SIMPLE PROOF OF THE PRIME NUMBER THEOREM

This writeup is drawn from a writeup by Paul Garrett for his complex analysis
course,

http://www-users.math.umn.edu/~garrett/m/complex/notes_2014-15/
09_prime_number_theorem.pdf

Especially, the bibliography of the source writeup contains relevant papers of Cheby-
shev, Erdés, Garrett, Hadamard, Newman, de la Vallée Poussin, Riemann, Selberg,
and Wiener.

The prime-counting function, a function of a real variable, is
m(x) = [{p:p <}l

That is, w(x) equals the number of prime numbers that are at most . The Prime
Number Theorem states that

X
log(z)

meaning that lim,_, . 7(z)/(x/log(z)) = 1.
This writeup’s narrative is as follows. The Chebyshev theta function, also a
function of a real variable, is

m(x)

W z) = Z log p.

p<z

A quick argument shows that J(z) = O(z), meaning that J(x) < cz for some ¢
and all large x; in fact, the argument produces such a ¢ and the inequality holds
for all . A basic lemma of asymptotics specializes to show that if ¥(z) ~ z,
meaning that lim, . 9(z)/x = 1, then w(z) ~ z/log z, giving the Prime Number
Theorem. Thus the main work is to go from ¥(z) = O(z) to ¥(z) ~ x. With {(s)
the Euler-Riemann zeta function, the dominant term of (’(s)/{(s) near s = 1 is
a Dirichlet-like series closely related to ¥(x). A convergence theorem is stated in
section 5 and proved in section 6. Facts about the dominant term of ¢’(s)/¢(s)
combine with an asymptotics corollary of the convergence theorem to finish the
proof.
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1. WEAK THETA ASYMPTOTIC

With ¥(z) = Zpgw log p as above, a quick argument shows that

as follows. For any positive integer n,
2n
H 2 2
n . J
n<p<2n 7=0
and so

9(2n) —¥(n) = Z logp = log H p | < 2nlog?2.

n<p<2n n<p<2n
It follows that
9(2™) < 2™ og2, m € Zs1,
and now, because any z > 1 satisfies 27! < x < 2™ for some such m,
I(z) < 2™ log2 < dalog?2.
So indeed 9(x) = O(x).

2. ASYMPTOTICS LEMMA, BEGINNING OF THE PROOF

O DO © 0oL~

2.1. Lemma. The following lemma is elementary and ubiquitous in asymptotics.

Lemma 2.1. Suppose that a sequence {cy,} satisfies

E cnlogn ~rx  for some r.

n<z

Then

ro
ch ~ logx

n<z
Proof. Name the two sums in the lemma,

0(x) = Z cnlogn and o(z) = Z Cn-

n<z n<z
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Thus 0(z) ~ rx, and we want to show that ¢(x) ~ rz/logxz. Because the step
function 6(x) jumps by ¢, logn at each n, and the step function ¢(z) jumps by ¢,
at each n, we have for ¢t > 1 in the sense of Stieltjes integration,

_ d8)

di(t) = logt *

With “x” denoting a fixed, large enough lower limit of integration, and with a
Stieltjes integral and integration by parts,
T x
ot
[,
e 1=« tlog“t

v Todot)  6(t)
W e~ an-[ S0 -20
The boundary term is asymptotically rx/logx, as desired for ¢(x), so what needs
to be shown is that the last integral in (1) is o(z/log x).

Because 0(t)/t ~ r for large t, estimate the integral of 1/log?t, first breaking it

into two pieces,
S| Ve S |
[ [ [ L
1=« log”~t t=+ log~t t=yz log™t

For the first piece,

~VE,

t==x

Ve A | 1
dt <z ——dt ==
t

r—
—. log?t —y tlog?t logt

while for the second,
r 1 1 2x
dt < T — )~ —5—.
/t_\/g log>t  ~ log® \/5( V) log? =

Altogether [ dt/ log?t is o(z/logz). Because 6(t)/t = O(1), the last integral
in (1) is therefore o(x/logz) as well, and the argument is complete. O

2.2. Beginning of the proof. Consider the prime-indicator sequence, {¢,} =
{c1,¢2,...} where

1 if n is prime
Cp = .
0 otherwise.

