PASSING LIMITS THROUGH INTEGRALS

1. A General Lemma

Let Ω be a region in \mathbb{C}, and let $\gamma : I \to \Omega$ be a rectifiable curve. By a small abuse of notation, the symbol γ will also denote the trace of the curve. Let

$$\{\varphi_n\} : \gamma \to \mathbb{C}$$

be a sequence of integrable functions converging uniformly to an integrable function $\varphi : \gamma \to \mathbb{C}$.

For example, if each φ_n is continuous then it is integrable, and the uniform convergence then guarantees that φ is continuous and hence integrable as well. Then

$$\lim_{n \to \infty} \int_{\gamma} \varphi_n(\zeta) \, d\zeta = \int_{\gamma} \varphi(\zeta) \, d\zeta.$$

To prove this, let $\varepsilon > 0$ be given. We may assume that γ has positive length. There exists a starting index n_0 such that

$$n \geq n_0 \implies |\varphi(\zeta) - \varphi_n(\zeta)| < \frac{\varepsilon}{\text{length}(\gamma)}$$

for all $\zeta \in \gamma$.

It follows that for all $n \geq n_0$,

$$\left| \int_{\gamma} \varphi(\zeta) \, d\zeta - \int_{\gamma} \varphi_n(\zeta) \, d\zeta \right| = \left| \int_{\gamma} (\varphi(\zeta) - \varphi_n(\zeta)) \, d\zeta \right|$$

$$\leq \int_{\gamma} |\varphi(\zeta) - \varphi_n(\zeta)| \, d\zeta$$

$$< \int_{\gamma} \frac{\varepsilon}{\text{length}(\gamma)} \, d\zeta$$

$$= \frac{\varepsilon}{\text{length}(\gamma)} \int_{\gamma} |d\zeta|$$

$$= \varepsilon.$$

2. The First Application: Higher Derivatives

Let Ω be a region in \mathbb{C}. Let $\gamma : I \to \Omega$ be a simple closed curve in Ω, traversed counterclockwise. Again the symbol γ will also denote the trace of the curve. Let $f : \Omega \to \mathbb{C}$ be a function. Suppose that

- f is continuous on γ,
- For some positive integer k, the $(k-1)$st derivative $f^{(k-1)}$ exists inside γ and has the integral representations

$$f^{(k-1)}(z) = \frac{1}{(k-1)!} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{(\zeta - z)^k}.$$
In particular, the case of \(k = 1 \) is Cauchy’s integral formula, a quick consequence of Cauchy’s Theorem if \(f \) is already known to be differentiable. But the assumptions being made here when \(k = 1 \) do not include the existence of \(f' \). The point is that the argument to follow will use the integral representation of the \((k - 1)\)st derivative to show that the \(k \)th derivative exists and has the analogous integral representation. By induction, it follows that all derivatives of \(f \) exist inside \(\gamma \) as soon as \(f \) itself is known to be continuous on \(\gamma \) and to have integral representation inside \(\gamma \). Since these conditions follow when \(f \) is known to be once-differentiable, this proves that one complex derivative, not even known to be continuous, implies infinitely many.

Fix a generic point \(z \) inside \(\gamma \). Let \(B \) be a closed ball about \(z \) entirely inside \(\gamma \). Let \(k \) be a positive integer. Define a function

\[
\varphi^{(k)} : B \times \gamma \rightarrow \mathbb{C}
\]

where

\[
\varphi^{(k)}(z', \zeta) = \begin{cases}
 f(\zeta) \cdot \left(\frac{1}{(\zeta - z')^k} - \frac{1}{(\zeta - z)^k} \right) & \text{if } z' \neq z, \\
 f(\zeta) \cdot \frac{k}{(\zeta - z)^{k+1}} & \text{if } z' = z.
\end{cases}
\]

As shown in an earlier writeup, \(\varphi^{(k)} \) is continuous, and therefore uniformly continuous, so that in particular, \(\varphi^{(k)}(z', \zeta) \) is within any prescribed closeness to \(\varphi(z, \zeta) \) simultaneously for all \(\zeta \) if \(z' \) is close enough to \(z \).

