
MATH 311: COMPLEX ANALYSIS — MAPPINGS LECTURE

1. The complex exponential

The exponential function

exp : C −→ C− {0}

is defined to be

exp(x+ iy) = exeiy where eiy = cos y + i sin y.

It is natural to think of the inputs to the exponential map in cartesian coordinates,
and of the outputs in polar coordinates. Thus,

| exp(x+ iy)| = ex and arg(exp(x+ iy)) = y + 2πZ.

To tidy up the notation, define

ez = exp(z).

This definition expands in cartesian coordinates to

ex+iy = exeiy.

We already know from a little trigonometry that ei(y+y
′) = eiyeiy

′
, as follows:

ei(y+y
′) = cos(y + y′) + i sin(y + y′),

eiyeiy
′

=
(

cos(y) + i sin(y)
)(

cos(y′) + i sin(y′)
)

=
(

cos(y) cos(y′)− sin(y) sin(y′)
)

+ i
(

sin(y) cos(y′) + cos(y) sin(y′)
)
,

and so the relation ei(y+y
′) = eiyeiy

′
is equivalent to the trigonometry addition law

formulas cos(y+y′) = cos(y) cos(y′)−sin(y) sin(y′) and sin(y+y′) = sin(y) cos(y′)+
cos(y) sin(y′). Consequently, also

ez+z
′

= ezez
′
.

That is, the exponential map is a homomorphism from the additive group (C,+)
to the multiplicative group (C− {0}, ·).

The exponential map has kernel 2πiZ. Since it is a homomorphism, it gives rise
to an isomorphism that can also be denoted exp,

exp : (C/2πiZ,+)
∼−→ (C− {0}, ·).

Visually, we can imagine the complex exponential map as rolling the plane into a
tube and then looking down the tube lengthwise. But this isn’t fully accurate since
the exponential radial magnification is inconsistent with the laws of perspective.
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2. The complex logarithm

The natural definition of the complex logarithm is

log(z) = w ⇐⇒ exp(w) = z, z 6= 0.

However, since exp is many-to-one, this makes the complex logarithm multiple
valued. Since exp is the cartesian-to-polar coordinate map but with exponential
radial scaling, the formula for the complex logarithm must be

log(z) = ln |z|+ i arg z.

Indeed this is multiple-valued, since arg is defined only modulo 2πZ. To make it
single-valued, make its range be the same quotient as above,

log : C− {0} ∼−→ C/2πiZ.
Alternatively, we can take branches of log, or we can define log on a Riemann surface
rather than on the punctured plane. The formula

log(zz′) = log(z) + log(z′)

does not hold in general for branches of log, but it does hold when the logarithm
maps to a quotient or is defined on a suitable Riemann surface.

3. Complex powers

The general power map is

zw = exp(w log z), z, w ∈ C, z 6= 0.

This formula expands to

zw = exp(w ln |z|+ iw arg(z)).

Because literally arg(z) is θ + 2πZ for a unique θ ∈ [0, 2π), this definition of zw is
generally multiple-valued.

3.1. Complex base, real exponent. When the exponent w is a real number a,

za = ea ln |z|eia arg(z) = |z|aeia arg(z), z 6= 0, a ∈ R,
i.e.,

|za| = |z|a and arg(za) = a arg(z), z 6= 0, a ∈ R.

Here a arg(z) = aθ+2πaZ. Especially, if a = n ∈ Z then za is single valued because
2πaZ ⊂ 2πZ and therefore

eia arg(z) = eia(θ+2πZ) = eiaθeia2πZ = einθ.

Thus we recover the polar interpretation of powers of complex numbers,

|zn| = |z|n and arg(zn) = n arg(z).

For example, the case n = 2 recovers the result that squaring a complex number
squares its modulus and doubles its argument. Also, the case n = −1 is worth
internalizing: the complex inverse function inverts modulus and negates angle,

|z−1| = |z|−1 and arg(z−1) = − arg(z).

The net effect is to preserve two-dimensional orientation. In particular, the inverse
is the conjugate on the unit circle,

z−1 = z, |z| = 1.
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Also, if a = 1/n where n ∈ Z+ then we recover the polar interpretation of roots of
complex numbers,

|z1/n| = |z|1/n and arg(z1/n) = (1/n) arg(z).

Note that here,

if arg(z) = θ + 2πZ then (1/n) arg(z) = θ/n+ (2π/n)Z.

This says that the nth root is n-valued. Alternatively, the nth root can be defined
on a Riemann surface, a quotient of the Riemann surface for the logarithm.