The Chebyshev theta function and the prime-counting function function are natu-
rally re-expressed using this sequence,

WHx) = Z cp logn and m(x) = Z Cn.-

n<x n<x

Consequently the lemma reduces the Prime Number Theorem to showing that
)~

Already 9(x) = O(z) is established, so the work is to go from this to the boxed
result.



4 SIMPLE PROOF OF THE PRIME NUMBER THEOREM

3. PREVIEW OF THE REST OF THE PROOF

Section 4 below shows that the negative logarithmic derivative —¢’(s)/¢(s) of
the Euler-Riemann zeta function has dominant term
oo

1
D(s) = Z Cn 08T ith ¢, as just above,

and that

e this series is holomorphic on the open right half plane Re(s) > 1

e (s—1)D(s) extends holomorphically to an open superset of the closed right
half plane Re(s) > 1

e 50 D(s) extends holomorphically to this set except for a simple pole at s = 1
with residue p = 1.

Section 5 states a convergence theorem and then establish an asymptotics corollary.
The corollary says in particular that the condition ¥(x) = O(x) and the properties
of D(s) combine to give §(x) ~ x. This proves the Prime Number Theorem. Finally,
section 6 will prove the convergence theorem.

4. EULER-RIEMANN ZETA FUNCTION
4.1. Zeta as a sum. The Euler-Riemann zeta function is initially defined as a
sum on an open right half plane,

(oo}

C(s) = ans, Re(s) > 1.
n=1

The partial sums (y(s) = EnN:1 n~* are entire, so they are analytic on Re(s) > 1.
The sequence of these partial sums converges absolutely on Re(s) > 1 because
S N N =300 g R 2 0. For any compact subset K of Re(s) > 1
there exists some o > 1 such that Re(s) > ¢ on K, and so

o0 (o]
Zn*S<Zn*", se K
n=N n=N

Because Zzo: N7 X0 independently of s, this shows that the sequence of partial
sums of ((s) converges uniformly on K. Altogether, {(s) is analytic on Re(s) > 1
by the Weierstrass theorem.

4.2. Zeta as a product. The Euler—Riemann zeta function has a second expres-
sion as a product of so-called Euler factors over the prime numbers,

) =J[=p)"" Re(s)> 1.

p

The equality of the product and sum expressions of {(s) for Re(s) > 1 is a matter
of the geometric series formula and the Fundamental Theorem of Arithmetic, as
follows. Consider any positive integer k, let p1,...,pr denote the first k& primes,
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compute
k k M;
1—p%) L= H lim TS — lim H E
H( P ) L1 oo Pi My,...,My—soc0
i=1 =1 m;=0 i=1m;=0
= lim g n_° = E n_®,

My,...,M;—o0 k . & e
n=[[;_,1p; n=[l;_;p; "

m;<M; each 1

and take the limit as k goes to oo to get the result, [[ (1 —p~*)~' =37 n~".
Now the product form of {(s) inherits the holomorphy of the sum form.

Also we can show that the product is a holomorphic function on Re(s) > 1
with no reference to its matching the sum. Recall a general result for a product
[T, (14 ¢n(s)) with each ¢,, holomorphic on a domain 2, as follows.

Suppose that:
For every compact K in )
there is a summable sequence {x,} = {x,(K)} in R>q such that
lon(8)] < @ for all n, uniformly over s € K.
Then 1,21 (1 + ¢, (s)) is holomorphic on .
In our case, Q is Re(s) > 1, and ¢, (s)is (1—p~*) 1 —1=(1—-p~*) p~*ifnisa
prime p, while ¢,, = 0 if n is composite. Let K be a compact subset of Re(s) > 1.
There exists some ¢ > 1 such that Re(s) > o on K. Let {z,,} = {2n~7}. For any
prime p, for all s € K,

lep(s)l = (L —p~*) " 'p | < 2p77 =y,
and [py,(s)| = 0 < z,, for composite n and s € K. Thus the product [ (1 —p=)~t

is holomorphic on Re(s) > 1, as claimed.

4.3. Euler’s proof. Using the product form of {(s), consider the logarithm of the
zeta function for s approaching 1 from the right,

(2) log (s Zlog 1-— Z Z

p m>1

mpms :

This decomposes into two terms,

log ¢(s) Zf-i-zz

P m>2

mpms !

