TERMWISE DERIVATIVES OF POWER SERIES, SANS INTEGRALS

A direct argument, making no reference to integral representation, shows that any complex power series is termwise differentiable in its disk of convergence. (This writeup is taken nearly verbatim from a writeup by Paul Garrett.)

Consider a power series, centered at 0 without loss of generality, and consider also its termwise derivative,

\[p(z) = \sum_{n=0}^{\infty} a_n z^n, \quad q(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}. \]

Assume that \(p \) has a positive radius of convergence, and let \(D \) denote its open disk of convergence, the open disk of convergence of \(q \) as well. Let \(z \) and \(\zeta \) be any distinct points of \(D \). Then we have

\[
\frac{p(\zeta) - p(z)}{\zeta - z} - q(z) = \sum_{n=1}^{\infty} a_n \left(\frac{\zeta^n - z^n}{\zeta - z} - n z^{n-1} \right).
\]

For \(n = 1 \), the term in parentheses is 0. For \(n \geq 2 \), it is

\[
\frac{\zeta^n - z^n}{\zeta - z} - n z^{n-1} = \left(\sum_{j=0}^{n-1} \zeta^{n-1-j}z^j \right) - n z^{n-1} = \sum_{j=0}^{n-2} (\zeta^{n-1-j}z^j - z^{n-1})
\]

\[
= \sum_{j=0}^{n-2} z^j(\zeta^{n-1-j} - z^{n-1-j}) = \sum_{j=0}^{n-2} (\zeta - z)^j \sum_{k=0}^{n-2-j} \zeta^k z^{n-2-j-k}
\]

\[
= (\zeta - z) \sum_{j=0}^{n-2} \sum_{k=0}^{n-2-j} \zeta^k z^{n-2-k} = (\zeta - z) \sum_{j=0}^{n-2} \sum_{k=0}^{n-2-k} \zeta^k z^{n-2-k}
\]

\[
= (\zeta - z) \sum_{k=0}^{n-2} (n-1-k)\zeta^k z^{n-2-k}.
\]

Let \(\rho = \max\{|z|,|\zeta|\} < r \), where \(r \) is the radius of convergence of \(p \). We have shown that

\[
\left| \frac{\zeta^n - z^n}{\zeta - z} - n z^{n-1} \right| < |\zeta - z| n^2 \rho^{n-2},
\]

and therefore that

\[
\left| \frac{p(\zeta) - p(z)}{\zeta - z} - q(z) \right| < |\zeta - z| \sum_{n=2}^{\infty} n^2 |a_n| \rho^{n-2}.
\]

The series on the right side of the inequality converges, and so the left side goes to 0 as \(\zeta \) goes to \(z \). That is, \(p'(z) \) exists and equals \(q(z) \). This is the desired result.