MATH 311: COMPLEX ANALYSIS — TOPOLOGY LECTURE

1. TOPOLOGY

Engage with Marsden section 1.4 to taste.
Structures of increasing generality:

(R,dg), (C,dc) (the line and the plane)
(R™, dgn) (Euclidean space)
(X,dx) (metric space)

(X,7) (topological space)

Here a topological space (X,T) is an ordered pair consisting of a set X and a
topology T, with the topology a collection of subsets of X, the designated open

sets. These must have three properties:
(1) The empty set () and the full space X are open.
(2) Every union (J;; O; of open sets is again open.
(3) Every finite intersection mie{il,‘..,in} O, of open sets is again open.
The open sets of Euclidean space are the unions of open balls,

O =|JB(pi =),
il
with each p; € R™, each g; > 0, and B(p;,&;) = {z € R" : d(z,p;) < &;}. Similarly
for the open sets of any metric space.
Why generalize?
e Increased scope.
e Sloughing off of spurious detail.
Formulating the apt generalization is much harder than appreciating it.
Any subset W of a topological space X itself becomes a topological space in the
most natural possible way, with the subspace topology. De Morgan’s laws do the
little necessary work, e.g.,

Uoiw =JOixnw) = (U oi,x> NW=0xNW = Ow.
Definition 1.1 (Topological Continuity). Let (X,7T) and (Y,U) be topological
spaces, and let f : X — Y be a map. Then [ is continuous if the following
condition holds.

For every open set B in'Y, the inverse image f~*(B) is open in X.

The topological definition of continuity subsumes the e definition in the metric
space environment.

Definition 1.2 (Topological Connectedness). The topological space (X, T) is con-
nected if the following condition holds.

X is not the union of two disjoint nonempty open subsets.
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This definition makes no reference to an ambient space. (By contrast, Marsden’s
definition is busier than this because it takes the ambient space into account.)

Connectedness is a topological property: The continuous image of a connected set
is connected. This result subsumes the Intermediate Value Theorem from calculus.
The proof is inexorable. With the symbols meaning what they must, if

f(X) =0 U0,
then
X =f1f(X)=f1(O0100z) = fTHO) U fH(Os).
(But this argument raises questions about basic symbol-patterns in connection with
set and mappings.)

Definition 1.3 (Topological Compactness). Let (X,T) be a topological space. Let
S be a subset of X. Then S is compact if the following condition holds.

Every open cover |J, O; of S has a finite subcover.

Features of this definition in the purely topological setting:

e It is intrinsic, i.e., independent of any ambient space. This means that a
topological space is compact with respect to its own topology if and only
if it is compact with respect to the topology of any ambient space of which
it is a subspace.

e It is a topological property, i.e., it preserved under continuity. In particular,
a real-valued function on a compact space assumes extrema. This result
subsumes the Extreme Value Theorem from calculus.

e (Tychonoft’s Theorem) It is preserved under products. [But what is the
product topology?]

The proof that compactness is a topological property is again inexorable. If
f(X) = U 0;
then Z
X=ffx)=f" (UQ‘) =Jr oy = r "o,
and so . z . %
FX)=f (U f%@)) = J s oy =Jo.
In the metric setting: - -
e Continuity on compact sets is uniform.

In the Euclidean setting:

e (Heine-Borel Theorem) A subset of Euclidean space is compact if and only
if it is closed and bounded.

e (Bolzano—Weierstrass Theorem) A subset of Euclidean space is compact if
and only if every sequence in the set has a subsequence that converges in
the set.

(Do examples from the Compactness and Uniformity writeup.)