The sum form of {(s) shows that ¢ diverges at 1, and hence so does log ¢ although
more slowly. The second sum is bounded by 1

1
szpms ?Z)zs(lfpfs):zp: pfl Zk k—1) =L

p m>2
So the first sum » p~° is asymptotic to log((s) as s goes to 1, and consequently
the prime numbers are dense enough to make the sum diverge at s = 1. This is a
stronger result than the existence of infinitely many primes. For the Prime Number
Theorem, we will similarly study (log((s))’ = ('(s)/¢(s) at s = 1.
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4.4. Continuation of zeta and its logarithmic derivative. The function ((s)
continues meromorphically to Re(s) > 0, the only singularity of the extension
being a simple pole at s = 1 with residue res;((s) = 1. The argument requires
some estimation but isn’t deep, as follows. For Re(s) > 1, introduce the function

e} o0 o0 n+1
(x) = C(s) — Sil = Z:ln—s —/1 o dt = Zl/n (n=* —t=%)dt.

This last sum is an infinite sum of analytic functions. For positive real s it is the
sum of small areas above the y = ¢t~° curve but inside the circumscribing box of
the curve over each unit interval, and hence it is bounded absolutely by 1. More
generally, for complex s with positive real part we can quantify the smallness of the
sum as follows. For all ¢ € [n,n + 1] we have

t t
|n—s _ t_s| — |5/ J}_S_l d.%‘| < ‘S‘/ x—Re(s)—l dz < |S|n—Re(s)—17
n n

with the last quantity in the previous display independent of ¢t and having the power
of n smaller by 1. It follows that

n+1
/ (n* — t‘s)dt‘ < |s|n—Ret)-1,

This estimate shows that the sum ¢(s) = >~ f:H(n’s — t7%) dt converges on
{s: Re(s) > 0}, uniformly on compact subsets, making 1 (s) analytic there. Thus,
in the relation
1

((5) = %(s) +
the right side is meromorphic on Re(s) > 0, its only singularity being a simple pole
at s = 1 with residue 1. So the previous display extends ((s) to Re(s) > 0 and
gives it the same properties, as claimed.

The value 9(1) = lim,—,1({(s) — -27) is called Euler’s constant and denoted 7,

Re(s) > 1,

1 0 n+1
g(s):;errO(s—l), VZZ/ (=t —t71)de.
n=1v"

With Hy denoting the Nth harmonic number 25:1 n~!, Euler’s constant is
~v= lim (Hy —log N).
N—o0

As above, this is the area above the y = 1/x curve for x > 1 but inside the
circumscribing boxes [n,n + 1] x [0,1/n] for n > 1.

The continuation argument just given should be viewed as a place-holder, be-
cause Riemann’s deeper argument continues ((s) meromorphically to all of the
complex plane and establishes a functional equation for the continuation.

With ((s) continued, its logarithmic derivative ¢’(s)/{(s) also continues mero-
morphically to Re(s) > 0, again having a simple pole at s = 1, this time with
residue res; (¢'(s)/¢(s)) = ordi((s) = —1. Indeed, recall more generally that if a
function f is meromorphic about ¢ and not identically 0 then f’/f is again mero-
morphic about ¢ with at most a simple pole at ¢, and

res.(f'/f) = ord.f.
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The argument is that because f(z) = (z — ¢)™g(z) about ¢, with m = ord.f and ¢
nonzero at c,
!/ / /
fz) _ m + 9() , g holomorphic about c,
g

fz)  z—c g(2)
and so res.(f'/f) = m as desired.

4.5. Non-vanishing of zeta on Re(s) = 1. To help prove the next proposition,
and for further use in section 4.7, compute that for Re(s) > 1 the logarithmic
derivative of {(s) is, from (2),

¢(s) _ logp
(3) C(S) - ( Z Z ’

D m>1

(The coefficient function of n~* in the double sum of the previous display is the

von Mangoldt function, A(p™) = logp and A(n) = 0 if n is not a prime power.)
Proposition 4.1. ((s) # 0 for Re(s) =
Proof. Fix any nonzero real t. Define

f(s) = C(s)3¢(s + it)*¢(s + 2it).