Take a sequence \(\{z'_n\} \) in \(B \) converging to \(z \). Define the corresponding sequence of functions of one variable,

\[
\{\varphi^{(k)}_n\} : \gamma \rightarrow \mathbb{C}, \quad \varphi^{(k)}_n(\zeta) = \varphi^{(k)}(z'_n, \zeta), \quad n = 1, 2, 3, \ldots,
\]

and the corresponding limit function (with a slight abuse of notation),

\[
\varphi^{(k)} : \gamma \rightarrow \mathbb{C}, \quad \varphi^{(k)}(\zeta) = \varphi^{(k)}(z, \zeta).
\]

The sequence \(\{\varphi^{(k)}_n\} \) converges uniformly to \(\varphi^{(k)} \). So compute, using the lemma at the third step, that

\[
\frac{1}{k!} \lim_{n \to \infty} \frac{f^{(k-1)}(z'_n) - f^{(k-1)}(z)}{z'_n - z} = \frac{1}{k!} \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) d\zeta}{(\zeta - z'_n)^k} - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) d\zeta}{(\zeta - z)^k}
\]

\[
= \frac{1}{k!} \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma} \varphi^{(k)}_n(\zeta) d\zeta
\]

\[
= \frac{1}{2\pi i} \int_{\gamma} \frac{\varphi^{(k)}(\zeta)}{k} d\zeta
\]

\[
= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) d\zeta}{(\zeta - z)^{k+1}}.
\]

Since this calculation holds for every sequence \(\{z'_n\} \) in \(B \) that converges to \(z \), it shows that \(f^{(k)}(z) \) exists and has integral representation

\[
\frac{f^{(k)}(z)}{k!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) d\zeta}{(\zeta - z)^{k+1}}.
\]

At least in the case that \(\gamma \) is piecewise \(C^1 \), to produce the same result using the Dominated Convergence Theorem rather than our Uniform Convergence Lemma, we quote the fact that a continuous function on a compact set is bounded, rather
than the fact that a continuous function on a compact set is uniformly continuous. Here the function is \(\varphi^{(k)}(z', \zeta) : B \times \gamma \to \mathbb{C} \). Because it is continuous, the sequence \(\{ \varphi^{(k)}_{n}(\zeta) \} \) above converges pointwise to \(\varphi^{(k)}(\zeta) \), and because it is bounded, some constant function bounds all functions in the sequence. This is enough for the DCT, because a constant function is integrable over a curve of finite length. The gain in ease here, and the gain in practice at reaching for the best tool to address a problem, need to be balanced against the investment of really understanding the DCT.

3. The Second Application: Power Series Representation

Recall the environment where

- \(\Omega \) is a region in \(\mathbb{C} \),
- \(f : \Omega \to \mathbb{C} \) is a differentiable function,
- \(\gamma \) is a circle in \(\Omega \) such that \(\Omega \) contains all of its interior,
- \(R \) is the radius of \(\gamma \), \(a \) is the centerpoint of \(\gamma \), and \(z \) is any point interior to \(\gamma \).

We defined a sequence of functions

\[
\{ \varphi_{n} \} : \gamma \to \mathbb{C}, \quad \varphi_{n}(\zeta) = f(\zeta) \sum_{k=0}^{n} \frac{(z-a)^{k}}{(\zeta-a)^{k+1}}, \quad n = 1, 2, 3, \ldots,
\]

and then their pointwise limit function,

\[
\varphi : \gamma \to \mathbb{C}, \quad \varphi(\zeta) = f(\zeta) \sum_{k=0}^{\infty} \frac{(z-a)^{k}}{(\zeta-a)^{k+1}}.
\]

It follows from the integral representation of \(f \) that

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{\zeta - z}
= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{(\zeta-a) - (z-a)}
= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{(\zeta-a) \left(1 - \frac{z-a}{\zeta-a}\right)},
\]

so that by the geometric series formula, the calculation continues

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \sum_{k=0}^{\infty} \frac{(z-a)^{k}}{(\zeta-a)^{k+1}} \, d\zeta
= \frac{1}{2\pi i} \int_{\gamma} \varphi(\zeta) \, d\zeta.
\]

The sequence \(\{ \varphi_{n} \} \) converges to \(\varphi \) uniformly on \(\gamma \), so by the lemma,

\[
f(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma} \varphi_{n}(\zeta) \, d\zeta
= \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \sum_{k=0}^{n} \frac{(z-a)^{k}}{(\zeta-a)^{k+1}} \, d\zeta.
\]
The finite sum and the powers of $z - a$ pass through the integral, and then the integral representation of the derivatives of f gives the desired power series representation of f,

$$f(z) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, d\zeta}{(\zeta - a)^{k+1}} (z - a)^k$$

$$= \lim_{n \to \infty} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (z - a)^k$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (z - a)^k.$$