3.2. Positive real base, complex exponent. Switching the roles of a and z,
suppose now that the base a is a positive real number and that the exponent z is
an arbitrary complex number. The definition of the power map becomes

az = exp(z log a), a > 0.

But here it is convenient to restrict the logarithm to the principal branch, or any
other branch such that log a = ln a. The definition becomes

az = exp(z ln a) = ex ln a+iy ln a = axeiy ln a,

and in particular,

|az| = aRe(z), a > 0, z ∈ C.
This estimate will be useful later in the course. For example, it shows that the
Riemann zeta function,

ζ(s) =

∞∑
n=1

1

ns
, s ∈ C,

converges absolutely on the right half-plane {s ∈ C : Re(s) > 1}, and in fact the
absolute convergence is uniform on compacta.

4. The function (z + z−1)/2

Consider the function

f : C− {0} −→ C, f(z) =
z + z−1

2
.

Because f(z−1) = f(z), we may analyze the function on the punctured closed disk,

D
◦

= {z : 0 < |z| ≤ 1}. Since z−1 = z on the boundary circle, f on the boundary
circle picks off the real part of z, projecting the upper and lower halves of the
boundary circle to the segment [−1, 1]. Inside the boundary circle, the term z−1

of f is larger in magnitude than the term z, so in anticipation of studying f inside
the disk, we should imagine the top half of the boundary circle being projected to
the lower side of the segment, and the bottom half of the circle to the top side of
the segment.

To study f further, write its input values z in polar coordinates, and compute

f(reiθ) =
reiθ + r−1e−iθ

2
=
r + r−1

2
cos θ + i

r − r−1

2
sin θ.

Let r = et where −∞ < t ≤ 0. Then

f(reiθ) = cosh t cos θ + i sinh t sin θ
call
= u+ iv.
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Concentric circles in the punctured disk are traversed by fixing t and letting θ
vary. We have ( u

cosh t

)2
+
( v

sinh t

)2
= cos2 θ + sin2 θ = 1,

showing that concentric circles map to ellipses. In the unit disk, the dominant term
of f is z−1/2. Thus, as r shrinks from 1 down toward 0, the ellipses expand about
[−1, 1], and if the circles are traversed counterclockwise, the ellipses are traversed
clockwise. This reversal of two linear dimensions preserves planar orientation.

On the other hand, radii in the punctured disk are traversed by fixing θ and
letting t vary. We have( u

cos θ

)2
−
( v

sin θ

)2
= cosh2 t− sinh2 t = 1,

showing that radii map to hyperbolas. As θ runs counterclockwise from 0 to 2π, the
hyperbola segments progress clockwise, but again this reversal is balanced by the
fact that as z moves away from the origin along the radii, f(z) moves toward [−1, 1]
along the hyperbolas. Again, we see that the map preserves planar orientation.

Symbolically, we invert the map as follows. Let

w =
z + z−1

2
.

Then
z2 − 2wz + 1 = 0,

and so by the quadratic formula,

z = w +
√
w2 − 1.

The square root is double-valued (reflecting the fact that f is 2-to-1), and so we
need to decide how to proceed.

One option is to define f on a quotient space of its original domain, obtained by
identifying reciprocal pairs {z, z−1} as a single point. This quotient is topologically
a punctured sphere. If we define 1/∞ = 0 then f is defined at 0 and at ∞, and the
quotient becomes a complete sphere. This option makes the environment smaller.

A second option is to take a branch of
√
w2 − 1 =

√
w − 1

√
w + 1. The first

square root changes its sign when a small circle about w = 1 is traversed, and
similarly for the second square root and w = −1. Taking [−1, 1] as the branch cut
forces any circle around one endpoint to go around the other as well, giving us a
choice between two well defined products of the square roots. By convention, we
let
√
w2 − 1 denote the choice that takes positive values for w > 1. This option

looks at most but not all of the environment.
A third option is to create a Riemann surface for the inverse function. View the

exterior of the unit disk as being taken by f to a second copy of the plane, with the
two copies suitably glued together at the two sides of the slit [−1, 1]. Again adding
in 0 and∞, this makes the Riemann surface for the inverse function a sphere. This
option makes the environment bigger.

Life is not all spheres. Let a, b, c, d ∈ C be distinct complex numbers, and
consider the double-valued function

h(w) =
√

(w − a)(w − b)(w − c)(w − d).

The Riemann surface for h is a torus.


