MORERA'S THEOREM

Let Ω be a region. Recall some ideas:

• Cauchy's theorem says that if γ is a simple closed rectifiable curve in Ω , and if f is an analytic function on an open superset of γ and its interior, then

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$

• In consequence of Cauchy's theorem, Cauchy's integral representation formula says that if γ is a simple closed rectifiable curve in Ω , and if f is an analytic function on an open superset of γ and its interior, then for every point z in the interior of γ ,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \,d\zeta}{\zeta - z}.$$

• Differentiation under the integral sign shows that if a continuous function $f:\Omega \longrightarrow \mathbb{C}$ has the integral representation of the previous bullet, then f is \mathcal{C}^{∞} on Ω , and its derivatives also have integral representation; specifically, for any γ and z as in the previous bullet,

$$\frac{f^{(k)}(z)}{k!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{(\zeta - z)^{k+1}}, \quad k = 0, 1, 2, \dots$$

In particular, an analytic function on Ω is \mathcal{C}^{∞} on Ω . From here, a geometric series argument shows that in fact an analytic function on Ω is \mathcal{C}^{ω} on Ω .

1. Statement

Morera's theorem is a partial converse of Cauchy's theorem, as follows.

Theorem 1.1 (Morera). Let Ω be a region, and let $f:\Omega \longrightarrow \mathbb{C}$ be continuous. Suppose that

$$\int_{\gamma} f(z) dz = 0 \quad \text{for all simple closed rectifiable curves } \gamma \text{ in } \Omega.$$

Then f is analytic on Ω .

Proof. We need to show that f' exists on Ω . Fix any point z_o in Ω . The following function is well defined:

$$F: \Omega \longrightarrow \mathbb{C}, \qquad F(z) = \int_{z_0}^z f(\zeta) \,d\zeta,$$

where the integral is taken along any rectifiable curve from z_o to z. For any $z \in \Omega$ and all small enough nonzero $h \in \mathbb{C}$ we have, integrating over the line segment from

z to z+h,

$$\frac{F(z+h) - F(z)}{h} = \frac{\int_z^{z+h} f(\zeta) \,\mathrm{d}\zeta}{h}$$
$$= \frac{\int_z^{z+h} (f(z) + o(1)) \,\mathrm{d}\zeta}{h}$$
$$= f(z) + \frac{1}{h} \int_z^{z+h} o(1) \,\mathrm{d}\zeta.$$

Given any $\varepsilon > 0$, the integrand satisfies $|o(1)| \le \varepsilon$ if h is small enough, and so the absolute value of the integral is at most $\varepsilon |h|$ for all such h. That is, for every $\varepsilon > 0$, the difference quotient is within ε of f(z) for all small enough nonzero h. This means precisely that F'(z) exists and equals f(z). Because z is any point of Ω this shows that

$$F' = f$$
 on Ω .

Because F is analytic on Ω , it is \mathcal{C}^{∞} on Ω , and in particular its second derivative exists on Ω . That is, f' exists on Ω .

The proof of Morera's theorem shows that if $\int_{\gamma} f(z) dz = 0$ for all simple closed rectifiable curves γ in Ω then f = F' for some analytic $F : \Omega \longrightarrow \mathbb{C}$. The converse of this statement is true as well, by the complex fundamental theorem of calculus, and so we have a partial converse to Morera's theorem, that if an analytic function f is a derivative then $\int_{\gamma} f(z) dz = 0$ for all simple closed rectifiable curves γ in Ω . However, the full converse of Morera's theorem is not true, the function f(z) = 1/z on $\Omega = \mathbb{C} - \{0\}$ being the standard counterexample. Although f is analytic on Ω , it is not a derivative there, and its integral over the unit circle is nonzero.

2. Consequence: the converse of Cauchy's theorem

By contrast, an essential converse of Cauchy's theorem is true, thanks to Morera's theorem. Again let Ω be a region, and let $f:\Omega \longrightarrow \mathbb{C}$ be continuous. Cauchy's theorem says that if $f:\Omega \longrightarrow \mathbb{C}$ is analytic then $\int_{\gamma} f(z) \, \mathrm{d}z = 0$ for all simple closed rectifiable curves γ in Ω such that the interior of γ lies in Ω .

Now rather than assume that f is analytic, assume instead that $\int_{\gamma} f(z) dz = 0$ for all simple closed rectifiable curves γ in Ω such that the interior of γ lies in Ω . For each point z of Ω , let B_z denote the largest open disk about z in Ω , and note that every simple closed rectifiable curve γ in B_z is such that the interior of γ lies in B_z , and so $\int_{\gamma} f(z) dz = 0$. Thus f on B_z satisfies the hypothesis of Morera's theorem, and so Morera's theorem says that f' exists on B_z . In particular f'(z) exists. Because z is an arbitrary point of Ω , this shows that f is analytic on Ω .

3. Summary

Let Ω be a region, and let γ always denote a simple closed rectifiable curve in Ω . Consider a continuous function $f:\Omega \longrightarrow \mathbb{C}$. Then

$$\begin{pmatrix} f = F' \\ \text{for some } F : \Omega \longrightarrow \mathbb{C} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} \int_{\gamma} f(z) \, \mathrm{d}z = 0 \\ \text{for all } \gamma \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(f' \text{ exists on } \Omega) \Longleftrightarrow \begin{pmatrix} \int_{\gamma} f(z) \, \mathrm{d}z = 0 \\ \text{for all } \gamma \text{ with int}(\gamma) \subset \Omega \end{pmatrix}$$

and

- ullet the top \Longrightarrow is by the complex fundamental theorem of integral calculus
- the top \iff is Morera's theorem
- the left downward implication follows from integral representation and differentiation under the integral sign, i.e., f' = F'' exists because F' exists
- the right downward implication is clear
- the bottom \implies is Cauchy's theorem
- ullet the bottom $\ensuremath{\longleftarrow}$ follows from Morera's theorem by a small argument.

And again, the example to keep in mind is f(z) = 1/z on $\Omega = \mathbb{C} - \{0\}$, a differentiable function that is not a derivative and whose integral around the unit circle is $2\pi i$.

If a region Ω is *simply connected*, meaning that $\operatorname{int}(\gamma) \subset \Omega$ for all simple closed rectifiable curves γ in Ω , then the two conditions on the right side of the diagram above are the same, and so:

On a simply connnected domain
$$\Omega$$
, f' exists if and only if $f = F'$ for some F .

What is particular to simply connected domains is that having a derivative implies having an antiderivative.