Because the logarithmic derivative operator takes products to sums, the logarithmic
derivative of ¢ just computed gives

() _ 3¢'(s) n 4¢' (s +1t) . ¢’ (s + 2it)
fls) — Cls) — Cls+it) (s +2it)
_ _Z Z 10gp(3 + 4p7mit +p72mit) '

pms

p m>1

We show that 0 > ord; (f), i.e., f(s) is nonzero at s = 1. The order of vanishing is
ordy(f) = resy (/1) = Jim (5~ 17 (3)/1(5),

with s approaching 1 from the right on the real axis. Because this quantity is an
integer it is real, and so it is the limit of s — 1 times the real part of f'(s)/f(s),

Z Z log p(3 4 4 cos(mtlog p) + cos(2mt logp))

ord;(f) = — lim (s —1 s

s—1t
p m>1

But for any real 8, and in particular for § = mtlogp,
3+4cos0+cos20 =3+4cosh +2cos’> 6 — 1 =2(1 + cosh)?

and so the limit is nonpositive, i.e., 0 > ord;(f) as claimed. The result follows
because ord;(f) > —3 + 4ord1((s + it), precluding the integer ord;((s + it) from
being positive. That is, {(1 + it) # 0. O

4.6. Improved continuation of the logarithmic derivative. In consequence
of ¢'(s)/((s) extending meromorphically from Re(s) > 1 to Re(s) > 0 with a simple
pole at s = 1, and of {(s) never vanishing on Re(s) = 1, also (s—1)¢’(s)/¢(s) extends
holomorphically from Re(s) > 1 to Re(s) > 1. Belng holomorphlc on Re(s) > 1
and meromorphic on Re(s) > 0, (s —1){’(s)/¢(s) is in fact holomorphic on an open
superset of Re(s) > 1.
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4.7. Dominant term of the logarithmic derivative near s = 1. For Re(s) > 1,
decompose the logarithmic derivative of ((s) in (3) into two terms, as in Euler’s

proof,
RO Y ISR

P m>2

The second sum defines a holomorphic function on Re(s) > 1/2 because its partial
sums are entire and it converges uniformly on compacta therein. Indeed, [p™*| =

™ where 0 = Re(s), and given o > 1/2 there exists p, such that logp < p”~1/2
for all p > p,; so, with ¢ = 1/(1 —27Y2) =2 4+ /2,
lo lo o=1/2 1
Z pif - Z 1— pgp)p% <¢ Z pp =¢ Z oz
p2>p§ P2Po P2Po P2Po
m2=

This suffices to prove the uniform convergence.
The dominant term —3° logp/p® of ('(s)/((s) near s = 1 now takes the form
—D(s), where D is the Dirichlet-like series

D(S) _ Z @ Ogn’ ¢, = { 1I n 1S priume

— 0 otherwise.

Crucially, {c,} is the prime-indicator sequence that arose from the Chebyshev theta
function and the prime-counting function in section 2.2. This series is holomorphic
on the open right half plane Re(s) > 1, and (s — 1)D(s) extends holomorphically
to an open superset of the closed right half plane Re(s) > 1, and D(s) extends
holomorphically to this set except for a simple pole at s = 1 with residue p = 1.
Also, the condition ¥(z) = O(z) is already established. These will be precisely the
hypotheses for the asymptotics result Corollary 5.2 below, whose conclusion is then
that 9(x) ~ pxr = x, completing the proof of the Prime Number Theorem.

5. CONVERGENCE THEOREM STATEMENT, ASYMPTOTICS COROLLARY, END OF
THE PROOF

5.1. Theorem statement.

Theorem 5.1. Consider a holomorphic function f on the open right half plane
Re(s) > 0, as follows: a bounded locally integrable complex function o on Ry is
given, and the resulting holomorphic function is defined as a weighted integral of a,

fi{Re(s) >0} —C,  f(s) = /too alt) g

-1 ts+1

Suppose that f extends to a holomorphic function on an open superset of the closed
right half plane Re(s) > 0, no longer defined by the integral,

f:0—C, O D {Re(s) > 0}.

Then the integral that defines f(s) for Re(s) > 0 converges to the extended f(s) on
the closed right half plane Re(s) > 0,

s) = /: :‘(ﬁ dt, Re(s) > 0.

To continue with the main line of the Prime Number Theorem proof, we defer
the proof of Theorem 5.1 to section 6 below.
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5.2. Corollary. The asymptotics result stated next follows from the theorem.

Corollary 5.2. Let {c,} be a sequence of nonnegative real numbers such that the
sum

= ¢plogn
Dis) = =3
n=1

is holomorphic on the open right half plane Re(s) > 1. Suppose that (s — 1)D(s)
extends holomorphically to an open superset of the closed right half plane Re(s) > 1,
so that D(s) extends holomorphically to this set except possibly for a simple pole
at s=1. Let

p =resi (D).
Suppose that the function
S(x) = Z cnlogn  for real x > 1
n<lz

satisfies

Then
S(xz) ~ pz.

