
MATH 311: COMPLEX ANALYSIS — TOPOLOGY LECTURE

1. Topology

Engage with Marsden section 1.4 to taste.
Structures of increasing generality:

(R, dR), (C, dC) (the line and the plane)

(Rn, dRn) (Euclidean space)

(X, dX) (metric space)

(X, T ) (topological space)

Here a topological space (X, T ) is an ordered pair consisting of a set X and a
topology T , with the topology a collection of subsets of X, the designated open
sets. These must have three properties:

(1) The empty set ∅ and the full space X are open.
(2) Every union

⋃
i∈I Oi of open sets is again open.

(3) Every finite intersection
⋂

i∈{i1,...,in}Oi of open sets is again open.

The open sets of Euclidean space are the unions of open balls,

O =
⋃
i∈I

B(pi, εi),

with each pi ∈ Rn, each εi > 0, and B(pi, εi) = {x ∈ Rn : d(x, pi) < εi}. Similarly
for the open sets of any metric space.

Why generalize?

• Increased scope.
• Sloughing off of spurious detail.

Formulating the apt generalization is much harder than appreciating it.
Any subset W of a topological space X itself becomes a topological space in the

most natural possible way, with the subspace topology. De Morgan’s laws do the
little necessary work, e.g.,⋃

i

Oi,W =
⋃
i

(Oi,X ∩W ) =

(⋃
i

Oi,X

)
∩W = OX ∩W = OW .

Definition 1.1 (Topological Continuity). Let (X, T ) and (Y,U) be topological
spaces, and let f : X −→ Y be a map. Then f is continuous if the following
condition holds.

For every open set B in Y , the inverse image f−1(B) is open in X.

The topological definition of continuity subsumes the ε–δ definition in the metric
space environment.

Definition 1.2 (Topological Connectedness). The topological space (X, T ) is con-
nected if the following condition holds.

X is not the union of two disjoint nonempty open subsets.
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This definition makes no reference to an ambient space. (By contrast, Marsden’s
definition is busier than this because it takes the ambient space into account.)

Connectedness is a topological property: The continuous image of a connected set
is connected. This result subsumes the Intermediate Value Theorem from calculus.
The proof is inexorable. With the symbols meaning what they must, if

f(X) = O1 t O2

then
X = f−1(f(X)) = f−1 (O1 t O2) = f−1(O1) t f−1(O2).

(But this argument raises questions about basic symbol-patterns in connection with
set and mappings.)

Definition 1.3 (Topological Compactness). Let (X, T ) be a topological space. Let
S be a subset of X. Then S is compact if the following condition holds.

Every open cover
⋃

iOi of S has a finite subcover.

Features of this definition in the purely topological setting:

• It is intrinsic, i.e., independent of any ambient space. This means that a
topological space is compact with respect to its own topology if and only
if it is compact with respect to the topology of any ambient space of which
it is a subspace.
• It is a topological property, i.e., it preserved under continuity. In particular,

a real-valued function on a compact space assumes extrema. This result
subsumes the Extreme Value Theorem from calculus.
• (Tychonoff’s Theorem) It is preserved under products. [But what is the

product topology?]

The proof that compactness is a topological property is again inexorable. If

f(X) =
⋃
i

Oi

then

X = f−1(f(X)) = f−1

(⋃
i

Oi

)
=
⋃
i

f−1(Oi) =

n⋃
i=1

f−1(Oi),

and so

f(X) = f

(
n⋃

i=1

f−1(Oi)

)
=

n⋃
i=1

f(f−1(Oi)) =

n⋃
i=1

Oi.

In the metric setting:

• Continuity on compact sets is uniform.

In the Euclidean setting:

• (Heine–Borel Theorem) A subset of Euclidean space is compact if and only
if it is closed and bounded.
• (Bolzano–Weierstrass Theorem) A subset of Euclidean space is compact if

and only if every sequence in the set has a subsequence that converges in
the set.

(Do examples from the Compactness and Uniformity writeup.)


