A FAR-REACHING LITTLE INTEGRAL

Let
- \(r \) be any positive real number, and \(\gamma_r \) be the circle of radius \(r \) centered at the origin, traversed once counterclockwise,
- \(n \) be any integer, and \(f_n(z) = z^n \). This function is undefined at \(z = 0 \) if \(n \) is negative.

The natural parameterization of \(\gamma_r \) is
\[\gamma_r : [0, 2\pi] \to \mathbb{C}, \quad \gamma_r(t) = re^{it} = z, \]
and so the integral of \(f_n \) over \(\gamma_r \) is
\[
\int_{\gamma_r} f_n(z) \, dz = \int_{t=0}^{2\pi} (re^{it})^n \, d(re^{it}) \\
= \int_{t=0}^{2\pi} r^n e^{int} ire^{it} \, dt \\
= i r^{n+1} \int_{t=0}^{2\pi} e^{i(n+1)t} \, dt \\
= i r^{n+1} \cdot \begin{cases}
2\pi & \text{if } n = -1, \\
0 & \text{otherwise}
\end{cases} \\
= \begin{cases}
2\pi i & \text{if } n = -1, \\
0 & \text{otherwise}.
\end{cases}
\]

That is, the integral
\[
\int_{\gamma_r} z^n \, dz = \begin{cases}
2\pi i & \text{if } n = -1, \\
0 & \text{otherwise}
\end{cases}
\]
is independent of \(r \) and nearly independent of \(n \).

The preceding formula has enormous consequences. For example, naively assuming that some function \(f \) has a representation in integer powers of \(z \),
\[f(z) = \sum_{n=-\infty}^{\infty} a_n z^n, \]
and naively assuming that the sum passes through integration over \(\gamma_r \), it follows that integrating \(f \) over \(\gamma = \gamma_r \) (for any suitable \(r > 0 \)) picks off the coefficient \(a_{-1} \) of \(1/z \) in \(f \) and ignores everything else,
\[
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = a_{-1}.
\]
Making these ideas precise requires some care, and there are some subtleties, but things pretty much work out as the calculation here suggests.