goes to ∞, this goes to 0 independently of where z lies in K.

Now with 0 ≤ R < ∞, suppose that |z| > R. Because limn |an|/|an+1| = R,
there is a starting index N such that

|aN+k|/|aN+k+1| < |z|, k = 0, 1, 2, . . . ,

and so, similarly to above,

|aN+k| > |aN |/|z|k, k = 1, 2, 3, . . . ,

from which, with C = |aN ||z|N > 0,

|aN+kz
N+k| > C, k = 1, 2, 3, . . . .

Thus
∑∞

n=0 anz
n diverges because its terms don’t go to 0.

2. The case R =∞

Let z vary through any compact subset K of C. Thus for some d > 0,

|z| ≤ d, z ∈ K.

Because limn |an|/|an+1| =∞, there is a starting index N such that

2d ≤ |aN+k|/|aN+k+1|, k = 0, 1, 2, . . . ,

so that

|aN+k| ≤ |aN |/(2d)k, k = 0, 1, 2, . . . ,

As above, now with C = |aN |dN ,

|aN+kz
N+k| ≤ |aN |/(2d)k · dN+k = C/2k, k = 0, 1, 2, . . . .

From here the convergence argument is exactly as before, now with r = 1/2. No
divergence argument is needed here because the convergence holds everywhere.



THE RATIO TEST 3

3. Absolute convergence implies convergence

Let {cn} be a sequence of complex numbers such that
∑∞

n=0 |cn| converges. We
show that

∑∞
n=0 cn converges.

To say that
∑∞

n=0 |cn| converges is to say that its sequence of partial sums,

{sN} = {
N∑

n=0

|cn|},

converges. Thus this sequence of partial sums is Cauchy, meaning that for any ε > 0
there exists a starting index No = No(ε) such that |sN−sM | < ε for all N,M ≥ No.
That is, for all N,M ≥ No, freely taking N ≥M ,

|cM+1|+ |cM+2|+ · · ·+ |cN | < ε.

By the triangle inequality it follows that for all N,M ≥ No, again taking N ≥M ,

|cM+1 + cM+2 + · · ·+ cN | < ε.

This says that the sequence of partial sums,

{tN} = {
N∑

n=0

cn},

is Cauchy. Because C is complete, this sequence therefore converges. That is,∑∞
n=0 cn converges.

4. Absolutely convergent series can be rearranged

Let {cn} be a sequence of complex numbers such that
∑∞

n=0 |cn| converges. Let
{dn} be a rearrangement of {cn}, meaning that

{d0, d1, d2, . . . } = {cm(0), cm(1), cm(2), . . . }
where m : {0, 1, 2, . . . } −→ {0, 1, 2, . . . } is a bijection. We show that

∑∞
n=0 dn =∑∞

n=0 cn.

For any N there exists a minimal M = M(N) ≥ N such that {m(0), . . . ,m(M)}
contains {0, . . . , N}. Thus, for any L ≥ M , with the primed summation sign
denoting a finite sum in the next display,∣∣∣∣∣

L∑
n=0

dn −
L∑

n=0

cn

∣∣∣∣∣ =

∣∣∣∣∣∑
n>N

′
(±cn)

∣∣∣∣∣ ≤ ∑
n>N

′
|cn|.

Because
∑∞

n=0 |cn| converges,
∑

n>N
′|cn| goes to 0 as N grows. So for large L,∑L

n=0 dn is close to
∑L

n=0 cn, which is close to
∑∞

n=0 cn. That is,
∑∞

n=0 dn =∑∞
n=0 cn.