Proof. For Re(s) > 1, because S jumps by ¢, logn at each n, we may write D(s) as
a Stieltjes integral and then integrate by parts with the boundary terms vanishing,

L dSt) SOT [T o1 %S
D(s)_/1 _tsl—/1 S(t)dt—s_s/l > a.

tS
Consequently for Re(s) > 0, recalling the quantity p = res; (D),

/°° SO/t =p 4, _ D+ p

— st s+1 s

Because
D(s+1) I A N
s+1 s(s+1) s s+1
the integral in the penultimate display extends holomorphically to an open superset
of the closed right half plane Re(s) > 0. Further, the function S(t)/t— p is bounded
and locally integrable on R>1, so it meets the conditions on the « in the convergence
theorem. The theorem says that the integral on the left side converges for Re(s) > 0,
and in particular for s = 0. That is,

< S(t) — pt
/ L2pdt converges.
t=1 t

for s near 0,

This convergence and the fact that S(z) is nonnegative and increasing show that
S(x) ~ px, meaning that lim, ., S(z)/x = p, as follows. Let € > 0 be given.
Suppose that S(z) > (1 + €)pz for a sequence of z-values going to oo. Estimate
that for such z,

(1+e)z S(t) — pt (1+e)x 1 — ot 1+e 1 —t
/ Lﬂdtz/ Mdt:p/ T4e—ty,
t t t t2 t=1 t2

=x =x
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the last quantity positive and independent of x. This contradicts the convergence
of the integral. Similarly, now freely taking e < 1, if S(x) < (1—¢)pz for a sequence
of z-values going to oo then for such =,

e S(t) — pt Lol —e—t
/ Lﬂ)dt < p/ ;zdt,
t=(1—e)x t t=1—¢ t

negative and independent of x, again violating convergence. Thus |S—I)

/fx —1] < e for
all large . Because € > 0 is arbitrary, S(x) ~ px. O

5.3. End of the proof. As noted in section 3 and again at the end of section 4.7,
the case where ¢, = 1 if n is prime and ¢, = 0 otherwise finishes the proof of
the Prime Number Theorem. In this case, D(s) is (minus) the dominant term of
the logarithmic derivative ¢’(s)/{(s), with residue p =1 at s = 1, and S(z) is the
Chebyshev theta function ¥(x), known to be O(x). The asymptotic result d(x) ~ x
from Corollary 5.2 is exactly what is needed to complete the argument.

6. CONVERGENCE THEOREM PROOF

Finally we prove the convergence theorem. Recall its statement:

Consider a holomorphic function f on the open right half plane Re(s) > 0, as
follows: a bounded locally integrable complex function o on R>q is given, and the
resulting holomorphic function is defined as a weighted integral of «,

f:{Re(s) >0} — C, f(s)= /foo a(t) dt.

e ts+1

Suppose that f extends to a holomorphic function on an open superset of the closed
right half plane Re(s) > 0, no longer defined by the integral,

f:0—C, O D {Re(s) > 0}.

Then the integral that defines f(s) for Re(s) > 0 converges to the extended f(s) on
the closed right half plane Re(s) > 0,

f(s)= /too all) g Re(s) > 0.

. ts+1 ’

Proof. Tt suffices to show that the integral converges at s = 0. Indeed, for any real y,
the function f(s) = f(s + iy) satisfies the same conditions as f, now with G(t) =
a(t)e=t (or {a,} = {a,/n"¥} in the Dirichlet series case), and the convergence
at 0 of the integral that initially defines f is precisely the convergence at iy of the
integral that initially defines f.

For any R > 1 there exists 6 = g > 0 such that f is holomorphic on the compact
region determined by the conditions |s| < R and Re(s) > —§, a truncated disk if
6 < R. Consider the counterclockwise boundary of this region, consisting of an
arc determined by the conditions |s|] = R and Re(s) > —4, and possibly a vertical
segment determined by the conditions |s| < R and Re(s) = —4. Typically the arc
will be less than a full circle and the vertical segment will be present. Let A and B
respectively denote the portions of the boundary in the right and left half planes,
so that the boundary is AU B with A a right semicircle.
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Let N be any positive integer. Because f(0) = f(0)N°, Cauchy’s integral repre-
sentation and Cauchy’s theorem give

F(0) — s(L 5 4
(4) 2mif(0) = [ J5N (S + R2> ds.

Consider the Nth truncation of the integral for f(s) on Re(s) > 0,
N
fn(s) :/ a(t)e st dt.
=0

This is an entire function of s, and so we may express its value at 0 by integrating
over the circle AU —A rather than the truncated circle AU B,

2mi fn (0) :/AU_A In(s)N? (1 +RQ> ds.

/ In(s ( R2) ds—/fN <i+]§2) ds,

and so in fact

(5)  2mifw(0 /fN ( )ds+/fN ( +R2> ds.

Let ry = f — fn denote the Nth remainder, a holomorphic function on an open
superset of the closed right half plane Re(s) > 0, represented on the open right half
plane Re(s) > 0 by a tail integral. Proving the theorem amounts to showing that
limy rn(0) = 0. Because ry = f — fn, the calculated expressions (4) and (5) for
2mif(0) and 27mifn(0) give

sz(O)—/Af(s)Ns< >ds+/ f(s ( R2> ds
—/AfN(s)NS <S+R2) ds—/AfN(—s)N’s (S+}‘;> ds,

which rearranges to give 2miry(0) as a sum of three terms,

omiry (0) = /A (rn(s)N* — fy(=s)N~*) (i + ;) ds

©) +/Bn{s|=R} TN (1 RQ) ds

1
+/ f(s)N?® < + ) ds.
BA{Rd(s)=—6} ) Rr?

Next compute some estimates. We may assume that |o| < 1 on R>q. Let o
denote the real part of s.

e For Re(s) > 0,

Further,

1
v () S s

Indeed, [ry(s)| = | [ =y ()t dt| < [ t7o7 dt = 1/(oN?).
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e For Re(s) > 0,

NO'
lfn(=s)] < —.
g
Indeed, |f(—s)| = | [, a(t)t- 1dt‘<ft 7Lt = b(NT — 1)/o.
e For |s| =R
1 s 20
StRT R

Indeed, s = Re?, and so s7! + sR™2 = (¢’ + e"¥)R™! =2Rcosf - R~2.
e For s on the vertical segment portion of B,
1 S 1 1 R+94
12 |« - -
s + R?

S5TRT R

Indeed, o = —§ and |s| < R.
From the first three estimates and from A having length 7R, the first term of
2mirn(0) in (6) satisfies

()N~ F (=N ™) (£ 4+ ) ds
/. (

Let € > 0 be given. If R > 47 /e then 47/R < ¢.

For the given ¢ > 0, and with R > max{4w/e,2} fixed, take a compatible
0 =6 > 0, freely stipulating that § < 1, such that f is holomorphic on and inside
AU B. Let M bound f on this compact region. The second term of 27wiry(0)
in (6) satisfies, again using the first three estimates, the conditions on 4, and a

little geometry,
1 s 8M [ 8M
N* (=4 o5 ) ds| < — Nodo < ——— .
/Bnﬂs—R}f(s) (S+RQ> °| =R /0}5 7S R2logN

If N > exp(8M/(R?¢)) then 8M/(R%*log N) < .
Still with € and R and d, the fourth estimate and the fact that BN{Re(s) = —d}
has length at most 2R show that the third term of 27ir(0) in (6) satisfies

/ f(s)N5<1 52> ds §2M(R+5)
BN{Re(s)=—5} R

dN°
If N > (2M(R+6)/(5¢))"/? then 2M (R + §)/(6N?) < e.

Altogether, given ¢ > 0, take R > max{4n/e,2} and suitable § = dr < 1,
and then [27iry(0)] < 3¢ for all large enough N. Thus {ry(0)} converges to 0,
which is to say that the integral that defines f(s) for Re(s) > 0 converges at s =0
to f(0). O

The convergence theorem also holds, with essentially the same proof, if in place
of the bounded locally integrable complex function o on R>; we posit a bounded
complex sequence {a,} and now f(s) is defined as a Dirichlet series

< —.
- R

f(s) =3 . Re(s) > 0.
n=1

Again if f extends holomorphically, not as the Dirichlet series, to an open superset
of the closed right half plane Re(s) > 0 then its definition as a Dirichlet series
extends to the closed right half plane.



